Trento, May 21, 2019

Clusters and Correlations in Dense Matter

Gerd Röpke, Rostock

Nuclear Many-Body System

Nucleons (neutron, proton): intrinsic quark-gluon structure, cluster?

degrees of freedom: position – momentum, spin, isospin single-particle states $|1\rangle = |\mathbf{p}_1, \sigma_1, \tau_1\rangle$

occupation numbers, distribution function

correlation function in a given ensemble $\langle a_1^{\dagger}(t)a_{1'}\rangle$

spectral function
$$\langle a_1^{\dagger}(t)a_{1'}\rangle = \int \frac{d\omega}{2\pi} e^{i\omega t} \frac{1}{e^{(\omega-\mu_{\tau})/T}+1} A(1\ 1',\omega)$$

self energy
$$A(1,\omega) = \frac{2\mathrm{Im}\Sigma(1,\omega-i0)}{(\omega-E(1)-\mathrm{Re}\Sigma(1,\omega))^2 + (\mathrm{Im}\Sigma(1,\omega-i0))^2}$$

equation of state
$$n_{\tau}^{\text{tot}}(T,\mu_n,\mu_p) = \frac{1}{\Omega} \sum_{p_1,\sigma_1} \int \frac{d\omega}{2\pi} \frac{1}{e^{(\omega-\mu_{\tau})/T}+1} A(1,\omega)$$

Different approximations

Ideal Fermi gas: protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.Eq.

chemical & physical picture

Cluster virial approach: all bound states (clusters) scattering phase shifts of all pairs

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium of quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Correlated medium:

phase space occupation by all bound states in-medium correlations, quantum condensates

Evaluation of correlation functions

nucleon-nucleon interaction potential ? (atom-atom potential ?)

- non-local, energy-dependent? QCS?
- microscopic calculations (AMD, FMD)
- single-particle descriptions: Thomas-Fermi approximation shell model density functional theory (DFT)
- correlations, clustering low-density nα nuclei, α decay: preformation

Cluster: few-nucleon system

Nucleon pair (position, spin, isospin)

$$-\frac{\hbar^2}{2m}\nabla_{\mathbf{r}_1}^2\Psi(\mathbf{r}_1,\mathbf{r}_2) - \frac{\hbar^2}{2m}\nabla_{\mathbf{r}_2}^2\Psi(\mathbf{r}_1,\mathbf{r}_2) + V(\mathbf{r}_1-\mathbf{r}_2)\Psi(\mathbf{r}_1,\mathbf{r}_2) = E\Psi(\mathbf{r}_1,\mathbf{r}_2)$$

Separation ansatz $\Psi(\mathbf{r}_1,\mathbf{r}_2)=arphi^{\mathrm{intr}}(\mathbf{s})\Phi(\mathbf{R})$

$$-\frac{\hbar^2}{m}\nabla_{\mathbf{s}}^2\varphi^{\text{intr}}(\mathbf{s}) + V(\mathbf{s})\varphi^{\text{intr}}(\mathbf{s}) = E^{\text{intr}}\varphi^{\text{intr}}(\mathbf{s}) \qquad -\frac{\hbar^2}{4m}\nabla_{\mathbf{R}}^2\Phi(\mathbf{R}) = E^{\text{c.m.}}\Phi(\mathbf{R})$$

Nucleon quartet $\{n_{\uparrow}, n_{\downarrow}, p_{\uparrow}, p_{\downarrow}\}$

$$-\sum_{i}\frac{\hbar^{2}}{2m}\nabla_{\mathbf{r}_{i}}^{2}\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})+V_{4}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})=E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})$$

Separation ansatz $\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = \varphi^{intr}(\mathbf{S}, \mathbf{s}_1, \mathbf{s}_2) \Phi(\mathbf{R})$

$$T[\nabla_{\mathbf{s}_{j}}]\varphi^{\text{intr}}(\mathbf{S},\mathbf{s}_{1},\mathbf{s}_{2}) + V(\mathbf{S},\mathbf{s}_{1},\mathbf{s}_{2})\varphi^{\text{intr}}(\mathbf{S},\mathbf{s}_{1},\mathbf{s}_{2}) = E^{\text{intr}}\varphi^{\text{intr}}(\mathbf{S},\mathbf{s}_{1},\mathbf{s}_{2}) - \frac{\hbar^{2}}{8m}\nabla_{\mathbf{R}}^{2}\Phi(\mathbf{R}) = E^{\text{c.m.}}\Phi(\mathbf{R})$$

