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Goals For This Talk 

•  Give a brief recap of the context   

•  Give a look ahead  

•  Discuss possible tests 

•  Put the Wγ box in more general context of EW 
boxes 

•  Motivate future work 
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Outline 

I.  Recap 

II.  Future Work: Free Nucleon 

III.  Future Work: Nuclei 

IV.  Electroweak Boxes More Generally 

V.  Outlook 
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I. Recap 
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Precision ~ BSM Mass Scale 

Precision Goal: 

 δ ΔCKM ~ O(10-4) 

Ultralight BSM Physics: 

ΔCKM ~ ε2  ( α /4π )   ε < 1 (loop) 

ΔCKM ~ C  ( v/Λ )2  

Heavy BSM Physics: 
Λ ∼ 10 TeV (tree) 

Λ < 1 TeV (loop) 
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now

7

V

Z

Elastic 

Pion Production 

Hadronic 
Resonances 

Regge/ 
Deep Inelastic 

FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)

⇥


xy2F1 +
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The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)
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Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now

7

V

Z

Elastic 

Pion Production 

Hadronic 
Resonances 

Regge/ 
Deep Inelastic 

FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)

⇥


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
.

The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
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The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].
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Single nucleon: PRL 121 (2008) 241804 

ΔR
V = 0.02361(38) ! 0.02467 (22) 
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3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Quasielastic response Part of δNS : “ CB
Nucl ” 

New work 
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Other Nuclear Corrections 

Nuclei  Free nucleons  

11

tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.

Elastic 

Discrete 
Levels 

Quasi- 
Elastic Hadronic 

Resonances Regge/ 
Deep Inelastic 

GDR 

FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now

7

V

Z

Elastic 

Pion Production 

Hadronic 
Resonances 

Regge/ 
Deep Inelastic 

FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)

⇥


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
.

The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Low-lying transitions Part of δNS  
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Questions for the Day 

•  How robust is the quoted uncertainty on the 
new value of ΔR

V ? 

•  What additional tests (theory, experiment) are 
available ? 

•  What is the roadmap to refined computation of 
δNS (QE) ? 

•  How important are contributions from other 
region of the low-E nuclear response ? How to 
compute & how to test computations ? 



11 

II. Future: Single Nucleon 
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“Next Frontier” : Higher Order EW RC 
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Long Distance: Hadronic & Nuclear 
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Neutrino Scattering 

Free nucleons  

•  Compute contributions to M3
νp+νp at 

each Q2 from different  ω regions 
 
•  Isospin rotate to M3

(0)  

- 
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Neutrino Scattering 

Free nucleons  

•  Compute contributions to M3
νp+νp at 

each Q2 from different  ω regions 
 
•  Isospin rotate to M3

(0)  

Regge 
- 
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Regge Contribution 

8

with C1 = 1, C2 = 4.583 � 0.333Nf and C3 = 41.440 �
8.020NF + 0.177N2

F , Nf = 3 standing for the number of
e↵ective quark flavors, and ↵̄s(Q2) denotes the running
strong coupling constant in the modified minimal sub-
traction scheme with ⇤QCD = 0.2 GeV. Note that for
Q2

� 2 GeV2 the di↵erence between the Nachtmann and
Mellin moments is negligible.

0.1 1 10 100
Q² (GeV²)

0

0.5

1

1.5

2

2.5

3

3.5

WA25
CCFR
BEBC/GGM-PS
Regge + Born + Δ
pQCD

M
3!p

+!
p (1

,Q
2 )

−

FIG. 5: Data on the first Nachtmann moment of F
⌫p+⌫̄p
3

from CCFR [21, 22], BEBC/Gargamelle [19] and WA25 [23]
vs.theory.

