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EXPERIMENTS AT THE Past experiments
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Evidently, such a potential is well defined only at the surface of
the nucleus because of the strong absorption. The inner part of
the nucleus plays practically no role since the antiprotons are
essentially absorbed at ranges where the nuclear density is 10%
of the central value.”
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Figure 3 The PS, AA, and LEAR accelerator complex at CERN.
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Phenomenological interpretations (~fits, no predictions)

Phenomenological model analysis of elastic and inelastic scattering
of =~ 180 MeV antiprotons from various nuclei
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MICROSCOPIC ANALYSIS

OF ANTIPROTON-NUCLEUS ELASTIC SCATTERING
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Phenomenological interpretations (~fits, no predictions) °

Antiproton-nucleus elastic and inelastic scattering at intermediate energies

Elastic scattering, polarization and absorption of
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Phenomenological interpretations (~fits, no predictions) °
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Chiral Phenomenological
potentials potentials

I. QCD symmetries are I. QCD symmetries are
consistently respected not respected

2. Systematic expansion 2. Expansion determined
(order by order you by phenomenology (add
know exactly the terms whatever you need).

to be included) A lot of freedom

3.Theoretical errors 3. Errors can’t be
estimated

4.Two- and three-body 4. Two- and three-body
forces belong to the forces are not related
same framework one to each other
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At the same time, from a theoretical point of
view, it is important to constrain and to test
the most recent chiral potentials

Y ] N

Convergence Predictive power

Accuracy
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Method
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Nuclear reaction theory

NN data

(but also NN data)

> | > relies on reducing the

g o) ©

o |2 . many-body problem to a

NS problem with few degrees
= of freedom:

optical potentials.
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Nuclear reaction theory

NN data

(but also NN data)

> % relies on reducing the
Q| many-body problem to a
NS problem with few degrees

of freedom:
optical potentials.
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NN data

(but also NN data)
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Nuclear reaction theory
relies on reducing the
many-body problem to a
problem with few degrees
of freedom:
optical potentials.
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NN data

(but also NN data)
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More predictive power where
no exp. data are available

Nuclear reaction theory
relies on reducing the
many-body problem to a
problem with few degrees
of freedom:
optical potentials.
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The general goal when solving the scattering problem of a antinucleon
(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T =V +VGo(E)T

Green Function propagator

all two-body interactions 1
' Go(E) =
A O( ) E — Hy+ 1€
V = Z Vo, where
1=1
Hoy=ho+ Hax

HA ‘(I)A> _ EA ‘(I)A> target

Hamiltonian

for the nucleon-nucleus case see hO

kinetic term

15

Vorabbi, Giusti and Finelli, Phys. Rev. C 93, 034619 (2016) of the projectile
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The general goal when solving the scattering problem of a antinucleon
(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T =V +VGo(E)T

Vorabbi, Giusti and Finelli, Phys. Rev. C 93, 034619 (2016)
P-NUCLEUS OPTICAL POTENTIALS FROM CHIRAL FORCES

0

Single Scattering

S
Double Scattering v
Triple Scattering v @
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The general goal when solving the scattering problem of a antinucleon
(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T =V +VGo(E)T

Spectator expansion 0

two particle interaction T = Z Th; Single s(:atteri:;\@\.
dominates the scattering 1

process )

Toi = voi + v0;Go(E)T,

Toi = voi +v0,Go(E) Z 1o
J

= Vo; T+ UOiGO(E>T0i + UOiGO<E) Z TO]

kol
(1 — v0,Go(E)Toi = wvoi + v0;Go(E) D Ty .
j#i .
Toi = toi+toiGo(E) z?; Lo;. Watson multiple scattering ‘
JF1

P-NUCLEUS OPTICAL POTENTIALS FROM CHIRAL FORCES PHYSICS AND ASTRONOMY DPT. - UNIVERSITY OF BOLOGNA

17



18
The general goal when solving the scattering problem of a antinucleon

(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T =V +VGo(E)T
-

Let’s introduce the optical potential U

3 prg1

T =U+UGy(E)PT Co 1 =0

In the case of elastic scattering,
P projects onto the elastic channel

[ Pa) (P4

V + VG()(E)QU P = AL
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The general goal when solving the scattering problem of a antinucleon
(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T =V +VGo(E)T

transition amplitude T for elastic scattering

we need to calculate PUP

expressions for U are derived such that PUP can be calculated
accurately without having to solve the complete many-body problem
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20
The general goal when solving the scattering problem of a antinucleon