Composition of nuclear matter

- Composition in equilibrium low-density limit: nuclear statistical equilibrium (NSE)
- Cluster decomposition, partial virial coefficients bound states continuum correlations, scattering states
- Medium modifications, density effects, gRMF, excluded volume, quantum statistical approach

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
 v : internal quantum number
 $f_A(z) = \frac{1}{\exp(z/T) - (-1)^A}$

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
 v : internal quantum number $f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$

 Medium effects: correct behavior near saturation self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz, Debye)

Beth-Uhlenbeck formula

rigorous results at low density: virial expansion

Beth-Uhlenbeck formula

$$n(T,\mu) = \frac{1}{V} \sum_{p} e^{-(E(p)-\mu)/k_{B}T} + \frac{1}{V} \sum_{nP} e^{-(E_{nP}-2\mu)/k_{B}T} + \frac{1}{V} \sum_{\alpha P} \int_{0}^{\infty} \frac{dE}{2\pi} e^{-(E+P^{2}/4m-2\mu)/k_{B}T} \frac{d}{dE} \delta_{\alpha}(E) + \dots$$

 $\delta_{\alpha}(E)$: scattering phase shifts, channel α

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation $\left(\frac{p_{1}^{2}}{2m_{1}} + \Delta_{1} + \frac{p_{2}^{2}}{2m_{2}} + \Delta_{2}\right)\Psi_{d,P}(p_{1},p_{2}) + \sum_{p_{1}',p_{2}'}(1 - f_{p_{1}} - f_{p_{2}})V(p_{1},p_{2};p_{1}',p_{2}')\Psi_{d,P}(p_{1}',p_{2}')$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Pauli blocking – phase space occupation

cluster wave function (deuteron, alpha,...) in momentum space

P - center of mass momentum

The Fermi sphere is forbidden, deformation of the cluster wave function in dependence on the c.o.m. momentum *P*

momentum space

The deformation is maximal at P = 0. It leads to the weakening of the interaction (disintegration of the bound state).

Generalized Beth-Uhlenbeck formula

low density limit:

$$G_{2}^{L}(12, 1'2', i\lambda) = \sum_{n\mathbf{P}} \Psi_{n\mathbf{P}}(12) \frac{1}{i\omega_{\lambda} - E_{n\mathbf{P}}} \Psi_{n\mathbf{P}}^{*}(12)$$
$$\sum_{n\mathbf{P}} \mathbf{T}_{2}^{L}$$

$$n(\beta,\mu) = \sum_{1} f_1(E^{\text{quasi}}(1)) + \sum_{2,n\mathbf{P}}^{\text{bound}} g_{12}(E_{n\mathbf{P}}) + \sum_{2,n\mathbf{P}} \int_0^\infty \mathrm{d}k \ \delta_{\mathbf{k},\mathbf{p}_1-\mathbf{p}_2} g_{12}(E^{\text{quasi}}(1) + E^{\text{quasi}}(2)) 2\sin^2\delta_n(k) \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}k} \delta_n(k)$$

• generalized Beth-Uhlenbeck formula correct low density/low temperature limit: mixture of free particles and bound clusters

deuteron bound state -2.2 MeV

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654]

Deuteron-like scattering phase shifts

deuteron bound state -2.2 MeV

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654]

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
 v : internal quantum number $f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$

 Medium effects: correct behavior near saturation self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz, Debye)

EOS: continuum contributions

Partial density of channel A,c at P (for instance, ${}^{3}S_{1} = d$):

$$z_{A,c}^{\text{part}}(\mathbf{P}; T, \mu_n, \mu_p) = e^{(N\mu_n + Z\mu_p)/T} \left\{ \sum_{\nu_c}^{\text{bound}} g_{A,\nu_c} \ e^{-E_{A,\nu_c}(\mathbf{P})/T} \ \Theta \left[-E_{A,\nu_c}(\mathbf{P}) + E_{A,c}^{\text{cont}}(\mathbf{P}) \right] + z_{A,c}^{\text{cont}}(\mathbf{P}) \right\}$$

separation: bound state part – continuum part ?