In Fig. 5 we display the world data on the Nachtmann
moment of F ⌫p+⌫̄p

3 for Q2
2 (0.01, 600) GeV2. The solid

red curve shows the pQCD result of Ref. [20] which can
be seen to nicely agree with the CCFR data [21, 22] at
Q2

� 2 GeV2. The solid blue curve at lower Q2 shows the
result of our low-Q2 model as described in Eq. (36), and
the uncertainty is represented by the dashed blue curves
around it. We do not use the three left-most data points
in the fit because we expect M⌫p+⌫̄p

3 (1, Q2) to be satu-
rated at Q2 < 0.1 GeV2 by the elastic and �-resonance
contribution [19] which are determined using more pre-
cise lower energy modern data. In our formalism, the
theoretical uncertainty in the intermediate-Q2 region is
determined by that of the ⌫p/⌫̄p-scattering data which
can be systematically improved when future, more pre-
cise data become available. This represents an advantage
over the MS formalism where the physics at intermediate
distances had to be assigned a 100% uncertainty.

We note here that while our use of a Regge-VDM
parametrization of the contributions at low Q2 and high
energy is model-dependent, no other model describes in-
clusive electron scattering data in that kinematical range.
Moreover, our parametrization of F ⌫p+⌫̄p

3 can be tested
explicitly by confronting it to high-energy electron spec-
tra in inclusive CC neutrino scattering, rather than to
the Nachtmann moment as we do here. Also the key in-
gredient of our parametrization, the e↵ective a1 � ⇢� !
vertex can be tested in exclusive neutrinoproduction of !
mesons, and in exclusive a1-electroproduction. We will

address the exact formulation of these tests with the ex-
isting and future data in an upcoming work.

V. RELATING NACHTMANN MOMENTS OF
F

⌫p+⌫̄p
3 AND F

(0)
3 BY ISOSPIN SYMMETRY

After having modeled the pure CC structure function
F ⌫p+⌫̄p
3 as a sum of elastic, resonances, non-resonant ⇡N

and Regge, we proceed to obtain F (0)
3 via isospin rota-

tion. This is done for each contribution separately. For
the elastic contribution, since the intermediate is fixed at
I = 1/2 the correspondence between the two processes is
simple:

F ⌫p+⌫̄p
3,Born = �GA(Q

2)GV
M (Q2)�(1� x),

F (0)
3,Born = �

1

4
GA(Q

2)GS
M (Q2)�(1� x), (40)

with the axial form factor normalized as GA(0) =
�1.2715, and magnetic isovector and isoscalar form fac-
tors GV,S

M (0) = µp ± µn, with the proton (netron) mag-
netic moment µp = 2.792847356 (µn = �1.9130427). So
the di↵erence is simply between the isoscalar and the
isovector component of the electromagnetic matrix ele-
ment and an extra constant factor.
For resonance contributions, a correspondence simi-

lar to Eq. (40) may also be stated, but with a caveat.
The purely isovector structure function F ⌫p+⌫̄p

3 receives
contributions from both I = 1/2 and I = 3/2 reso-
nances, with the contributions of the latter, most no-
tably the �(1232), dominating over the contributions of
the I = 1/2 resonances. Instead, only I = 1/2 reso-

nances contribute to F (0)
3 . The details of the calculation

are given in Appendix D.
The Regge contribution is depicted in Fig. 6. It is

seen that the central ingredient in this picture, the e↵ec-
tive vertex a1 � ⇢ � ! is the same in both cases. Since
the parameters of the ⇢ and ! Regge trajectories and
VDM propagators are nearly exactly the same, the only
change would regard the respective coupling constants.
As we discuss in detail in Appendix E, this entails relat-
ing the ��! and ⇢NN couplings entering the �W inter-
ference to W �⇢ and !NN couplings entering the purely
charge current structure function. Taking into account
the correct normalization of various pieces, the isospin
symmetry implies a rescaling of the Regge contribution
to F3 by a factor 1/36 at low Q2,

F ⌫p+⌫̄p
3,R =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

, (41)

#

F (0)
3,R =

1

36

C�W (Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

,

and this rescaling straightforwardly translates in the re-
spective change of the Nachtmann moment. Above,

•  Matching at Q2 = 0 and Q2 = 2 (GeV)2 

[pQCD regime] ! CγW (Q2) = C(Q2) 
 
•  Factor of 1/36: matching at pQCD 

scale 
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Neutrino Scattering 

Free nucleons  

•  Compute contributions to M3
νp+νp at 

each Q2 from different  ω regions 
 
•  Isospin rotate to M3

(0)  

