Inclusion of pions

Goal: EFT for NN scattering at typical momenta Q $\sim M_{\pi}$

Are pions perturbative?

How to test whether pion dynamics is being treated properly?

Low-Energy Theorems as a tool to test predictive power beyond ERE

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Modified Effective Range Expansion (MERE)

5. LETs and the MERE

What are the low-energy theorems?

Two-range potential:
$$V(r) = V_L(r) + V_S(r)$$
 with $M_L^{-1} \gg M_H^{-1}$

ullet $F_l(k^2)$ is meromorphic in $|k| < M_L/2$

Modified Effective Range Expansion (MERE)

5. LETs and the MERE

What are the low-energy theorems?

Two-range potential:
$$V(r) = V_L(r) + V_S(r)$$
 with $M_L^{-1} \gg M_H^{-1}$

• $F_l(k^2)$ is meromorphic in $|k| < M_L/2$

$$\underbrace{f_l^L(k)}_{r\to 0} = \lim_{r\to 0} \left(\frac{l!}{(2l)!} (-2ikr)^l f_l^L(k,r) \right)$$
 Jost function for $V_L(r)$

$$M_{l}^{L}(k) = Re \left[\frac{(-ik/2)^{l}}{l!} \lim_{r \to 0} \left(\frac{d^{2l+1}}{dr^{2l+1}} \frac{r^{l} f_{l}^{L}(k,r)}{f_{l}^{L}(k)} \right) \right]$$

Per construction, F_l^M reduces to F_l for $V_L = 0$ and is meromorphic in $|k| < M_H/2$

modified effective range function van Haeringen, Kok '82

MERE and low-energy theorems

Example: proton-proton scattering

$$F_C(k^2) = C_0^2(\eta) \, k \, \cot[\delta(k) - \delta^C(k)] + 2k \, \eta \, h(\eta) = -\frac{1}{a^M} + \frac{1}{2} r^M k^2 + v_2^M k^4 + \dots$$
 where $\delta^C \equiv \arg \Gamma(1+i\eta)$, $\eta = \frac{m}{2k} \alpha$, $C_0^2(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$, $h(\eta) = \mathrm{Re} \left[\Psi(i\eta) \right] - \ln(\eta)$ Coulomb phase shift Sommerfeld factor Digamma function $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$

MERE and low-energy theorems

Example: proton-proton scattering

$$F_C(k^2) = C_0^2(\eta) \, k \, \cot[\delta(k) - \delta^C(k)] + 2k \, \eta \, h(\eta) = -\frac{1}{a^M} + \frac{1}{2} r^M k^2 + v_2^M k^4 + \dots$$
 where $\delta^C \equiv \arg \Gamma(1+i\eta)$, $\eta = \frac{m}{2k} \alpha$, $C_0^2(\eta) = \frac{2\pi \eta}{e^{2\pi \eta} - 1}$, $h(\eta) = \mathrm{Re} \left[\Psi(i\eta) \right] - \ln(\eta)$ Coulomb phase shift Sommerfeld factor Digamma function $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems) [Cohen, Hansen '99; Steele, Furnstahl '00; Baru, EE, Filin, Gegelia '15,'16]

The emergence of the LETs can be understood in the framework of MERE:

$$\underbrace{F_l^M(k^2)}_{\text{meromorphic for}} \equiv M_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|^2} \cot\left[\delta_l(k) - \delta_l^L(k)\right]$$
 can be computed if the long-range force is known

- approximate $F_l^M(k^2)$ by first 1,2,3,... terms in the Taylor expansion in k^2
- calculate all "soft" quantities
- reconstruct $\delta_l^L(k)$ and predict all coefficients in the ERE

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_H e^{-M_H r} f(r)}_{V_H}$$

where
$$f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$$

and $M_L=1.0\,,\ v_L=-0.875\,,\ M_H=3.75\,,\ v_H=7.5$ (all in fm⁻¹)