$$z_{c}^{\text{part}}(\mathbf{P};T,n_{B},Y_{p}) = e^{[N\mu_{n}+Z\mu_{p}-NE_{n}(\mathbf{P}/A;T,n_{B},Y_{p})-ZE_{p}(\mathbf{P}/A;T,n_{B},Y_{p})]/T} \times g_{c} \left\{ \left[e^{-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p})/T} - 1 \right] \Theta \left[-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p}) \right] + v_{c}(\mathbf{P};T,n_{B},Y_{p}) \right\}$$

parametrization (d – like):

$$v_c(\mathbf{P}=0;T,n_B,Y_p) \approx \left[1.24 + \left(\frac{1}{v_{T_I=0}(T)} - 1.24\right)e^{\gamma_c n_B/T}\right]^{-1}$$

 $v_d^0(T) = v_{T_I=0}^0(T) \approx 0.30857 + 0.65327 \ e^{-0.102424 \ T/\text{MeV}}$

G. Roepke, PRC 92,054001 (2015)

Light Cluster Abundances

Composition of symmetric matter in dependence on the baryon density n_B , T = 5 MeV. Quantum statistical calculation (full) compared with NSE (dotted).

G. R., PRC 92, 054001 (2015)

Inclusion of heavier clusters

- Z > 2: "metals"
- Asymmetric matter, Stellar matter
- "Exotic light clusters" 4 < A < 12
- Light clusters, "exotic" nuclei ⁴H
- Thermodynamic stability, pasta phases

Binding energy per nucleon

Half-lives t_{1/2}

Radioactive decay of instabile Isotopes

Figure 2: Chart of the nuclides for half-lives (created by NUCLEUS-AMDC).

Big-Bang nucleosynthesis: H, He, Li, __

Deuterium bottleneck

 Deuterium only stable at sufficiently low temperature

Mass 5 and 8 barriers

- No stable nucleus with mass Z+N = 5
- No stable nucleus with mass Z+N = 8

Nuclear binding energy

 ⁴He has the highest binding energy of all stable light nuclei

Electrostatic repulsion

 Probability for capture of a nuclide drops exponentially for increasing Z and sqrt(Z+N) of the captured nuclide

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
 v : internal quantum number $f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$

 Medium effects: correct behavior near saturation self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz, Debye)

EOS: continuum contributions

Partial density of channel A,c at P (for instance, ${}^{3}S_{1} = d$):

$$z_{A,c}^{\text{part}}(\mathbf{P}; T, \mu_n, \mu_p) = e^{(N\mu_n + Z\mu_p)/T} \left\{ \sum_{\nu_c}^{\text{bound}} g_{A,\nu_c} \ e^{-E_{A,\nu_c}(\mathbf{P})/T} \ \Theta \left[-E_{A,\nu_c}(\mathbf{P}) + E_{A,c}^{\text{cont}}(\mathbf{P}) \right] + z_{A,c}^{\text{cont}}(\mathbf{P}) \right\}$$

separation: bound state part – continuum part ?

$$z_{c}^{\text{part}}(\mathbf{P};T,n_{B},Y_{p}) = e^{[N\mu_{n}+Z\mu_{p}-NE_{n}(\mathbf{P}/A;T,n_{B},Y_{p})-ZE_{p}(\mathbf{P}/A;T,n_{B},Y_{p})]/T} \times g_{c} \left\{ \left[e^{-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p})/T} - 1 \right] \Theta \left[-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p}) \right] + v_{c}(\mathbf{P};T,n_{B},Y_{p}) \right\}$$

parametrization (d – like):

$$v_c(\mathbf{P}=0;T,n_B,Y_p) \approx \left[1.24 + \left(\frac{1}{v_{T_I=0}(T)} - 1.24\right)e^{\gamma_c n_B/T}\right]^{-1}$$

 $v_d^0(T) = v_{T_I=0}^0(T) \approx 0.30857 + 0.65327 \ e^{-0.102424 \ T/\text{MeV}}$

G. Roepke, PRC 92,054001 (2015)

α - α scattering phase shifts

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

α -n scattering phase shifts

Fig. 2. (Color online.) The phase shifts for elastic neutron-alpha scattering $\delta_{L_J}(E)$ versus laboratory energy *E*. As discussed in the text, the solid lines are from Arndt and Roper [37] and the symbols are from Amos and Karataglidis [38]. For clarity, we do not show the F-waves included in our results for $b_{\alpha n}$.

