EW Radiative Corrections: View Ahead

M.J. Ramsey-Musolf

U Mass Amherst

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

Collaborators: M. Gorchtein, H. Patel, C. Seng

PRL 121 (2018) 241804 [1807.10197], 1812.03352

Beta Decay Workshop ECT* April 2019

Goals For This Talk

- Give a brief recap of the context
- Give a look ahead
- Discuss possible tests
- Put the Wγ box in more general context of EW boxes
- Motivate future work

Outline

- I. Recap
- II. Future Work: Free Nucleon
- III. Future Work: Nuclei
- IV. Electroweak Boxes More Generally
- V. Outlook

Precision ~ BSM Mass Scale

Precision Goal:

$$\delta \Delta_{CKM} \sim O(10^{-4})$$

Heavy BSM Physics:

 $\Delta_{CKM} \sim C \ (\ V/\Lambda\)^2$

 $\Lambda \sim 10$ TeV (tree) $\Lambda < 1$ TeV (loop)

Ultralight BSM Physics:

$$\Delta_{\rm CKM} \sim \varepsilon^2 (\alpha/4\pi) \qquad \varepsilon < 0$$

ε < 1 (loop)

Leptoproduction: Had & Nuc Response

Nuclei

Free nucleons

Leptoproduction: Had & Nuc Response

Free nucleons

Nuclei

Single nucleon: PRL 121 (2008) 241804 $\Delta_R^V = 0.02361(38) \rightarrow 0.02467$ (22) \oslash

Leptoproduction: Had & Nuc Response

Nuclei

Free nucleons

Other Nuclear Corrections

Nuclei

Free nucleons

Questions for the Day

- How robust is the quoted uncertainty on the new value of Δ_R^V ?
- What additional tests (theory, experiment) are available ?
- What is the roadmap to refined computation of δ_{NS} (QE) ?
- How important are contributions from other region of the low-E nuclear response ? How to compute & how to test computations ?

II. Future: Single Nucleon

"Next Frontier" : Higher Order EW RC

12

Long Distance: Hadronic & Nuclear

 \overline{v}_{e} 0+(f) W W N γ e^{-} 0+(i)

Neutrino Scattering

Free nucleons

- Compute contributions to M₃^{νp+ν̄p} at each Q² from different ω regions
- Isospin rotate to M₃⁽⁰⁾

Neutrino Scattering

Free nucleons

- Compute contributions to M₃^{νp+ν̄p} at each Q² from different ω regions
- Isospin rotate to M₃⁽⁰⁾

Regge Contribution

$$F_{3,\mathbb{R}}^{\nu p + \bar{\nu} p} = \frac{C(Q^2) f_{th}(W)}{\left[1 + Q^2/m_{\rho}^2\right] \left[1 + Q^2/m_{a_1}^2\right]} \left(\frac{\nu}{\nu_0}\right)^{\alpha_0}$$

$$\downarrow$$

$$F_{3,\mathbb{R}}^{(0)} = \frac{1}{36} \frac{C_{\gamma W}(Q^2) f_{th}(W)}{\left[1 + Q^2/m_{\rho}^2\right] \left[1 + Q^2/m_{a_1}^2\right]} \left(\frac{\nu}{\nu_0}\right)^{\alpha_0}$$

- Matching at $Q^2 = 0$ and $Q^2 = 2$ (GeV)² [pQCD regime] $\rightarrow C_{\gamma W} (Q^2) = C(Q^2)$
- Factor of 1/36: matching at pQCD scale

Neutrino Scattering

 Compute contributions to M₃^{νp+ν̄p} at each Q² from different ω regions Born + (π N + Res) + Regge

• Isospin rotate to M₃⁽⁰⁾

DIS

Future Tests

- Lattice computation of $M_3^{(0)}$ (Q²)
- PV electron scattering

Isospin relation

$$4F_3^{(0)} = F_{3,\gamma Z}^p - F_{3,\gamma Z}^n$$

- SoLID ?
- EIC ?
- More neutrino data for $M_3^{(0)}$ (Q²)

III. Future: Nuclei

Impact on δ_{NS}

20

Quasielastic Contribution to δ_{NS}

e.g. Relativistic Fermi Gas Donnelly et al '91

$0^+ \rightarrow 0^+$ Decay: δ_{NS}

J. Engel

$0^+ ightarrow 0^+$ Decay: δ_{NS}

J. Engel

$0^+ ightarrow 0^+$ Decay: δ_{NS}

J. Engel

IV. EW Boxes More Generally

Two-boson exchange in semileptonic processes: important for elastic PV eN & eA scattering (¹²C) & nuclear β -decay; beam normal asymmetry, Olympus... provide tests

Two-boson exchange in semileptonic processes: important for elastic PV eN & eA scattering (¹²C) & nuclear β -decay; beam normal asymmetry, Olympus... provide tests

Two-boson exchange in semileptonic processes: important for elastic PV eN & eA scattering (¹²C) & nuclear β -decay; beam normal asymmetry, Olympus... provide tests

29

Two-boson exchange in semileptonic processes: important for elastic PV eN & eA scattering (¹²C) & nuclear β -decay; beam normal asymmetry provides, Olympus... provide tests

Proposal: (1) carry out a consistent set of computations for A_n , PV asymmetry, & δ_{NS} using different methods (2) develop a program of A_n measurements to test computations

$0^+ \rightarrow 0^+$ Dispersion Corrections: δ_{NS}

Towner & Hardy, PRC 91 (2015) 2, 025501

- Re-compute with state-of-the-art many-body methods
- Test w/ A_n predictions & expt for ¹⁰B, ¹⁴N, ²⁶Mg, ³⁴S, ³⁸Ar, ⁴²Ca, ⁴⁶Ti, ⁵⁰Cr, ⁵⁴Fe
- Investigate strategy for obtaining reduced error bars

IV. Outlook

- Studies of neutron and nuclear β -decay are heading to a new era of precision, with a goal $\delta \Delta_{CKM} \sim O(10^{-4})$
- Hadronic and nuclear uncertainties in computing the Wγ box radiative correction remain one of the key challenges to reaching this goal
- Recent developments using dispersion relations open a new path toward reducing this uncertainty with an opportunity for new experimental tests using leptoproduction & theoretical tests with lattice QCD
- There exists an exciting opportunity to implement a unified, comprehensive program EW box computations (β-decay, PV electron scattering) and experimental tests with polarized electron-nucleus scattering (A_n).