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Clusters and Correlations in Dense Matter 



Nuclear Many-Body System 
Nucleons (neutron, proton): intrinsic quark-gluon structure, cluster? 

correlation function in a given ensemble  

degrees of freedom:       position – momentum, spin, isospin 

occupation numbers, distribution function 

single-particle states    

spectral function 

self energy 

equation of state 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
of quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.Eq. 

Generalized Beth-Uhlenbeck formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium: 
phase space occupation by all bound states 
in-medium correlations, quantum condensates 



Evaluation of correlation functions 

•   non-local, energy-dependent? 
      QCS? 

•  microscopic calculations  
     (AMD, FMD)  

•  single-particle descriptions: 
     Thomas-Fermi approximation 
     shell model  
     density functional theory (DFT) 
 
•  correlations, clustering  
     low-density nα nuclei, 
   α decay:  preformation 

nucleon-nucleon interaction potential ?    (atom-atom potential ?) 



Cluster: few-nucleon system 
Nucleon pair (position, spin, isospin) 

Separation ansatz 

Nucleon quartet 

Separation ansatz 



Composition of nuclear matter 

•  Composition in equilibrium  
     low-density limit: nuclear statistical equilibrium (NSE) 

•  Cluster decomposition, partial virial coefficients 
     bound states 
     continuum correlations, scattering states 
 
•  Medium modifications, density effects, gRMF, excluded volume, 

quantum statistical approach 
 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



Beth-Uhlenbeck formula 



Effective wave equation  
for the deuteron in matter 
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Pauli-blocking 

BEC-BCS crossover: 
Alm et al.,1993 

Add self-energy 

Thouless criterion 
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Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (deuteron, alpha,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Generalized Beth-Uhlenbeck formula 



Deuteron-like scattering phase shifts 
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deuteron bound state -2.2 MeV 
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A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =
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bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2
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e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to
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n (T, µn, µp) + nqu
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+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
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1
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Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)
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Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



Light Cluster Abundances 

Composition of symmetric matter in dependence on the baryon density nB, T = 5 MeV.  
Quantum statistical calculation (full) compared with NSE (dotted).  

G. R., PRC 92, 054001 (2015) 



Inclusion of heavier clusters 

•  Z > 2: “metals” 

•  Asymmetric matter, Stellar matter 
 
•  “Exotic light clusters” 4 < A < 12 

•  Light clusters, “exotic” nuclei 4H 

•  Thermodynamic stability, pasta phases 



Binding energy per nucleon 



Half-lives t1/2 
Radioactive decay of instabile Isotopes  



Big-Bang nucleosynthesis: H, He, Li, __________ 

Courtesy: D. Bemmerer, lecture at Karpacz-2019 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 



α-α scattering phase shifts 

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) 



α-n scattering phase shifts 

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) 



Supernova explosion 

T.Janka 



Core-collapse supernovae 

Density.  
 
electron fraction, and 
 
temperature profile 
 
of a 15 solar mass supernova 
at 150 ms after core bounce 
as function of the radius. 
 
Influence of cluster formation  
on neutrino emission  
in the cooling region and 
on neutrino absorption 
in the heating region ? 
K.Sumiyoshi et al., 
Astrophys.J. 629, 922 (2005) 



Composition of supernova core 

K.Sumiyoshi, 
G. R., 
PRC 77, 
055804 (2008) 

Mass fraction X  
of light clusters  
for a post-bounce  
supernova core 



Asymmetric nuclear light clusters in 
supernova matter  

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, 
Monthly Notices of the Royal Astronomical Society 483, 5426 (2019) 



In-medium isospin-triplet phase shift 



Light cluster production at NICA⋆ 
 

N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A 52, 244 (2016)  



Freeze-out in HIC 



Deuteron to proton fraction at 
freeze-out temperature 

Fit d/p 

Feckova Z., Steinheimer J., Tomasik B., Bleicher M.  
Phys. Rev. C . 92, 064908 (2015)  



N.-U. Bastian, P. Batyuk, D. Blaschke, P. Danielewicz, Yu.B. Ivanov, Iu. Karpenko,  
G. Ropke, O. Rogachevsky, and H.H. Wolter, Eur. Phys. J. A (2016) 52: 244  