Born + (π N + Res) + 
Regge 

- 

DIS 



18 

Future Tests 
•  Lattice computation of M3

(0) (Q2) 
 
•  PV electron scattering 

16

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or
(I = 2, I3 = 0). The I = 2 piece obviously vanishes when
taking matrix element with respect to I = 1/2 nucleon
states, while the matrix elements of the I = 0 piece are
the same for the proton and neutron so they cancel each

other. Therefore we can simply replace J (0)µ
em ! Jµ

em at
the right hand side. That leads to the following identity
for the parity-odd structure functions F3:

4F (0)
3 = F p

3,�Z � Fn
3,�Z . (81)

The factor 4 at the left hand side is just due to the

choice of normalization in F (0)
3 . The structure functions

on the RHS are in principle measurable in PV electron
scattering experiments. One should however be aware
of the possible caveats of such correspondence: recall
that the isoscalar component of the electromagnetic cur-
rent is much smaller than its isovector component; so
any attempt based on isospin argument to relate a small
isoscalar EM matrix element to the full EM matrix el-
ement will be more exposed to unknown hadronic com-
plications such as the nucleon anapole moment and the
strange quark e↵ects.

FIG. 10: Regge-model description of FN
3,�Z .

Another significance of PV eN -scattering is its ability

to test our current modeling of F (0)
3 and F ⌫p+⌫̄p

3 simulta-

neously. Recall that F (0)
3 is probing a current product of

the form isoscalar ⇥ isovector while F ⌫p+⌫̄p
3 is of isovec-

tor ⇥ isovector, they can be related to FN
3,�Z of which

the electromagnetic current contains both the isoscalar
isovector components. To illustrate this point let us con-
sider the Regge contribution to FN

3,�Z in total analogy to
those detailed in Appendix E. The exchanged-diagrams
are depicted in Fig. 10, and one observes that the photon
can fluctuate to both ! and ⇢0. The only extra ingredi-
ent needed apart from those in Appendix E is the mixing
Lagrangian between a1 and Z, also given in Ref. [48]:

La1Z = �
gm2

a1

2g⇢ cos ✓W
wa1a

0
1µZ

µ. (82)

With this we can write down the Regge prediction of
FN
3,�Z in complete analogy to Eq. (E4):

F �Z,N
3,R (⌫, Q2) = 2

✓
eg

2 cos ✓W

◆�1✓ e

g!

m2
!

m2
! +Q2

◆✓
�

gwa1

2g⇢ cos ✓W

m2
a1

m2
a1

+Q2

◆⇣g⇢
2
⌧3N

⌘
g1H⇢(⌫, Q

2)

+ 2

✓
eg

2 cos ✓W

◆�1
 

e

g⇢

m2
⇢

m2
⇢ +Q2

!✓
�

gwa1

2g⇢ cos ✓W

m2
a1

m2
a1

+Q2

◆⇣g!
2

⌘
g2H!(⌫, Q

2), (83)

with ⌧3p,n = ±1 the nucleon isospin. From here one im-
mediately observes the relations:

F �Z, p
3,R � F �Z, n

3,R = 4F (0)
3,R

F �Z, p
3,R + F �Z, n

3,R = F ⌫p+⌫̄p
3,R . (84)

which are nothing but direct consequences of isospin sym-
metry; the first line has already been proven above and

the second line works the same way.

There are several benefits of this analysis. Firstly, ac-
cording to the second line in Eq. (84), PV electron scat-
tering (PVES) experiments on deuteron (which is essen-
tially p + n) plays the same role as neutrino scattering
in terms of probing the Regge contribution, thus the two
di↵erent experiments may complement each other in pro-
viding input data to the dispersion relation at wider re-

Isospin relation 

•  SoLID ? 
 
•  EIC ? 

•  More neutrino data for M3
(0) (Q2) 
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III. Future: Nuclei 
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Impact on δNS 
13

• The strength of the nuclear response in the QE
regime is significantly larger than that due to low-
lying nuclear excitations, and covers a broader
range of excitation energy than the latter. Thus,
one might expect that the QE region generally has
a more significant impact on the dispersion integral,
as well. To address the nuclear modification of the
free nucleon contribution in a controlled manner,
the QE knock-out contribution has to be explicitly
included.