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where
$$f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$ F_0^M [M_S^{-n}] $	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
r				2.432197161
v_2				0.112815751
v_3				0.51529
v_4		, ,		-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where
$$f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
-r	2.447(38)			2.432197161
v_2	0.12(11)			0.112815751
v_3	0.61(12)			0.51529
v_4	-0.95(5)			-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where
$$f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
r	2.447(38)	2.432197161		2.432197161
v_2	0.12(11)	0.1132(29)		0.112815751
v_3	0.61(12)	0.517(16)		0.51529
v_4	-0.95(5)	-0.991(14)		-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where
$$f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
r	2.447(38)	2.432197161	2.432197161	2.432197161
v_2	0.12(11)	0.1132(29)	0.112815751	0.112815751
v_3	0.61(12)	0.517(16)	0.51533(20)	0.51529
v_4	-0.95(5)	-0.991(14)	-0.9925(11)	-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} +$$

where
$$f(r)=rac{(M_Hr)^2}{1+(M_Hr)^2}$$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M [M_S^{-n}] \mid$	1.710	-1.063	-0.434	-0.680	2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341

	LO	NLO	NNLO	"Exp"
r	2.447(38)	2.432197161	2.432197161	2.432197161
v_2	0.12(11)	0.1132(29)	0.112815751	0.112815751
v_3	0.61(12)	0.517(16)	0.51533(20)	0.51529
$ v_4 $	-0.95(5)	-0.991(14)	-0.9925(11)	-0.9928

Toy model: phase shifts & error plots

Chiral EFT for NN scattering

6. KSW with perturbative pions

Recall the differences between the W and KSW counting schemes:

- Weinberg: $\mu \sim \mathcal{O}(1), \ \mu_i \sim \mathcal{O}(p)$ \longrightarrow $V_{\text{Weinberg}}^{\text{LO}} \sim \mathcal{O}(1), \ V_{\text{Weinberg}}^{\text{NLO}} \sim \mathcal{O}(p^2)$ [i.e. scaling of C_{2n} according to NDA (\sim O(1))]
 - KSW: $\mu, \mu_i \sim \mathcal{O}(p)$ \longrightarrow $V_{\mathrm{KSW}}^{\mathrm{LO}} \sim \mathcal{O}(p^{-1}), V_{\mathrm{KSW}}^{\mathrm{NLO}} \sim \mathcal{O}(1)$ [i.e. scaling of C_{2n} as $C_{2n} \sim O(p^{-1-n})$]

Chiral EFT for NN scattering

6. KSW with perturbative pions

Recall the differences between the W and KSW counting schemes:

- Weinberg: $\mu \sim \mathcal{O}(1), \ \mu_i \sim \mathcal{O}(p)$ \longrightarrow $V_{\text{Weinberg}}^{\text{LO}} \sim \mathcal{O}(1), \ V_{\text{Weinberg}}^{\text{NLO}} \sim \mathcal{O}(p^2)$ [i.e. scaling of C_{2n} according to NDA (\sim O(1))]
 - KSW: $\mu, \mu_i \sim \mathcal{O}(p)$ \longrightarrow $V_{\mathrm{KSW}}^{\mathrm{LO}} \sim \mathcal{O}(p^{-1}), \quad V_{\mathrm{KSW}}^{\mathrm{NLO}} \sim \mathcal{O}(1)$ [i.e. scaling of C_{2n} as $C_{2n} \sim O(p^{-1-n})$]

While the two schemes are equivalent for pionless theory, they suggest different scenarios for pionful (chiral) EFT:

$$V_{1\pi} \; = \; - \Big(rac{g_A}{2F_\pi}\Big)^2 \; rac{ec{\sigma}_1 \cdot ec{q} \; ec{\sigma}_2 \cdot ec{q}}{q^2 + M_\pi^2} \; ec{ au}_1 \cdot ec{ au}_2 \; \sim \; \mathcal{O}(1)$$

OPE is expected to be:

- LO contribution (nonperturbative) in the Weinberg scheme,
- NLO contribution (perturbative) in the KSW scheme.