(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T, = PUP + PUPGo(E)T

A A
'“|‘Z7_ij‘|‘ Z Tijk + 7 = vo; +v0:Go(E)T;
L7 L7k ] — T0; -+ T()Z'G()(E)Pf'()i.
L_, (@alTi|Pa) = (Pa|7i|Pa) — (Pa|T:|Pa)

1
X
(E—EA)—hQ—I—iG

(Pa|Ti|PA)
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21
The general goal when solving the scattering problem of a antinucleon

(or a nucleon) from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T

T., = PUP + PUPG,(E)Ty

A
U Z Tii + Z
1,J 71 i, 71, k#1,j
7 = voi + v0:Go(E)T;

7 - = T0i + T0iGo(E)PTy;.

<(I)A|Ti|(I)A> — <(I)A|Tz‘q)A> — <(I)A|TZ|(I)A> O2 Oz O( ) 02
1
Dy |7 |DP
" (E_EA)—ho—l—ie< Al7il®a)
1

Expanding the propagator Gi(E) = O o Py A

' free t matrix

’7A'Z- = V0; —+ /UO’LGZ(E)%Z — t()z' -+ tQZgZWZG@(E)’f'Z tOi — Vo T UOigitOi

IMPULSE APPROXIMATION 75 ~ Tq; M
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First-order optical potential

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

Uk k;w) = (A—1) (K, ®alt(w)|k, P ) N

22

q
1
q=k' — k, Kzi(k’—l—k)
® 6, .
A—1 ) 3 K
Ulg, K;w) = ——n(q, K)
- - Optimum
A+1 ..
X Z tsN | g, A K:w| pn(q) factorization
N=n,p : _ factor
Moller factor "% =
Eproj(K') Eproj(—K') Eproj(K) Eproj(—

| ~—
N

—K/ K
EprOJ(k/) Eproj (_% o %) Eproj(k) Eproj (%
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First-order optical potential

. )
U((],K,CU)— q,K,w)—|—§JQX@(q,K,W)

A—1
A Y

th q,

/ e _

A—-1

ﬁc(q,K;w):

Central component

U (g, K;w) = —; n(q,K)<

Spin-orbit component -

X Z tﬁ-fN q.

N=n,p -

(q, K)

A+1

A

K w

A+1

A

A41
2A

K;w

PN (q)

pn(q)
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Full folding potential

Central component
UMNg, K E)= ) /dPn q, K, P)t.y

N=pn

[A—1
XION<P—|—— —q,P—

Spin-orbit component

N=pn

A

]
N |95

1 (A+1
(2

A

A-l
A q )

A+1
;K

W( pq,P__pq).

A—-1
—P
A

24
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Transition matrix

25

The only relevant components for
0+ nuclei, for 1/2+ more
amplitudes must be included
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Scattering observables

26

o(+0)#o(-0)

Ur)+L SU(r)

m o(-6)

N OO
///\\g‘
i //ﬂ\%
]
(?% do
ol | , /
\\“fQ/ N~<d_0>6g G(e)zd_ﬂm<k|UWk>
- ——— dQ
N %
\/

o(+0)

- o(+0)—o(—0)
Ar(0) = o(+0)+o(—0)

It can be measured by sending a beam of polarised
protons along +y and measure the total cross-section
at angles 08 and -0 in the scattering plane
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Scattering observables
Spin-flip amplitude

M (ko,0) = A(kg, 0) + o - N C(ko, 0)

A(0) = % i (L+1)F; (ko) + LF; (ko)| Pr(cosb)

y L=0
FLJ(k'()) = _A — 147T2,u(k0k0, kQ;E)

C(0) = 55 S [Ff (ko) — Fy (k)] Py (cos)

Differential cross section

do

o (0) =A@)]" +|C(O) Analyzing power

ORe[A*(8) C(6)]

Ay(e) — 2 2
[A(0)]" +[C(0)]

Spin rotation

Q ((9) _ ZIm[A(H) C* ((9)] Rotation of the spin vector in the scattering plane, i.e.