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

Supernova explosion

Core-collapse supernovae

Density.

electron fraction, and

temperature profile

of a 15 solar mass supernova at 150 ms after core bounce as function of the radius.

Influence of cluster formation on neutrino emission in the cooling region and on neutrino absorption in the heating region ?

K.Sumiyoshi et al., Astrophys.J. **629**, 922 (2005)

Composition of supernova core

X

Asymmetric nuclear light clusters in supernova matter

Figure 1. Upper three panels, from left ro right: temperature *T* (in MeV), log of density ρ (in g \cdot cm⁻³) and electron fraction Y_e as a functions of mass coordinate *m*. Lower panel: mass fractions of of nuclei X_i as a function of *m*. The black dashed line marked $X_{Z>2}$ shows the total mass fraction of elements with Z > 2. EoS is pure NSE.

Figure 7. Upper three panels, from left ro right: temperature *T* (in MeV), log of density ρ (in g \cdot cm⁻³) and electron fraction Y_e as a functions of mass coordinate *m*. Lower panel: mass fractions X_i of of hydrogen and helium isotopes as a function of *m*. The black dashed line marked $X_{Z>2}$ shows the total mass fraction of all rest nuclei. Stellar profile corresponds to 200 ms after bounce approximately, calculations according to modified HS EoS.

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, Monthly Notices of the Royal Astronomical Society 483, 5426 (2019)

In-medium isospin-triplet phase shift

$${}^{4}\mathrm{H} \rightleftharpoons {}^{3}\mathrm{H} + n$$

 $\Delta E = +1.601 \text{ MeV}$

FIG. 4. The singlet scattering phase shifts as a function of the relative energy at given temperature T = 10 MeV and several density values of the medium for total momentum K = 0. The dotted line gives the phase shift for the free scattering.

Light cluster production at NICA*

Fig. 1. Phase diagram of dense nuclear matter in the plane of temperature T and baryochemical potential μ_B . The diagram includes Mott lines for the dissociation of light nuclear clusters, extrapolated also to the deconfinement region. For details, see text.

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko, G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A **52**, 244 (2016)

Freeze-out in HIC

Deuteron to proton fraction at freeze-out temperature

Fit d/p $d/p = 0.8 [\sqrt{s_{NN}}/\text{GeV}]^{-1.55} + 0.0036$

Feckova Z., Steinheimer J., Tomasik B., Bleicher M. Phys. Rev. C . 92, 064908 (2015)

Light cluster production at NICA*

Fig. 5. Multiplicities of light clusters in central Au + Au collisions in the NICA energy range (calculated for an energy scan with $E_{\text{lab}} = 2, 4, 6, 8 A \text{ GeV}$). Results from a 3-fluid hydrodynamics description with cluster coalescence [22].

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko, G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244

Formation of light clusters in heavy ion reactions, transport codes

PHYSICAL REVIEW C, VOLUME 63, 034605

Medium corrections in the formation of light charged particles in heavy ion reactions

C. Kuhrts,¹ M. Beyer,^{1,*} P. Danielewicz,² and G. Röpke¹ ¹FB Physik, Universität Rostock, Universitätsplatz 3, D-18051 Rostock, Germany ²NSCL, Michigan State University, East Lansing, Michigan 48824 (Received 13 September 2000; published 12 February 2001)

Wigner distribution

cluster mean-field potential

breakup transition operator

loss rate

in-medium

 $\mathcal{K}_d^{\text{loss}}(P,t)$

$$= \int d^{3}k \int d^{3}k_{1} d^{3}k_{2} d^{3}k_{3} |\langle k_{1}k_{2}k_{3}|U_{0}|kP\rangle|^{2}_{dN \to pnN}$$
$$\times f_{N}(k_{1},t)f_{N}(k_{2},t)f_{N}(k_{3},t)f_{N}(k,t) + \cdots$$
(3)

breakup cross section

$$\sigma_{\rm bu}^{0}(E) = \frac{1}{|v_{d} - v_{N}|} \frac{1}{3!} \int d^{3}k_{1} d^{3}k_{2} d^{3}k_{3} |\langle kP|U_{0}|k_{1}k_{2}k_{3}\rangle|^{2} \\ \times 2\pi\delta(E' - E)(2\pi)^{3}\delta^{(3)}(k_{1} + k_{2} + k_{3}), \qquad (4)$$