Chiral EFT for NN scattering

• Leading order:

LO amplitude \mathcal{A}_{-1}

• NLO:
$$A_0 = P_{p^2} + P_{q_0} + P$$

$$\mathcal{A}_{0}^{(I)} = -C_{2}^{(^{1}S_{0})}p^{2} \left[\frac{\mathcal{A}_{-1}}{C_{0}^{(^{1}S_{0})}} \right]^{2}, \qquad \mathcal{A}_{0}^{(III)} = \left(\frac{g_{A}^{2}}{2f^{2}} \right) \left(-1 + \frac{m_{\pi}^{2}}{4p^{2}} \ln \left(1 + \frac{4p^{2}}{m_{\pi}^{2}} \right) \right)$$

$$\mathcal{A}_{0}^{(III)} = \frac{g_{A}^{2}}{f^{2}} \left(\frac{m_{\pi}M\mathcal{A}_{-1}}{4\pi} \right) \left(-\frac{(\mu + ip)}{m_{\pi}} + \frac{m_{\pi}}{2p} \left[\tan^{-1} \left(\frac{2p}{m_{\pi}} \right) + \frac{i}{2} \ln \left(1 + \frac{4p^{2}}{m_{\pi}^{2}} \right) \right] \right)$$

$$\mathcal{A}_{0}^{(IV)} = \frac{g_{A}^{2}}{2f^{2}} \left(\frac{m_{\pi}M\mathcal{A}_{-1}}{4\pi} \right)^{2} \left(-\left(\frac{\mu + ip}{m_{\pi}} \right)^{2} + \left[i \tan^{-1} \left(\frac{2p}{m_{\pi}} \right) - \frac{1}{2} \ln \left(\frac{m_{\pi}^{2} + 4p^{2}}{\mu^{2}} \right) + 1 \right] \right)$$

$$\mathcal{A}_{0}^{(V)} = \mathcal{D}_{0}^{(^{1}S_{0})} + 2 \left[\mathcal{A}_{-1} \right]^{2}$$
For more details see:

 ${\cal A}_0^{(V)} = -D_2^{(^1\!S_0)} m_\pi^2 \left[{{{\cal A}_{-1}}\over{C_0^{(^1\!S_0)}}}
ight]^2$ For more details see: Kaplan, Savage, Wise, Nucl. Phys. B534 (1998) 329.

LETs for NN S-waves

Use these results to test the LETs for S-waves: [Cohen, Hansen, PRC 59 (1999) 13]

$$p\cot\delta_0(p) \; = \; rac{4\pi}{m} \left[rac{1}{\mathcal{A}_{-1}} - rac{\mathcal{A}_0}{(\mathcal{A}_{-1})^2} + \ldots
ight] + ip \; \stackrel{!}{=} \; -rac{1}{a} + rac{1}{2} r p^2 + v_2 p^4 + v_3 p^6 + v_4 p^8 + \ldots$$

LETs for NN S-waves

Use these results to test the LETs for S-waves: [Cohen, Hansen, PRC 59 (1999) 13]

$$p\cot\delta_0(p) \; = \; rac{4\pi}{m} \left[rac{1}{{\cal A}_{-1}} - rac{{\cal A}_0}{({\cal A}_{-1})^2} + \ldots
ight] + ip \; \stackrel{!}{=} \; -rac{1}{a} + rac{1}{2} r p^2 + v_2 p^4 + v_3 p^6 + v_4 p^8 + \ldots$$

Express the LECs C_0 , C_2 , in terms of a and r to predict the shape parameters, e.g.:

$$v_2 \; = \; rac{g_A^2 m}{16 \pi F_\pi^2} \Big(-rac{16}{3 a^2 M_\pi^4} + rac{32}{5 a M_\pi^3} - rac{2}{M_\pi^2} \Big), \hspace{0.5cm} v_3 \; = \; rac{g_A^2 m}{16 \pi F_\pi^2} \Big(rac{16}{a^2 M_\pi^6} - rac{128}{7 a M_\pi^5} + rac{16}{3 M_\pi^4} \Big), \; \dots \; .$$

