Supported by ERC through Starting Grant no. 759253

European Research Council Established by the European Commission

EoS from neutron star mergers

ECT* workshop: Challenges of Transport Theory for Heavy-Ion Collisions

Trento, 23/05/2019

Andreas Bauswein (from Arenzano – Scusi !!!)

GSI Darmstadt

Outline

- ► Overview: NS mergers and GW170817
- ► EoS constraints from NS mergers
 - finite-size effects during the inspiral
 - multi-messenger interpretation
 - postmerger GW emission
- Signatures of the QCD phase transition
- Summary and conclusions

A break-through in astrophysics

- ► GW170817 first unambiguously detected NS merger
- Mutli-messenger observations: gravitational waves, gamma, X-rays, UV, optical, IR, radio

Detection August 17, 2017 by LIGO-Virgo network

 \rightarrow GW data analysis

→ follow-up observations probably largest coordinated
 observing campaign in astronomy
 (observations/time)

Announcement October 2017

Ligo and Virgo take data again \rightarrow already some new events at larger distances !!!

Scientific aspects of NS mergers

- NS mergers likely progenitors of short gamma-ray bursts (observed since the 70ies)
- ► NS mergers as sources of heavy elements forged by the rapid neutron-capture process
- Electromagnetic transient powered by nuclear decays during/after r-process ("kilonova", "macronova", ...)

 \rightarrow UV, optical, IR \rightarrow targets for triggered or blind searches (time-domain astronomy)

- Various other types of em counterparts
- ► Strong emitters of GWs
 - \rightarrow population properties: rates, masses, ... \rightarrow stellar astrophysics
 - \rightarrow EoS of nuclear matter / stellar properties of NSs

(NS mergers probe cold and hot matter – pre- and post-merger)

▶ ...

Dynamics

GW170817

Some insights from GW170817

- ► From chirp-like inspiral GW signal:
 - \rightarrow Binary masses
 - \rightarrow distance 40 Mpc \rightarrow rate is presumably high !
 - \rightarrow Approximate sky location
- Triggered follow-up observations

$$\mathcal{M}_{chirp} = rac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$$

$$q = M_1/M_2$$

Δh	ho	tt i	ρt	al	20	17	2
	$\mathbf{v}\mathbf{v}$			u	20		

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 \ M_{\odot}$	1.36–2.26 M _☉
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0	0.4–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01} {M}_{\odot}$	$2.82^{+0.47}_{-0.09} M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot}c^{2}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°	≤ 56°
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

Observations

- ▶ 1.7 sec after gamma-rays (→ short GRB ???)
- Follow up observation (UV, optical, IR) starting ~12 h after merger

 \rightarrow ejecta masses, velocities, opacities

Several days later X-rays, radio (ongoing)

Abbott et al. 2017

Figure 1. NGC4993 *grz* color composites ($1'_5 \times 1'_5$). Left: composite of detection images, including the discovery *z* image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Interpretation - implications

- heating and derived opacities are compatible with r-processing ejecta !!!
 (not surprising for a theorist, see earlier work on r-process and em counterparts)
- 0.02 0.05 Msun ejecta (red and blue component) somewhat model-dependent
- Ejecta velocities and masses in ballpark of simulation results
- Derived ejecta masses are compatible with mergers being the main source of heavy rprocess elements in the Universe

 \rightarrow overall strong evidence that NS mergers play a prominent role for heavy element formation

Only A>130

EoS / NS constraints

Finite-size effects during late inspiral

Description of tidal effects during inspiral

- Tidal field E_{ij} of on star induces change of quadrupole moment Q_{ij} of other component
- ▶ Changed quadrupole moment affects GW signal, especially phase evolution
 → inspiral faster compared to point-particle inspiral
- Strength of induced quadrupole moment depends on NS structure / EoS:

$$Q_{ij} = -\lambda(M) E_{ij}$$
 $\lambda(M) = \frac{2}{3}k_2(M)R^{\xi}$

- Tidal deformability depends on radius (clear smaller stars are harder to deform) and "Love number" k₂ (~"TOV" properties)
- ▶ k₂ also depends on EoS and mass

Inspiral

- Orbital phase evolution affected by tidal deformability only during last orbits before merging
- Inspiral accelerated compared to point-particle inspiral for larger Lambda
- ► Difference in phase between NS merger and point-particle inspiral:

Challenge: construct faithful templates for data analysis

Measurement

► Lambda < ~800 (reanalysis: < 650)

 \rightarrow Means that very stiff EoSs are excluded

- Recall uncertainties in mass measurements (only Mchirp accurate)
- ▶ systematic errors in waveform model
 → ongoing research
- Better constraints expected in future as sensitivity increases