 $\partial_t f_X + \{\mathcal{U}_X, f_X\} = \mathcal{K}_X^{\text{gain}}\{f_N, f_d, f_t, \dots\} (1 \pm f_X)$ $- \mathcal{K}_X^{\text{loss}}\{f_N, f_d, f_t, \dots\} f_X,$

$$X = N, d, t, \ldots$$

Mott effect, in-medium cross section

FIG. 1. Deuteron and triton Mott momenta P_{Mott} shown as a function of density ρ at fixed temperature of T=10 MeV. The solid line represents results of the *t* matrix approach. The dashed, dotted, and dashed-dotted lines represent the deuteron Mott momenta from the parametrization given in Eq. (24) for three different cutoff values F_{cut} .

$$\int d^3 q f\left(\mathbf{q} + \frac{\mathbf{P}_{\text{c.m.}}}{2}\right) |\phi(\mathbf{q})|^2 \leq F_{\text{cut}}$$

C. Kuhrts et al., PRC 63,034605 (2001)

FIG. 5. Renormalized light charged light particle spectra in the center of mass system for the reaction $^{129}Xe + ^{119}Sn$ at 50 MeV/ nucleon. The filled circles represent the data of the INDRA Collaboration [21]. The solid line shows the calculations with the inmedium *Nd* reaction rates, while the dashed line shows a calculation using the isolated *Nd* breakup cross section; both with $F_{\rm cut}=0.15$.

Element abundances in the Sun

Mass number A

Summary

 Quantum statistical approach: light clusters with in-medium quasiparticle energies. The Pauli blockiing is strongly depending on temperature T. Mott effect: bound states merge with the continuum

- The influence of continuum correlations (clusters) at increasing densities requires detailed investigations.
- Continuum correlations contribute to the symmetry energy (density dependent virial coefficients).
- The blocking of bound states is modified because of correlations in the medium (α matter).
- The "exotic" light clusters can be taken into acount, but double accounting must be avoided. Medium effects are important.
- Relevant for HIC (freeze-out, transport theory) and astrophysics (supernova explosions: larger clusters (A>4), pasta structures)

Thanks

to D. Blaschke, T. Fischer, Y. Funaki, K. Hagel, M. Hempel, J. Natowitz, H. Pais, C. Providencia, P. Schuck, A. Sedrakian, K. Sumiyoshi, S. Typel, H. Wolter for collaboration

to you

for attention

D.G.

Equilibrium correlations and transport codes

FIG. 6. Mean transverse energy of light charged fragments in the angular range of $-0.5 \le \cos \theta_{c.m.} \le 0.5$.

C. Kuhrts, PRC 63,034605 (2001)

Important: Mott effect

Minor effects: in medium cross sections

Missing: inclusion of alphas

Correlated continuum, correlated medium

Freeze-out and local thermodynamic equilibrium

single-particle quantum kinetic equations and correlations

Equilibrium solution?

Clusters in an external potential

c. o. m. coordinate R, relative coordinates s_i

$$\Psi(\mathbf{R},\mathbf{s}_j) = \varphi^{\mathrm{intr}}(\mathbf{s}_j,\mathbf{R}) \, \Phi(\mathbf{R})$$

normalization $\int dR \, |\Phi(\mathbf{R})|^2 = 1$ $\int ds_j |\varphi^{\text{intr}}(\mathbf{s}_j, \mathbf{R})|^2 = 1$

Wave equation for the c.o.m. motion

$$-\frac{\hbar^2}{2Am}\nabla_R^2\Phi(\mathbf{R}) - \frac{\hbar^2}{Am}\int ds_j\varphi^{\text{intr},*}(\mathbf{s}_j,\mathbf{R})[\nabla_R\varphi^{\text{intr}}(\mathbf{s}_j,\mathbf{R})][\nabla_R\Phi(\mathbf{R})] \\ -\frac{\hbar^2}{2Am}\int ds_j\varphi^{\text{intr},*}(\mathbf{s}_j,\mathbf{R})[\nabla_R^2\varphi^{\text{intr}}(\mathbf{s}_j,\mathbf{R})]\Phi(\mathbf{R}) + \int dR' W(\mathbf{R},\mathbf{R}')\Phi(\mathbf{R}') = E\Phi(\mathbf{R})$$

c.o.m. effective potential

$$W(\mathbf{R},\mathbf{R}') = \int ds_j \, ds'_j \, \varphi^{\text{intr},*}(\mathbf{s}_j,\mathbf{R}) \left[T[\nabla_{s_j}] \delta(\mathbf{R}-\mathbf{R}') \delta(\mathbf{s}_j-\mathbf{s}'_j) + V(\mathbf{R},\mathbf{s}_j;\mathbf{R}',\mathbf{s}'_j) \right] \varphi^{\text{intr}}(\mathbf{s}'_j,\mathbf{R}')$$