LETs for NN S-waves

Use these results to test the LETs for S-waves: [Cohen, Hansen, PRC 59 (1999) 13]

$$p\cot\delta_0(p) \; = \; rac{4\pi}{m} \left[rac{1}{{\cal A}_{-1}} - rac{{\cal A}_0}{({\cal A}_{-1})^2} + \ldots
ight] + ip \; \stackrel{!}{=} \; -rac{1}{a} + rac{1}{2} r p^2 + v_2 p^4 + v_3 p^6 + v_4 p^8 + \ldots$$

Express the LECs C_0 , C_2 , in terms of a and r to predict the shape parameters, e.g.:

$$v_2 \; = \; rac{g_A^2 m}{16 \pi F_\pi^2} \Big(- rac{16}{3 a^2 M_\pi^4} + rac{32}{5 a M_\pi^3} - rac{2}{M_\pi^2} \Big), \hspace{0.5cm} v_3 \; = \; rac{g_A^2 m}{16 \pi F_\pi^2} \Big(rac{16}{a^2 M_\pi^6} - rac{128}{7 a M_\pi^5} + rac{16}{3 M_\pi^4} \Big), \; \dots$$

$^{1}S_{0}$ partial wave	a [fm]	r [fm]	$v_2 [\mathrm{fm}^3]$	v_3 [fm ⁵]	$v_4 [\mathrm{fm}^7]$
NLO KSW Cohen, Hansen '99	fit	fit	-3.3	18	-108
Nijmegen PWA	-23.7	2.67	-0.5	4.0	-20

$3S_1$ partial wave	a [fm]	r [fm]	$v_2 [\mathrm{fm}^3]$	v_3 [fm ⁵]	$v_4 [\mathrm{fm}^7]$
NLO KSW Cohen, Hansen '99	fit	fit	-0.95	4.6	-25
Nijmegen PWA	5.42	1.75	0.04	0.67	-4.0

→ large deviations suggest that pions should be treated nonperturbatively...

7. Nonperturbative inclusion of pions

LO scattering amplitude:

$$egin{aligned} T(ec{p}',ec{p}) \ = \ igl[V_{
m cont}(ec{p}',ec{p}) + V_{1\pi}(ec{p}',ec{p}) igr] + m \int rac{d^3l}{(2\pi)^3} rac{igl[V_{
m cont}(ec{p}',ec{l}) + V_{1\pi}(ec{p}',ec{l}) igr] \, T(ec{l},ec{p})}{p^2 - l^2 + i\epsilon} \end{aligned}$$

Complications (as compared to pionless theory):

- $-V_{1\pi}$ is not separable, no analytic results beyond 2 loops are available,
- 1/r³ singularity of $V_{1\pi}$

Static OPEP in coordinate space:

$$V_{1\pi}(\vec{r}\,) = \left(\frac{g_A}{2F_\pi}\right)^2 \tau_1 \cdot \tau_2 \, \left[M_\pi^2 \, \frac{e^{-M_\pi r}}{12\pi r} \, \left(S_{12}(\hat{r}) \, \left(1 + \frac{3}{M_\pi r} + \frac{3}{(M_\pi r)^2}\right) + \vec{\sigma}_1 \cdot \vec{\sigma}_2\right) - \frac{1}{3} \, \vec{\sigma}_1 \cdot \vec{\sigma}_2 \, \delta^3(r)\right]$$

singular potential in all S=1 channels (solutions to the Schröd./LS equation still exist in repulsive cases)

→ Need counter terms in all spin-triplet waves! In fact, infinitely many c.t.'s are needed in every spin-triplet channel to remove UV divergences from iterations...