T 2 2 protons polarised along the +x axis have a finite
‘A(e) ‘ + ‘C(@) ‘ probability of having the spin polarised along the £z

axis after the collision
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Inclusion of the Coulomb potential

Combine phase shifts from Coulomb and nuclear

or, =arg|L+ 1+ in(ko)|

The central amplitude include a Coulomb component

A(ko, 0) :!@ Z 2L (L + 1)F} (ko) + LEL (ko) | Pr(cos 6)

c —n(ko) exp [2200 —in(ko) In(1 — cos ‘9)] Sommerfeld
Fﬁt(k()a ‘9) — ko(l — COS (9) parameter
 pla
upn) = [P B - B)] o) k) ==

ur(r) ~Cf(Hy ,Hy) Do not add

nuclear and
Coulomb
separately!

UK k;w) = (K'|U(w)k) = (" (K)|U ()[4 (k)
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Densities
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Ab initio no core shell model

30

The basic idea of the NCSM is simply to treatall A ...
nucleons in a nucleus as active: write down Ab initio no core shell model

the Schrodinger equation for A nucleons and then | Bruce Barett®, Petr Navritil®, James P. vary

Progress in Particle and Nuclear Physics 69 (2013) 131-181

solve it numerically.

A
This approach avoids essentially all of the difficulties I I
of the perturbative approaches (like problems related —1-———-‘—Nmax
to excitations of nucleons from the core). - ; f=====- /L T
hQ2
A

Being a non-perturbative approach, there are no i
difficulties related to convergence of such an expansion.
It may also be formulated in terms of an intrinsic
Hamiltonian, so as to avoid spurious COM motion.

Problems:

(1) need for larger basis spaces

(2) need for effective many-body forces, in order to treat all of the
complexity of the excited-states.
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Ab initio no core shell model

- In the ab initio no core shell model we consider a system of A point-like
non-relativistic nucleons that interact by realistic two- or two- plus
three-nucleon interactions.

- We employ NN potentials that fit nucleon—-nucleon phase shifts with
high precision up to a certain energy, typically up to 350 MeV.

« In the NCSM, all the nucleons are considered active; there is no inert
core like in standard shell model calculations. Hence, the “no core”in
the name of the approach.

1 (pl pJ)2
Hy =T +7V = Z Z Z VNN ij =+ Z VNNN Jijk s

1<j 1<j I<j<k

m is the nucleon mass Vin,ij is the NN interaction

Vnnnik i the three-nucleon interaction

Progress in Particle and Nuclear Physics 69 (2013) 131-181
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Ab initio no core shell model: the basis

NCSM uses the harmonic-oscillator (HO) basis, truncated by a chosen maximal total HO energy
(Nmax) of the A-nucleon system. The reason behind the choice of the HO basis is the fact that this is
the only basis that allows for the use of single-nucleon coordinates without violating the
translational invariance of the system.

As a downside, one has to face

> o . ~. the consequences of the
Pnim (T, b) — Rnl(r’ b) Vi (T), incorrect asymptotic behavior

\ of the HO basis.

Jacobi’s coordinate

| . S |(nlsit; N LG)IT).
|

==r-=-===-= / = ==+ Nmax
Q) ¢ antisymmetrized states

¥ |

INT) = ) _(nisjt; N L|INJT)|(nisjt; ¥ LI)T)

\ 4
Slater determinants for A greater than 3

Progress in Particle and Nuclear Physics 69 (2013) 131-181
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Ab initio no core shell model: the interaction »

Ab initio NCSM calculations uses a truncated HO basis but the nuclear interactions
act in the full space. As long as one uses soft potentials, such as the V|, and SRG
NN, convergent NCSM results can be obtained (the similarity transformation softens
the interactions and generates effective operators for all observables while
preserving all experimental quantities in the low-energy domain).