• The dynamics in which the same nucleon partici-
pates in the transition to a state involving a quasi-
free nucleon and spectator nucleus are those of the
QE response, whose peak at ! ⇠ Q2/2M can lie
significantly above the low-lying nuclear excitation
spectrum. In the �W -box this contribution cor-
responds to (i) the virtual W+ knocking out one
neutron from the initial nucleus, converting it to
a proton and a spectator nucleus, corresponding
to a subset of intermediate states |ni in the nu-
clear Green’s function and (ii) reabsorbtion of the
quasifree proton into the final nucleus by emitting
a virtual photon.

• The significant store of data for QE electron-
nucleus scattering implies that, to a first approxi-
mation, one may obtain an adequate description of
the QE response using the free-nucleon form factors
without any quenching factors applied. Inclusion
of subdominant e↵ects arising from nuclear correla-
tions and two-body currents may yield O(10�30%)
corrections [47].

• Finally, the QE contribution to �W -box requires
a quasi-free active nucleon between the � and W
couplings rather than a bound nucleon inside an
excited nuclear state; compare Fig. 9b) and a), re-
spectively. The Q2-dependence under the integral
in the box with the low-lying excited nuclear state
as in Fig. 9a), on the other hand, depends on nu-
clear form factors which are known to drop much
faster than the free nucleon form factors, so the as-
sumption that the integral over form factors should
simply rescale as the charges is not justified.

With these observations in mind, we propose an alter-
native method of addressing the modification of the free
nucleon Born contribution by explicitly accounting for
the QE contribution shown in Fig. 9b). This approach
entails (1) employing the dispersion relation framework
to evaluate the contribution from the QE component of
TA
µ⌫ to �NS , and (2) replacing the Towner and Hardy

computation of the same-nucleon contribution to �NS by
our computation of the QE contribution. We defer a
treatment of the contributions from low-lying nuclear ex-
citations to a future, state-of-the-art many-body compu-
tation. We expect that such a computation will take into
account the underlying many-body dynamics responsi-

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[40, 46] , diagram a) with the initial (final) nucleus A (A0),
and an excited nuclear state Ã accessed via a Gamow-Teller
transition from the initial nucleus and via a magnetic transi-
tion from the final nucleus. Panel b) shows the quasielastic
picture with a single-nucleon knockout.

ble for the quenching of spin-flip transition strengths in
low-lying nuclear transitions.
We now turn to the dispersion representation of the

�W -box correction in Eq. (23) with the nuclear structure

function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (64)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. and concentrate on the
quasielastic part only. Instead of defining the quench-
ing via a simple rescaling of the Born we will directly
calculate CQE from a dispersion representation,

CQE = 2

1Z

0

dQ2

⌫⇡Z

⌫min

d⌫(⌫ + 2q)

M⌫(⌫ + q)2
F (0), QE
3, �W (⌫, Q2), (65)

with the limits of the ⌫-integration being ⌫min, the
threshold for the quasielastic breakup specified in
Eq. (69) below and ⌫⇡ = (Q2 + (M + m⇡)2 � M2)/2M
the threshold for pion production. Then, we estimate the
modification of the Born contribution discussed above, as

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (66)

For purposes of this exploratory calculation, we de-
scribe the quasielastic peak in the �W box contribution
to a superallowed �+ decay process A ! A0e+⌫e in the
plane-wave impulse approximation (PWIA). In this pic-
ture, a nucleus first splits into an on-shell spectator nu-
cleus A00 and an active o↵-shell nucleon, and the latter
interacts with the gauge bosons. The e↵ective scatter-
ing process proceeds as AW�

! nA00
! A0�, see Fig.

9b). The active nucleon carries an o↵-shell momentum
k before interacting with the gauge boson. To describe
its distribution in the nucleus we adopt the Fermi gas
model, which assumes a uniform distribution of nucleon
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Quasielastic Contribution to δNS 
13

• The strength of the nuclear response in the QE
regime is significantly larger than that due to low-
lying nuclear excitations, and covers a broader
range of excitation energy than the latter. Thus,
one might expect that the QE region generally has
a more significant impact on the dispersion integral,
as well. To address the nuclear modification of the
free nucleon contribution in a controlled manner,
the QE knock-out contribution has to be explicitly
included.