Consider iterations of the LO potential $V_{LO} = V_{1\pi} + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$ in the LS equation

$$T = V + \int V G_0 V + \int \int V G_0 V G_0 V + \dots$$
 where $G_0 = \frac{m}{\vec{p}^2 - \vec{l}^2 + i\epsilon}$

Consider iterations of the LO potential $V_{LO} = V_{1\pi} + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$ in the LS equation

$$T = V + \int V G_0 V + \int \int V G_0 V G_0 V + \dots$$
 where $G_0 = \frac{m}{\vec{p}^2 - \vec{l}^2 + i\epsilon}$

The 2n iteration will generally produce (among other) overall Log-divergences $\times (Qm_N)^{2n}$, where $Q \in \{|\vec{p}|, M_\pi\}$ (in s=0 channels no powers of $|\vec{p}|$ can appear):

[However, numerical estimations show no enhancement of renormalized higher-order counter terms, Gegelia, Scherer, Int. J. Mod. Phys. A21 (2006) 1079]

Consider iterations of the LO potential $V_{LO} = V_{1\pi} + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$ in the LS equation

$$T = V + \int V G_0 V + \int \int V G_0 V G_0 V + \dots$$
 where $G_0 = \frac{m}{\vec{p}^2 - \vec{l}^2 + i\epsilon}$

The 2n iteration will generally produce (among other) overall Log-divergences $\times (Qm_N)^{2n}$, where $Q \in \{|\vec{p}|, M_\pi\}$ (in s=0 channels no powers of $|\vec{p}|$ can appear):

[However, numerical estimations show no enhancement of renormalized higher-order counter terms, Gegelia, Scherer, Int. J. Mod. Phys. A21 (2006) 1079]

Another example:

$$\propto rac{1}{d-4} \, ec{p}^6 \, m_N^6$$
 (spin-triplet)

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\ldots}\right]|\Psi\rangle=E|\Psi\rangle$$
 derived in ChPT

$$T = V_{eff} + V_{eff} T$$

$$V_{eff} = + \times + \cdots$$

LS equation is linearly divergent already at LO

infinitely many CTs are needed to absorb all UV divergences from iterations!

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\dots}\right]|\Psi\rangle=E|\Psi\rangle$$
 derived in ChPT

$$T = V_{eff} + V_{eff} T$$

$$V_{eff} = + \times + \cdots$$

LS equation is linearly divergent already at LO

→ infinitely many CTs are needed to absorb all UV divergences from iterations!

Commonly used approach: finite-∧ EFT [EGM, EM, EKM, Gezerlis et al., Piarulli et al., Carlsson et al., ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b \ (\Lambda_b \sim 600 \ MeV)$
- Include short-range operators in V_{NN} according to NDA ← minimal possible set; alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\ldots}\right]|\Psi\rangle=E|\Psi\rangle$$
 derived in ChPT

LS equation is linearly divergent already at LO

infinitely many CTs are needed to absorb all UV divergences from iterations!

Commonly used approach: finite-Λ EFT [EGM, EM, EKM, Gezerlis et al., Piarulli et al., Carlsson et al., ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b$ ($\Lambda_b \sim 600$ MeV)
- Include short-range operators in V_{NN} according to NDA ← minimal possible set; alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

(Some) alternatives:

- renormalizable approach based on the Lorentz invariant Leff [EE, Gegelia '12 '16]
- RG-based approach to determine the counting for contacts [Birse]
- non-perturbative "renormalization" within the non relativistic framework using $\Lambda >> \Lambda_b$ [van Kolck, Pavon Valderrama, Long, ...]

Nuclear chiral EFT

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^A \frac{-\vec{\nabla}_i^2}{2m_N} + \mathcal{O}(m_N^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}\right] |\Psi\rangle = E|\Psi\rangle$$
 derived in ChPT

$$T = V_{eff} + V_{eff} T$$

$$V_{eff} = + \times + \cdots$$

LS equation is linearly divergent already at LO

→ infinitely many CTs are needed to absorb all UV divergences from iterations!