Light cluster production at NICA⋆ 
 



Formation of light clusters in heavy 
ion reactions, transport codes 

Wigner distribution 

cluster mean-field potential 

loss rate 

in-medium  
breakup transition operator 

breakup cross section 



Mott effect, in-medium cross section  

C. Kuhrts et al., PRC 63,034605 (2001) 



Element abundances in the Sun 

Mass number A 



Summary 
•  Quantum statistical approach: light clusters with in-medium 
quasiparticle energies. The Pauli blockiing is strongly depending on 
temperature T. Mott effect: bound states merge with the continuum 
 
•  The influence of continuum correlations (clusters) at increasing 
densities requires detailed investigations. 
-  Continuum correlations contribute to the symmetry energy (density 

dependent virial coefficients). 
-  The blocking of bound states is modified because of correlations in 

the medium (α matter). 
 
•  The „exotic“ light clusters can be taken into acount, but double 

accounting must be avoided. Medium effects are important. 

•  Relevant for HIC (freeze-out, transport theory) and astrophysics 
(supernova explosions: larger clusters (A>4), pasta structures) 

 



Thanks 
to   D. Blaschke, T. Fischer, Y. Funaki, K. Hagel, M. Hempel, 

 J. Natowitz, H. Pais, C. Providencia, P. Schuck,          
    A. Sedrakian, K. Sumiyoshi, S. Typel, 
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Equilibrium correlations and 
transport codes 

Important: Mott effect 
 
Minor effects:  
in medium cross sections 
 
Missing: inclusion of alphas 
 
Correlated continuum, 
correlated medium 
 
Freeze-out and local   
thermodynamic equilibrium 
 
single-particle quantum kinetic  
equations and correlations 
 
Equilibrium solution? C. Kuhrts, PRC 63,034605 (2001) 



Clusters in an external potential 
c. o. m.  coordinate R, relative coordinates sj  

normalization 

Wave equation for the c.o.m. motion 

c.o.m. effective potential 

Wave equation for the intrinsic motion 

G. Roepke et al., PRC 90, 034304 (2014) 



Effective wave equation  
for the deuteron in matter 
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In-medium two-particle wave equation in mean-field approximation 



Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 
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Thouless criterion  
for quantum condensate: 

En,P=0(T,µ) = 4µ  



Shift of the deuteron bound state energy 

G.R., Nucl. Phys. A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Four-nucleon energies at finite density 
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4 free nucleons 
at the Fermi energy 
(continuum) 

 

Solution of the in-medium wave equation, T = 0 

G. Roepke et al., PRC 90, 034304 (2014) 



Equation of state: chemical potential  

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. 
QS calculation compared with RMF (thin) and NSE (dashed).  
Insert: QS calculation without continuum correlations (thin lines).  



3. Inhomogeneous matter: nuclei 
Correlations are important in the low density region (nB < nsat/5 = 0.03 fm-3): 
excited nuclei (Hoyle – like), surface of heavy nuclei, neck emission, etc. 
 
Quartetting wave-function approach: 
mixed gradient terms                      are neglected, 
Pauli blocking must be taken into account. 
 
 

 

Pauli blocking 



Decay modes of nuclei 

α decay of heavy nuclei 



Landau Fermi liquid 

Landau-Migdal parameter f0 (T=0) 

G. Ropke, D.N. Voskresensky, I.A. Kryukov, D. Blaschke, Nucl. Phys. A 970, 224 (2018) 

Strongly degenerate Fermi system: excitations near the Fermi energy, 
well-defined quasiparticles   

Inverse of compressibility, T=0  

fluctuation-dissipation theorem  

response function χ(q, ω)  

General case, correlations, finite T 



Noninteracting Fermi-gas 

polarization loop 

isothermal compressibility  

Dynamical structure factor 



Cluster decomposition of the 
polarization function 
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Cluster: few-nucleon system 
Nucleon pair (position, spin, isospin) 

Translational invariance: Jacobi coordinates 

Separation ansatz 



Cluster: few-nucleon system 
Nucleon pair (position, spin, isospin) 

Translational invariance: Jacobi coordinates 

Separation ansatz 

Jacobi-Moshinsky coordinates 

Nucleon quartet 