• The dynamics in which the same nucleon partici-
pates in the transition to a state involving a quasi-
free nucleon and spectator nucleus are those of the
QE response, whose peak at ! ⇠ Q2/2M can lie
significantly above the low-lying nuclear excitation
spectrum. In the �W -box this contribution cor-
responds to (i) the virtual W+ knocking out one
neutron from the initial nucleus, converting it to
a proton and a spectator nucleus, corresponding
to a subset of intermediate states |ni in the nu-
clear Green’s function and (ii) reabsorbtion of the
quasifree proton into the final nucleus by emitting
a virtual photon.

• The significant store of data for QE electron-
nucleus scattering implies that, to a first approxi-
mation, one may obtain an adequate description of
the QE response using the free-nucleon form factors
without any quenching factors applied. Inclusion
of subdominant e↵ects arising from nuclear correla-
tions and two-body currents may yield O(10�30%)
corrections [47].

• Finally, the QE contribution to �W -box requires
a quasi-free active nucleon between the � and W
couplings rather than a bound nucleon inside an
excited nuclear state; compare Fig. 9b) and a), re-
spectively. The Q2-dependence under the integral
in the box with the low-lying excited nuclear state
as in Fig. 9a), on the other hand, depends on nu-
clear form factors which are known to drop much
faster than the free nucleon form factors, so the as-
sumption that the integral over form factors should
simply rescale as the charges is not justified.

With these observations in mind, we propose an alter-
native method of addressing the modification of the free
nucleon Born contribution by explicitly accounting for
the QE contribution shown in Fig. 9b). This approach
entails (1) employing the dispersion relation framework
to evaluate the contribution from the QE component of
TA
µ⌫ to �NS , and (2) replacing the Towner and Hardy

computation of the same-nucleon contribution to �NS by
our computation of the QE contribution. We defer a
treatment of the contributions from low-lying nuclear ex-
citations to a future, state-of-the-art many-body compu-
tation. We expect that such a computation will take into
account the underlying many-body dynamics responsi-

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[40, 46] , diagram a) with the initial (final) nucleus A (A0),
and an excited nuclear state Ã accessed via a Gamow-Teller
transition from the initial nucleus and via a magnetic transi-
tion from the final nucleus. Panel b) shows the quasielastic
picture with a single-nucleon knockout.

ble for the quenching of spin-flip transition strengths in
low-lying nuclear transitions.
We now turn to the dispersion representation of the

�W -box correction in Eq. (23) with the nuclear structure

function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (64)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. and concentrate on the
quasielastic part only. Instead of defining the quench-
ing via a simple rescaling of the Born we will directly
calculate CQE from a dispersion representation,

CQE = 2

1Z

0

dQ2

⌫⇡Z

⌫min

d⌫(⌫ + 2q)

M⌫(⌫ + q)2
F (0), QE
3, �W (⌫, Q2), (65)

with the limits of the ⌫-integration being ⌫min, the
threshold for the quasielastic breakup specified in
Eq. (69) below and ⌫⇡ = (Q2 + (M + m⇡)2 � M2)/2M
the threshold for pion production. Then, we estimate the
modification of the Born contribution discussed above, as

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (66)

For purposes of this exploratory calculation, we de-
scribe the quasielastic peak in the �W box contribution
to a superallowed �+ decay process A ! A0e+⌫e in the
plane-wave impulse approximation (PWIA). In this pic-
ture, a nucleus first splits into an on-shell spectator nu-
cleus A00 and an active o↵-shell nucleon, and the latter
interacts with the gauge bosons. The e↵ective scatter-
ing process proceeds as AW�

! nA00
! A0�, see Fig.

9b). The active nucleon carries an o↵-shell momentum
k before interacting with the gauge boson. To describe
its distribution in the nucleus we adopt the Fermi gas
model, which assumes a uniform distribution of nucleon
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QE Contribution: Refinements 
13

• The strength of the nuclear response in the QE
regime is significantly larger than that due to low-
lying nuclear excitations, and covers a broader
range of excitation energy than the latter. Thus,
one might expect that the QE region generally has
a more significant impact on the dispersion integral,
as well. To address the nuclear modification of the
free nucleon contribution in a controlled manner,
the QE knock-out contribution has to be explicitly
included.