The situation is different when standard NN potentials that generate strong short-
range correlations are used.

k2 (fm2) k2 (fm2) k2 (fm2) k2 (fm2) k2 (fm2)
12 12 0 4 8 12 0 4 8 12
- ‘ '0.5
A =3.0fm" A =151fm" A =1.0fm’ ' g
i The derived “effective” interactions still act
among all A nucleons and preserve all the
dH,, 4 symmetries of the initial or “bare” NN +NNN
i _F[[Trel, H; |, Hy ] interactions.

Progress in Particle and Nuclear Physics 69 (2013) 131-181

P-NUCLEUS OPTICAL POTENTIALS FROM CHIRAL FORCES PHYSICS AND ASTRONOMY DPT. - UNIVERSITY OF BOLOGNA



Ab initio no core shell model:

A A
popF.F) =Y (IF)(F'D =) 8GF —F)s(F —F)
i=1 i=1

The tremendous difference between the trinv density
and the wiCOM density is easily recognizable at small r

and r. We notice that the trinv density has sharper
features at peaks and tends to decay more rapidly than
the wiCOM density. The COM contamination appears

to suppress the nuclear density at small r and r ' values.

Notably, the COM term diminishes with A so we expect
a reduction in the importance of its removal as we go
to higher A-nucleon systems.

PHYSICAL REVIEW C 97, 034619 (2018)
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the density matrix

*He Neutron

wiCOM

FIG. 1. Ground-state “He nonlocal neutron density calculated
with an Np,x = 14 basis space, an oscillator frequency of Q2 =
20 MeV, and a flow parameter of Aggg = 2.0 fm~!.

wiCOM: COM contaminated density

trinv: translationally invariant density

®He Proton

0
1
6™

FIG. 2. Ground-state °He proton and neutron nonlocal densities
calculated with a N, = 12 basis space, an oscillator frequency of
h2 =20 MeV, and a flow parameter of Aggg = 2.0 fm~!. Proton
densities are shown in blue and neutron densities are shown in red.
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An alternative: matter densities from DFT

Typel and Wolter , Nuc. Phys. A 656 (1999) 331

1 1 1 1 1 T T T | T T T T | T T T T | T T T T 1_4 LA S S SEE N L S e 2 s S S SENE SR SR SE B BRSes SSm Smme S

(M)
—r

0.02

rm( p )/rm(psal)
5

0.08 —
A~ 0.06 — — [:E
™ = 4
s : ]
&~ — -
N
Q) = -
~ 0.04 — —
Nai - -
(9)
Q B i

08

0.00 Density-dependent couplings
0 1 2 3 4 y-eep reoupings
r (fIIl) 08 00 1.0 ‘ 2.0lp/p5m‘3.0 T a0 5.0
[ = [ ( @4(00 @ AQ — 1 + T3A("”> —(m -@¢)] ¥

_ [ #qﬁa.ugb m ¢ ZFL?’))F(QJ)MV + m? A(w)A(w)#

| 1 DDME1 parametrization
Fi,f,,) Flow 4 mzA(Q) AlOH — ZF;&Z)F(Y)WJ T. Niksi¢, D. Vretenar, P. Finelli and P. Ring

2 Phys. Rev. C 66 (2002) 024306
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NN potentials
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basic features of NN potentials

In the limit where the neutron-to-proton mass
. Antinucleon—nucleon interaction at low energy:
difference can be neglected, as well as Coulomb scattering and protonium

Eberhard Klempt?, Franco Bradamante®, Anna Martin®, Jean-Marc Richard®d-*

corrections, the NN system obeys isospin symmetry:

Physics Reports 368 (2002) 119

« antiproton—neutron is pure isospin | =1

- while pp and nn, with 13 =0, are combinations of | =1 and | =0, namely

. =1 +1=0) I=1)—|I=0)
pp) = 7 , 75

so that the elastic and charge-exchange amplitudes are given by

in) =

—_ g9

a1
(‘/ NN NN

=

TPp —pp)=3(T i+ 7 xn)> 7 (Pp — fin) =

G-parity

G-parity is a multiplicative quantum number that results from the generalization of C-parity to
multiplets of particles. The G-parity operator is defined as

g —C e(fi,wlg)
G-parity is a combination of charge conjugation and a 1 rad rotation around the 2nd axis of
isospin space. Weak and electromagnetic interactions are not invariant under G-parity.
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a little bit of history