Wave equation for the intrinsic motion

$$-\frac{\hbar^2}{Am}\Phi^*(\mathbf{R})[\nabla_R\Phi(\mathbf{R})][\nabla_R\varphi^{\text{intr}}(\mathbf{s}_j,\mathbf{R})] - \frac{\hbar^2}{2Am}|\Phi(\mathbf{R})|^2\nabla_R^2\varphi^{\text{intr}}(\mathbf{s}_j,\mathbf{R}) + \int dR'\,ds'_j\,\Phi^*(\mathbf{R})\left[T[\nabla_{s_j}]\delta(\mathbf{R}-\mathbf{R}')\delta(\mathbf{s}_j-\mathbf{s}'_j) + V(\mathbf{R},\mathbf{s}_j;\mathbf{R}',\mathbf{s}'_j)\right]\Phi(\mathbf{R}')\varphi^{\text{intr}}(\mathbf{s}'_j,\mathbf{R}') = F(\mathbf{R})\varphi^{\text{intr}}(\mathbf{s}_j,\mathbf{R})$$

G. Roepke et al., PRC 90, 034304 (2014)

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation $\left(\frac{p_{1}^{2}}{2m_{1}} + \Delta_{1} + \frac{p_{2}^{2}}{2m_{2}} + \Delta_{2}\right)\Psi_{d,P}(p_{1},p_{2}) + \sum_{p_{1}',p_{2}'}(1 - f_{p_{1}} - f_{p_{2}})V(p_{1},p_{2};p_{1}',p_{2}')\Psi_{d,P}(p_{1}',p_{2}')$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Few-particle Schrödinger equation in a dense medium

4-particle Schrödinger equation with medium effects

$$\begin{pmatrix} \left[E^{HF}(p_{1}) + E^{HF}(p_{2}) + E^{HF}(p_{3}) + E^{HF}(p_{4}) \right] \end{pmatrix} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \\ + \sum_{p_{1}^{'},p_{2}^{'}} (1 - f_{p_{1}} - f_{p_{2}}) V(p_{1},p_{2};p_{1}^{'},p_{2}^{'}) \Psi_{n,P}(p_{1}^{'},p_{2}^{'},p_{3},p_{4}) \\ + \left\{ permutations \right\} \\ = E_{n,P} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4})$$
Thouless criterion for quantum condensate:

 $E_{n,P=0}(T,\mu) = 4\mu$

Shift of the deuteron bound state energy

Dependence on nucleon density, various temperatures, zero center of mass momentum

G.R., Nucl. Phys. A 867, 66 (2011)

Four-nucleon energies at finite density

Solution of the in-medium wave equation, T = 0

Equation of state: chemical potential

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. QS calculation compared with RMF (thin) and NSE (dashed). Insert: QS calculation without continuum correlations (thin lines).

3. Inhomogeneous matter: nuclei

Correlations are important in the low density region ($n_B < n_{sat}/5 = 0.03$ fm⁻³): excited nuclei (Hoyle – like), surface of heavy nuclei, neck emission, etc.

Quartetting wave-function approach:

mixed gradient terms $[\nabla_R \varphi^{intr}(\mathbf{s}_j, \mathbf{R})]$ are neglected, Pauli blocking must be taken into account.