• The dynamics in which the same nucleon partici-
pates in the transition to a state involving a quasi-
free nucleon and spectator nucleus are those of the
QE response, whose peak at ! ⇠ Q2/2M can lie
significantly above the low-lying nuclear excitation
spectrum. In the �W -box this contribution cor-
responds to (i) the virtual W+ knocking out one
neutron from the initial nucleus, converting it to
a proton and a spectator nucleus, corresponding
to a subset of intermediate states |ni in the nu-
clear Green’s function and (ii) reabsorbtion of the
quasifree proton into the final nucleus by emitting
a virtual photon.

• The significant store of data for QE electron-
nucleus scattering implies that, to a first approxi-
mation, one may obtain an adequate description of
the QE response using the free-nucleon form factors
without any quenching factors applied. Inclusion
of subdominant e↵ects arising from nuclear correla-
tions and two-body currents may yield O(10�30%)
corrections [47].

• Finally, the QE contribution to �W -box requires
a quasi-free active nucleon between the � and W
couplings rather than a bound nucleon inside an
excited nuclear state; compare Fig. 9b) and a), re-
spectively. The Q2-dependence under the integral
in the box with the low-lying excited nuclear state
as in Fig. 9a), on the other hand, depends on nu-
clear form factors which are known to drop much
faster than the free nucleon form factors, so the as-
sumption that the integral over form factors should
simply rescale as the charges is not justified.

With these observations in mind, we propose an alter-
native method of addressing the modification of the free
nucleon Born contribution by explicitly accounting for
the QE contribution shown in Fig. 9b). This approach
entails (1) employing the dispersion relation framework
to evaluate the contribution from the QE component of
TA
µ⌫ to �NS , and (2) replacing the Towner and Hardy

computation of the same-nucleon contribution to �NS by
our computation of the QE contribution. We defer a
treatment of the contributions from low-lying nuclear ex-
citations to a future, state-of-the-art many-body compu-
tation. We expect that such a computation will take into
account the underlying many-body dynamics responsi-

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[40, 46] , diagram a) with the initial (final) nucleus A (A0),
and an excited nuclear state Ã accessed via a Gamow-Teller
transition from the initial nucleus and via a magnetic transi-
tion from the final nucleus. Panel b) shows the quasielastic
picture with a single-nucleon knockout.

ble for the quenching of spin-flip transition strengths in
low-lying nuclear transitions.
We now turn to the dispersion representation of the

�W -box correction in Eq. (23) with the nuclear structure

function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (64)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. and concentrate on the
quasielastic part only. Instead of defining the quench-
ing via a simple rescaling of the Born we will directly
calculate CQE from a dispersion representation,

CQE = 2

1Z

0

dQ2

⌫⇡Z

⌫min

d⌫(⌫ + 2q)

M⌫(⌫ + q)2
F (0), QE
3, �W (⌫, Q2), (65)

with the limits of the ⌫-integration being ⌫min, the
threshold for the quasielastic breakup specified in
Eq. (69) below and ⌫⇡ = (Q2 + (M + m⇡)2 � M2)/2M
the threshold for pion production. Then, we estimate the
modification of the Born contribution discussed above, as

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (66)

For purposes of this exploratory calculation, we de-
scribe the quasielastic peak in the �W box contribution
to a superallowed �+ decay process A ! A0e+⌫e in the
plane-wave impulse approximation (PWIA). In this pic-
ture, a nucleus first splits into an on-shell spectator nu-
cleus A00 and an active o↵-shell nucleon, and the latter
interacts with the gauge bosons. The e↵ective scatter-
ing process proceeds as AW�

! nA00
! A0�, see Fig.