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

Abbott et al. 2017, 2019 see also later publications by Ligo/Virgo collaboration, De et al. 2018

- Current constraints from LIGO/Virgo through tidal effects during inspiral
- Recall strong correlation between tidal deformability and NS radius
- Current constraints roughly compatible with current knowledge from chiral EFT (depending on cut off, e.g. Tews et al 2018)

Ligo/Virgo collaboration 2018

Torres-Riva et al 2019

Finite-size effects – future prospects

- Measurements of Lambda (~to within several per cent)
- ► Two caveats:
 - at some point systematics will play a role (better waveform models required)

- more massive NSs harder to measure because tidal deformability and finite-size effects smaller

Multi-messenger constraints

More information – more constraints – but typically model-dependence Different ideas (some similar) – for Mmax and radii

Basic picture

- Mass ejection → rapid neutron-capture process → heating the ejecta
 → (quasi-) thermal emission in UV optical IR observable (time scales ~ hours)
- ► Different ejecta components: dynamical ejecta, secular ejecta from merger remnant
- ► Mass ejection depends on binary masses and EoS → imprinted on electromagnetic emission

M_{max} from GW170817

- Arguments: no prompt collapse; no long-lasting pulsar spin-down (too less energy deposition)
- ▶ If GW170817 did not form a supramassive NS (rigidly rotating > M_{max})

 \rightarrow M_{max} < ~2.2-2.4 M_{sun} (relying on some assumption)

Margalit & Metzger 2017

See also Shibata et al 2017, Fujibajshi et al. 2017, Rezzolla et al 2018, Ruiz & Shapiro 2018, Shibata et al 2018 ...

Bauswein et al 2013

Combing all information

- Bayesian analysis: employing EoS dependence of em emission
- Hard to assess systematic uncertainties
- Exact em display difficult to compute: radiative transfer, nucleosynthesis, opacities, uncertainties in hydro-simulation results, GRB mechansim, (relying on assumptions)

Coughlin et al. 2018

Constraint from collapse behavior

Shen EoS

 $\longrightarrow M_{
m thres} = (3.45\pm0.05)~M_{\odot}$ (for this particular EoS)

Collapse behavior: Prompt vs. delayed (/no) BH formation → distinguishable by presence of postmerger GWs and brightness of em counterpart

<u>Relevant for:</u> EoS constraints through M_{max} measurement, Conditions for short GRBs, Mass ejection, Electromagnetic counterparts powered by thermal emission, NS radius constraints !!!

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Threshold binary mass

- ► Empirical relation from simulations with different M_{tot} and EoS
- ► Fits (to good accuracy):

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{\rm max}) = \left(-3.38\frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right)M_{\rm max}$$

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

► Both better than 0.06 M_{sun}

EoS constraints from GW170817*

 \rightarrow lower bound on NS radii

(recall: upper bound from tidal deformability)

A simple but robust NS radius constraint from GW170817

High ejecta mass inferred from electromagnetic transient

(high compared to simulations)

- \rightarrow provides strong support for a delayed/no collapse in GW170817
- \rightarrow even asymmetric mergers that directly collapse do not produce such massive ejecta

Reference	$m_{ m dyn} \left[M_{\odot} ight]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	-
Arcavi et al. (2017)	-	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. (2017b)	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. $(2017a)$	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Figure 1. NGC4993 grz color composites ($1'_5 \times 1'_5$). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Compilation in Cote et al 2018

Collapse behavior

(1) If GW170817 was a delayed (/no) collapse:

 $\overline{M}_{\rm thres} > M_{\rm tot}^{GW170817}$

(2) Recall: empirical relation for threshold binary mass for prompt collapse:

$$M_{\text{thres}} = \left(-3.38 \frac{G M_{\text{max}}}{c^2 R_{\text{max}}} + 2.43\right) M_{\text{max}} > 2.74 M_{\odot} \quad \text{(with Noise}$$
(3) Causality: speed of sound $v_{\text{S}} \leq c$

$$\Rightarrow M_{\text{max}} \leq \frac{1}{2.82} \frac{c^2 R_{\text{max}}}{G}$$

(with M_{max}, R_{max} unknown)

Putting things together:

$$M_{\rm tot}^{GW170817} \le \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} \le \left(-\frac{3.38}{2.82} + 2.43\right) \frac{1}{2.82} \frac{c^2 R_{\rm max}}{G}$$