$$[E_{4} - \hat{h}_{1} - \hat{h}_{2} - \hat{h}_{3} - \hat{h}_{4}]\Psi(\mathbf{r}_{1}\mathbf{r}_{2}\mathbf{r}_{3}\mathbf{r}_{4}) = \int d^{3}\mathbf{r}_{1}' d^{3}\mathbf{r}_{2}' \langle \mathbf{r}_{1}\mathbf{r}_{2} | B V_{N-N} | \mathbf{r}_{1}'\mathbf{r}_{2}' \rangle \Psi(\mathbf{r}_{1}'\mathbf{r}_{2}'\mathbf{r}_{3}\mathbf{r}_{4})$$

$$+ \int d^{3}\mathbf{r}_{1}' d^{3}\mathbf{r}_{3}' \langle \mathbf{r}_{1}\mathbf{r}_{3} | B V_{N-N} | \mathbf{r}_{1}'\mathbf{r}_{3}' \rangle \Psi(\mathbf{r}_{1}'\mathbf{r}_{2}\mathbf{r}_{3}'\mathbf{r}_{4}) + \text{four further permutations.} \quad (8)$$

$$Pauli blocking$$

$$\hat{h} = \frac{\hbar^{2}p^{2}}{2m} + [1 - \sum_{i}^{\text{occ.}} |n\rangle \langle n|] V^{\text{mf}}(r) \qquad B(1,2) = [1 - f_{1}(\hat{h}_{1}) - f_{2}(\hat{h}_{2})]$$

α decay of heavy nuclei

Decay modes of nuclei

Landau Fermi liquid

Strongly degenerate Fermi system: excitations near the Fermi energy, well-defined quasiparticles

Inverse of compressibility, T=0

G. Ropke, D.N. Voskresensky, I.A. Kryukov, D. Blaschke, Nucl. Phys. A 970, 224 (2018)

Noninteracting Fermi-gas

Dynamical structure factor

$$S_0(\mathbf{q},\omega) = \frac{1}{e^{\beta\omega} - 1} g_\nu \int \frac{d^3p}{(2\pi)^3} \left(f^0_{\mathbf{p}} - f^0_{\mathbf{p}+\mathbf{q}} \right) \delta(\omega + \epsilon^0_{\mathbf{p}} - \epsilon^0_{\mathbf{p}+\mathbf{q}})$$

isothermal compressibility

$$\kappa_{\rm iso}^{(0)}(T,\mu) = \frac{\beta}{n_B^2} g_{\nu} \int \frac{d^3p}{(2\pi)^3} f_p^0 (1 - f_p^0)$$

$$n_B^{(0)}(\beta,\mu) = \frac{1}{\Omega_0} \sum_p \frac{1}{e^{\beta(\epsilon_p^0 - \mu)} + 1} = \frac{1}{\Omega_0} \sum_p f_p^0 = \frac{N}{\Omega_0} \, .$$

Cluster decomposition of the polarization function

 $M_{\nu\nu'}(\mathbf{q}) = \langle \nu, \mathbf{P} | M(\mathbf{q}, z_{\lambda}, z_{\mu}) | \nu', \mathbf{P} + \mathbf{q} \rangle = \sum_{\mathbf{p}_{1}, \mathbf{p}_{2}} \psi_{\nu, \mathbf{P}}^{*}(p_{1}, p_{2}) [\psi_{\nu', \mathbf{P} + \mathbf{q}}(\mathbf{p}_{1} + \mathbf{q}, \mathbf{p}_{2}) + \psi_{\nu', \mathbf{P} + \mathbf{q}}(\mathbf{p}_{1}, \mathbf{p}_{2} + \mathbf{q})]$

$$\kappa_{\rm iso}^{\rm (BU)}(T,\mu_n,\mu_p) = \frac{\beta}{\Omega_0 n_B^2} \left\{ \sum_{\mathbf{p}} f_p^0 (1-f_p^0) + \sum_{\alpha,\mathbf{p}} \int_{-\infty}^{\infty} \frac{dE}{\pi} f_2 \left(E + \frac{P^2}{4m}\right) \left[1 + f_2 \left(E + \frac{P^2}{4m}\right)\right] D_{\alpha,\mathbf{p}}(E) \right\}$$

Cluster: few-nucleon system

Nucleon pair (position, spin, isospin)

$$-\frac{\hbar^2}{2m}\nabla_{\mathbf{r}_1}^2\Psi(\mathbf{r}_1,\mathbf{r}_2) - \frac{\hbar^2}{2m}\nabla_{\mathbf{r}_2}^2\Psi(\mathbf{r}_1,\mathbf{r}_2) + V(\mathbf{r}_1-\mathbf{r}_2)\Psi(\mathbf{r}_1,\mathbf{r}_2) = E\Psi(\mathbf{r}_1,\mathbf{r}_2)$$