Nucleon-Antinucleon Optical Potential

J. C6té,' M. Lacombe, B. Loiseau, B. Moussallam, and R. Vinh Mau
Division de Physique Théovique, Insititut de Physique Nucléaire, F-91406 Ovsay, France, and
Laboratoive de Physique Théovique et des Particules Elementaives, Université Pievve et
Mavie Cuvie, F-75230 Pavris Cédex 05, France

PRL 48 (1982) 1320

4 6, (mb
250 ror( ) } Chaloupka & al. (1976)

1 * Hamilton & al. (1980)
4 Kamae & al. (1980)

Tlab(MeV)

The NN potential can be decomposed as follows in
three contributions V=Us + UL -i W:

 Us, long-range and medium range part generated
by G-parity transformation of the Paris potential

« U, the short-range component is described
phenomenologically (quadratic function)

- W an absorptive part that is short-range and

energy dependent

K, (2mvr)

WNﬁ(r,TL)=(gc(1+chL)+gss(l"‘fssTL)Ul'Gz“‘gTSlz“‘:%"QL’S;E,'> 7

m2

P-NUCLEUS OPTICAL POTENTIALS FROM CHIRAL FORCES

Antinucleon-nucleon potential

P. H. Timmers, W. A. van der Sanden, and J. J. de Swart
Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands

PRD 29 (1984) 1928

OT [mb]

200

100 -

N WS NS WU NUN NN WU WY W (N WY WS U WU IS SO NNV SN WHNE NN SN SIS N B |

100 200 300 400 500
Tiap [MeV]

The NN potential is generated by a G-parity-
transformed Nijmegen model-D potential plus a
phenomenological short-range potential:

Von(r)= |Vc+Vss 01" T2+ ViSiamer

+ VsoL-S 12 4 Vws(r)
m,°r dr

Vws(r)= 1

WS 1 +exp(m,r)
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the most recent Plane Wave Analysis

Energy-dependent partial-wave analysis of all antiproton-proton scattering data below 925 MeV /c

Daren Zhou and Rob G. E. Timmermans
KVI, Theory Group, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

PHYSICAL REVIEW C 86, 044003 (2012)

100 ¢

Piab = 680.1 MeV/c Prap = 679.0 MeV/c

- Energy-dependent partial-wave analysis
of all antiproton—proton elastic (pp — pp) : Sakamoto et al. (13\?\/2& —e— os | Kunne et al. (1988, 13\?\/?5)‘ —

and charge-exchange (pp — nn)
scattering data below 925 MeV/c
antiproton laboratory momentum.

do/dQ(mb)

« The relevant long-range parts of the -
electromagnetic and the one- and two- 001 05 0 05 1 R 05 0 05 1
pion exchange interactions are included cos6 cos0
exactly, where the short-range 100 | | |
. . . . . F Piap = 690.0 MeV/c Pjap = 697.0 MeV/c
Interactions, |nclud|ng the coupllng to the ! Eisenhandler et al. (1976) ——— s Bertini et al. (1989) —e—
mesonic annihilation channels, are ' 061 ¢ PWA ——
parametrized by a complex boundary
condition at aradius of r=1.2 fm.

do/dQ(mb)

« They concluded that chiral effective field
theory provides an excellent long-range 001 | | | | | | |
antinucleon-nucleon interaction. -1 -0.5 0 0.5 1 -1 0.5 0 0.5 1
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NN potentials from ChPT *

Antinucleon-nucleon interaction at

effective field theory

next-to-next-to-next-to-leading order in chiral

JHEP 07 (2017) 078
Ling-Yun Dai,* Johann Haidenbauer® and UIf-G. MeiBner®?’
LO
¢ ----9
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NLO R R O O e A
pE¢ 34 « »
’z s\ SO San -
QQ ¢----9 ¢ ] e
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N2LO | .-"
~ .\ ¢’
Q?) T e
¥ ) -———— [ ]
NSLO - =~ ”” \\ '/
. -~ . °~ zxs
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- Chiral EFT relies heavily on the
approximate spontaneously broken chiral
symmetry of QCD.