 \rightarrow Lower limit on NS radius

Bauswein et al. 2017

NS radius constraint from GW170817

- ► R_{max} > 9.6 km
- ► R_{1.6} > 10.7 km
- Excludes very soft nuclear matter
- follow-up Koeppel et al 2019 (same idea) arriving at similar constraints of 10.7 km

Bauswein et al. 2017

Radius vs. tidal deformability

- Radius and tidal deformability scale tightly \rightarrow Lambda > 210
- Compared to Lambda > 400 / 300 in Radice et al 2018/2019 following similar arguments
- Iimit cannot be much larger than 200 because there are EoSs (with somewhat larger Lambda) that do NOT result in a prompt collapse and thus in a bright em counterpart (see also Kiuchi et al. 2019) !!
 - \rightarrow full EoS coverage essential !!!

Discussion - robustness

- ► Binary masses well measured with high confidence error bar
- Clearly defined working hypothesis: delayed collapse
 - \rightarrow testable by refined emission models
 - \rightarrow as more events are observed more robust distinction
- Very conservative estimate, errors can be quantified
- Empirical relation can be tested by more elaborated simulations (but unlikely that MHD or neutrinos can have strong impact on M_{thres})
- Confirmed by semi-analytic collapse model
- ► Low-SNR constraint !!!

Future

- Any new detection can be employed if it allows distinction between prompt/delayed collapse
- ► With more events in the future our comprehension of em counterparts will grow → more robust discrimination of prompt/delayed collapse events
- Low-SNR detections sufficient $!!! \rightarrow$ that's the potential for the future
 - \rightarrow we don't need louder events, but more
 - \rightarrow complimentary to existing ideas for EoS constraints

Future detections (hypothetical discussion)

 \rightarrow as more events are observed, bands converge to true M_{thres} \rightarrow prompt collapse constrains M_{max} from above

Bauswein et al. 2017

Future: Maximum mass

Empirical relation

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

- Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events through presense/absence of postmerger GW emission or em counterpart)
 - => direct inversion to get precise estimate of M_{max}

(see also current estimates e.g. by Margalit & Metzger 2017, Shibata et al 2017, Rezzolla et al 2018, Ruiz & Shapiro 2018, Shibata et al. 2019, ...)

Future: Postmerger GW emission*

(dominant frequency of postmerger phase)

 \rightarrow determine properties of EoS/NSs

 \rightarrow complementary to inspiral

 not detected for GW170817 – expected for current sensitivity and d=40 Mpc (Abbott et al. 2017)

Postmerger

Dominant postmerger oscillation frequency f_{peak} Very characteristic (robust feature in all models)

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.35 $\rm M_{sun}$

Bauswein et al. 2012

- Pure TOV/EoS property => Radius measurement via f_{peak}

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.6 M_{sun}

Bauswein et al. 2012

Pure TOV/EoS property => Radius measurement via f_{peak}

Smaller scatter in empirical relation (< 200 m) \rightarrow smaller error in radius measurement Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

GW data analysis: Clark et al 2014, Clark et al 2016, Chatziioannou et al 2017, ...

 \rightarrow detectable at a few 10 Mpc

Binary mass variations

Bauswein et al. 2012, 2016

Different total binary masses (symmetric)

Fixed chirp mass (asymmetric 1.2-1.5 M_{sun} binaries and symmetric 1.34-1.34 M_{sun} binaries)

Data analysis: see e.g. Clark et al. 2016 (PCA), Clark et al. 2014 (burst search), Chatziioannou et al 2017, Torres-Riva et al 2019

 \rightarrow f_{peak} precisely measurable !!!

Model-agnostic data analysis

Based on wavelets

Chatziioannou et al. (2017), Torres-Riva et al 2019

Impact of QCD phase transition detectable

- 1st order phase transition leads to characteristic increase of postmerger frequency relative to tidal deformability
 - \rightarrow presence of phase transition at NS / nuclear densities can be identified or excluded !!

^{*} a set of hybrid quark matter equations of state computed by Wroclaw group (Bastian, Blaschke, Fischer)

Summary and conclusions

- ► Tidal deformability from inspiral phase: NS radius must be smaller then ~13.5 km
 → nuclear matter not extremely stiff
- ► NS radius must be larger than 10.7 km (very robust and conservative)
 → nuclear matter not extremely soft
- More stringent constraints from future detections
- NS radius measurable from dominant postmerger frequency
- Explicitly shown by GW data analysis
- Threshold binary mass for prompt collapse \rightarrow maximum mass M_{max}
 - \rightarrow high-density regime accessible
- Strong 1st order phase transitions leave characteristic imprint on GW (postmerger frequency higher than expected from inspiral)