9b). The active nucleon carries an o↵-shell momentum
k before interacting with the gauge boson. To describe
its distribution in the nucleus we adopt the Fermi gas
model, which assumes a uniform distribution of nucleon

•  Correlations 
•  2-body currents 
•  Rel corrections 
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δ’R - “outer” correction (depends on e-energy) - QED

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250
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δC - SU(2) breaking in the nuclear matrix elements 
- mismatch of radial WF in parent-daughter 
- mixing of different isospin states
δNS - RC depending on the nuclear structure 
δC,δNS - energy independent

Hardy, Towner 1973 - 2018
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δC - SU(2) breaking in the nuclear matrix elements 
- mismatch of radial WF in parent-daughter 
- mixing of different isospin states
δNS - RC depending on the nuclear structure 
δC,δNS - energy independent

Hardy, Towner 1973 - 2018

Consistency w/ CVC ?  
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 0+ ! 0+ Decay: δNS 

One-body Two-body: 
GS ! GS 

Full nuclear Greens fn: 
excited intermediate states  

J. Engel 
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 0+ ! 0+ Decay: δNS 

One-body Two-body: 
GS ! GS 

Full nuclear Greens fn: 
excited intermediate states  

Towner 1992; T&H compilations  

J. Engel 
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 0+ ! 0+ Decay: δNS 

One-body Two-body: 
GS ! GS 

Full nuclear Greens fn: 
excited intermediate states  

Towner 1992; T&H compilations  

Needed: state of 
art calc’s & tests 
w/ An  

J. Engel 
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IV. EW Boxes More Generally 



Dispersion Corrections 
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Two-boson exchange in semileptonic processes: important 
for elastic PV eN & eA scattering (12C) & nuclear β-decay; 
beam normal asymmetry, Olympus… provide tests 

V V V γ γ

V = Z0, W, γ  
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Two-boson exchange in semileptonic processes: important 
for elastic PV eN & eA scattering (12C) & nuclear β-decay; 
beam normal asymmetry, Olympus… provide tests 

V V V γ γ

V = Z0, W, γ  

V = γ  Beam normal 
asymmetry 
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V V V γ γ

V = γ  Beam normal 
asymmetry 

V = Z0, W, γ  
Abrahamyan et al, PRL 
109 (2012) 192501 

•  J Lab Hall A 
•  Future: Mainz, J Lab  

Two-boson exchange in semileptonic processes: important 
for elastic PV eN & eA scattering (12C) & nuclear β-decay; 
beam normal asymmetry, Olympus… provide tests 
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Two-boson exchange in semileptonic processes: important 
for elastic PV eN & eA scattering (12C) & nuclear β-decay; 
beam normal asymmetry provides, Olympus… provide tests 

V V V γ γ

V = Z0, W, γ  

V = γ  Beam normal 
asymmetry 

V = Z0, W Nucleus-dependent QED 
& EW corrections 

Important for O (0.1%) 
probes of PV 12C(e,e’) & 
superallowed β-decay   
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Proposal: (1) carry out a consistent set of computations for 
An , PV asymmetry, & δNS using different methods (2) develop 
a program of An measurements to test computations 

V V V γ γ

V = Z0, W, γ  

V = γ  Beam normal 
asymmetry 

V = Z0, W Nucleus-dependent QED 
& EW corrections 

Important for O (0.1%) 
probes of PV 12C(e,e’) & 
superallowed β-decay   
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 0+ ! 0+ Dispersion Corrections: δNS 

Towner & Hardy, PRC 91 (2015) 2, 025501  

bF : scalar currents 

Input for Vud & CKM 
unitarity test 

•  Re-compute with state-of-the-art many-body methods 
•  Test w/ An predictions & expt for 10B, 14N, 26Mg, 34S, 38Ar, 42Ca, 46Ti, 50Cr, 

54Fe 
•  Investigate strategy for obtaining reduced error bars 
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IV. Outlook 
•  Studies of neutron and nuclear β-decay are heading to a 

new era of precision, with a goal δΔCKM ~ O(10-4) 
•  Hadronic and nuclear uncertainties in computing the Wγ box 

radiative correction remain one of the key challenges to 
reaching this goal 

•  Recent developments using dispersion relations open a new 
path toward reducing this uncertainty with an opportunity for 
new experimental tests using leptoproduction & theoretical 
tests with lattice QCD 

•  There exists an exciting opportunity to implement a unified, 
comprehensive program EW box computations (β-decay, PV 
electron scattering ) and experimental tests with polarized 
electron-nucleus scattering (An ). 