. This symmetry/symmetry-breaking pattern
of QCD strongly constrains the interaction
of pions which play the role of the
corresponding Goldstone bosons.

. It also implies that pion- and pion-nucleon
low-energy observables at external
momenta Q~My can be computed in a
systematic way via a perturbative
expansion in powers of Q/Ay

I R _9 .9 _9
A el
I ' \\\‘ \\\w
« a »
T (-’-‘---\-’ [ X X
*----9 et
see Haidenbauer’s talk tomorrow
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NN potentials from ChPT

Antinucleon-nucleon interaction at
next-to-next-to-next-to-leading order in chiral

effective field theory JHEP 07 (2017) 078

Ling-Yun Dai,* Johann Haidenbauer® and UIf-G. MeiBner®?’
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A new local reqularization scheme
has been used for the pion-exchange
contributions

o= ()]

The contact interactions are non-local
anyway. In this case they use again
the standard nonlocal regulator of
Gaussian type.

41

'm m
/ . prtp
f'p) = exp (| ==,
_9 .9 _9
\\w \\w
[ 3 :-—-:-: » (X X}
see Haidenbauer’s talk tomorrow
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d(deg)

d(deg)

NN potentials from ChPT
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JHEP 07 (2017) 078

150+

1=0°s,
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lab
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200 30
TIab (MeV)

Real and imaginary parts of various NN phase shifts at N3LO for cutoffs R=0.7 - 1.2 fm
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Benchmarks

nucleon-nucleus elastic scattering
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elastic proton scattering off Oxygen 16

I~

\ 1 I 1 I 1 I 1 I 1 I 1

—_—
o O

o W

ek
-

[
-

S O

do/dQ [mb/sr]
=

S
n

y

A
-

-0.5

0.5

-0.5

EKM = Epelbaum, Krebs, Meissner (N4LO)
EMN = Entem, Machleidt, Nosyk (N4LO) Phys. Rev. C96 (2017) 044001
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what about convergence?

1 I 1 I 1 I 1 I 1 I 1

e B N’LO
| B NLO|

Bl N'LO

SO o

I
Q)
q
()
I

U

(c)
. | . | . | . | . |
30 40 50

EKM = Epelbaum, Krebs, Meissner (N4LO) e [deg]
EMN = Entem, Machleidt, Nosyk (N4LO) Phys. Rev. C96 (2017) 044001

O|||||
p—
-
(\©)
-
=Y T I
O

P-NUCLEUS OPTICAL POTENTIALS FROM CHIRAL FORCES PHYSICS AND ASTRONOMY DPT. - UNIVERSITY OF BOLOGNA

45



microscopic vs. phenomenological

46

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003)

' ' ' | ' | ' | '
B EFKM
101 — EMN —:
= I — KD .
= [ \ )
S : —
S a
S|
< | _
-
2B
o 10°F E
o | . z
og I @ ]
m n _
i 16 16
O(.p) O 200 MeV
10-1 :_ | | | | |
0 10 20 40 50

EKM = Epelbaum, Krebs, Meissner (N4LO)
EMN = Entem, Machleidt, Nosyk (N4LO)
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Phys. Rev. C 98 (2018) 064602
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Kerndichteverteilung von **Ni gemessen mit EXL
Vom Fachbereich Physik der Technischen Universitat Darmstadt zur Erlangung
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genehmigte Dissertation von Mirko von Schmid M.Sc. aus Fulda
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Results

elastic antiproton scattering off light nuclei
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what about convergence?
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Helium 4

preliminary
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Carbon 12
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Oxygen 16
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Oxygen 18
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Light nuclei with DFT densities
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Heavier nuclei (only DFT)
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Heavier nuclei (only DFT)
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Conclusions

- For the first time, a full microscopic description of elastic antiproton
scattering off light nuclei

- In-medium contributions and many-body forces appear to be rather
small

Remarks

- Spin observables still to be fully calculated but they look like under
control

- To describe low-energy observables, the impulse approximation has to
improved

- Annihilation processes in the near future
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