Translational invariance: Jacobi coordinates

$$\mathbf{R} = rac{\mathbf{r}_1 + \mathbf{r}_2}{2}$$
 $\mathbf{s} = \mathbf{r}_2 - \mathbf{r}_1$

Separation ansatz $\Psi(\mathbf{r}_1,\mathbf{r}_2)=arphi^{\mathrm{intr}}(\mathbf{s})\Phi(\mathbf{R})$

$$-\frac{\hbar^2}{m}\nabla_{\mathbf{s}}^2\varphi^{\text{intr}}(\mathbf{s}) + V(\mathbf{s})\varphi^{\text{intr}}(\mathbf{s}) = E^{\text{intr}}\varphi^{\text{intr}}(\mathbf{s}) \qquad -\frac{\hbar^2}{4m}\nabla_{\mathbf{R}}^2\Phi(\mathbf{R}) = E^{\text{c.m.}}\Phi(\mathbf{R})$$

Cluster: few-nucleon system

Nucleon pair (position, spin, isospin)

$$-\frac{\hbar^2}{2m}\nabla_{\mathbf{r}_1}^2\Psi(\mathbf{r}_1,\mathbf{r}_2) - \frac{\hbar^2}{2m}\nabla_{\mathbf{r}_2}^2\Psi(\mathbf{r}_1,\mathbf{r}_2) + V(\mathbf{r}_1-\mathbf{r}_2)\Psi(\mathbf{r}_1,\mathbf{r}_2) = E\Psi(\mathbf{r}_1,\mathbf{r}_2)$$

Translational invariance: Jacobi coordinates

$$\mathbf{R}=rac{\mathbf{r}_1+\mathbf{r}_2}{2}$$
 $\mathbf{s}=\mathbf{r}_2-\mathbf{r}_1$

Separation ansatz $\Psi(\mathbf{r}_1,\mathbf{r}_2)=arphi^{\mathrm{intr}}(\mathbf{s})\Phi(\mathbf{R})$

$$-\frac{\hbar^2}{m}\nabla_{\mathbf{s}}^2\varphi^{\text{intr}}(\mathbf{s}) + V(\mathbf{s})\varphi^{\text{intr}}(\mathbf{s}) = E^{\text{intr}}\varphi^{\text{intr}}(\mathbf{s}) \qquad -\frac{\hbar^2}{4m}\nabla_{\mathbf{R}}^2\Phi(\mathbf{R}) = E^{\text{c.m.}}\Phi(\mathbf{R})$$

Nucleon quartet $\{n_{\uparrow}, n_{\downarrow}, p_{\uparrow}, p_{\downarrow}\}$

$$-\sum_{i} \frac{\hbar^2}{2m} \nabla_{\mathbf{r}_i}^2 \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) + V_4(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = E \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4)$$

$$V_4(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = V(\mathbf{r}_1 - \mathbf{r}_2) + V(\mathbf{r}_1 - \mathbf{r}_3) + V(\mathbf{r}_1 - \mathbf{r}_4) + V(\mathbf{r}_2 - \mathbf{r}_3) + V(\mathbf{r}_2 - \mathbf{r}_4) + V(\mathbf{r}_3 - \mathbf{r}_4)$$

Jacobi-Moshinsky coordinates

$$\begin{split} \mathbf{r}_{n,\uparrow} &= \mathbf{R} + \mathbf{S}/2 + \mathbf{s}/2, & \mathbf{p}_{n,\uparrow} &= \mathbf{P}/4 + \mathbf{Q}/2 + \mathbf{q}, \\ \mathbf{r}_{n,\downarrow} &= \mathbf{R} + \mathbf{S}/2 - \mathbf{s}/2, & \mathbf{p}_{n,\downarrow} &= \mathbf{P}/4 + \mathbf{Q}/2 - \mathbf{q}, \\ \mathbf{r}_{p,\uparrow} &= \mathbf{R} - \mathbf{S}/2 + \mathbf{s}'/2, & \mathbf{p}_{p,\uparrow} &= \mathbf{P}/4 - \mathbf{Q}/2 + \mathbf{q}', \\ \mathbf{r}_{p,\downarrow} &= \mathbf{R} - \mathbf{S}/2 - \mathbf{s}'/2, & \mathbf{p}_{p,\downarrow} &= \mathbf{P}/4 - \mathbf{Q}/2 - \mathbf{q}'. \end{split}$$