Commonly used approach: finite-Λ EFT [EGM, EM, EKM, Gezerlis et al., Piarulli et al., Carlsson et al., ...]:

- Introduce a finite UV regulator $\Lambda \sim \Lambda_b \ (\Lambda_b \sim 600 \ MeV)$
- Include short-range operators in V_{NN} according to NDA ← minimal possible set; alternatives have been proposed...
- Solve the LS equation & tune the **bare** LECs $C_i(\Lambda)$ to data (implicit renormalization)
- (Numerical) self-consistency checks via error analysis and Λ-variation
 See: Lepage, "How to renormalize the Schrödinger equation", nucl-th/9607029 and talk@INT in 2000

(Some) alternatives:

- renormalizable approach based on the Lorentz invariant Leff [EE, Gegelia '12 '16]
- RG-based approach to determine the counting for contacts [Birse]
- non-perturbative "renormalization" within the non relativistic framework using $\Lambda >> \Lambda_b$ [van Kolck, Pavon Valderrama, Long, ...] is more in spirit of peratization [EE, Gegelia EPJA 41 (09) 341]

LETs for neutron-proton scattering: nonperturbative vs perturbative OPEP

	a [fm]	r [fm]	$oldsymbol{v_2} \ [\mathrm{fm^3}]$	$v_3 \ [{ m fm^5}]$	$oldsymbol{v_4} \ [\mathrm{fm^7}]$
$^{1}\mathrm{S}_{0}$ partial wave					
${ m LO}$ EE, Gegelia, PLB617 (12) 338	fit	1.50	-1.9	8.6(8)	-37(10)
NLO EE et al., EPJA51 (15) 71	fit	fit	$-0.61\ldots-0.55$	$5.1 \dots 5.5$	-30.829.6
NLO KSW Cohen, Hansen '98	s fit	fit	-3.3	18	-108
Empirical values	-23.7	2.67	-0.5	4.0	-20

³ S ₁ partial wave					
LO EE, Gegelia, PLB617 (12) 338	fit	1.60	-0.05	0.82	-5.0
m NLO Baru et al., PRC94 (16) 014001	fit	fit	0.06	0.70	-4.0
NLO KSW Cohen, Hansen '98	fit	fit	-0.95	4.6	-25
Empirical values 5	.42	1.75	0.04	0.67	-4.0

- perturbative inclusion of pions (KSW approach) fails
- 1S₀ channel: limited predictive power of the LETs due to the weakness of the OPEP; taking into account the range correction (NLO) leads to improvement
- ³S₁ channel: LETs work as advertised (strong tensor part of the OPEP)

8. How NOT to renormalize the Schrödinger equation

• The OPEP is an example of a singular potential: $V(r) \stackrel{r \to 0}{\sim} r^{-n}$, n > 2

8. How NOT to renormalize the Schrödinger equation

- The OPEP is an example of a singular potential: $V(r) \stackrel{r \to 0}{\sim} r^{-n}, \quad n > 2$
- Attractive singular potentials have unbound spectrum & possess no unique solution. Physical interpretation requires unconventional BCs. In contrast, repulsive singular potentials do possess unique solutions. [Notice: scattering amplitude is manifestly nonperturbative and has a singularity at g = 0...] See: Frank et al., Rev. Mod. Phys. 43 (1971) 36.

8. How NOT to renormalize the Schrödinger equation

- The OPEP is an example of a singular potential: $V(r) \stackrel{r \to 0}{\sim} r^{-n}, \quad n > 2$
- Attractive singular potentials have unbound spectrum & possess no unique solution. Physical interpretation requires unconventional BCs. In contrast, repulsive singular potentials do possess unique solutions. [Notice: scattering amplitude is manifestly nonperturbative and has a singularity at g = 0...] See: Frank et al., Rev. Mod. Phys. 43 (1971) 36.
- Much interest in the 1960-ies due the peratization approach [Feinberg, Pais '63] in the context of weak interactions: summing up the most singular parts of perturbation graphs was (in some cases) found to lead to finite results. [The procedure sometimes (but not always) reproduces the leading term in the asymptotic expansion of the amplitude for small g.]

8. How NOT to renormalize the Schrödinger equation

- The OPEP is an example of a singular potential: $V(r) \stackrel{r \to 0}{\sim} r^{-n}, \quad n > 2$
- Attractive singular potentials have unbound spectrum & possess no unique solution. Physical interpretation requires unconventional BCs. In contrast, repulsive singular potentials do possess unique solutions. [Notice: scattering amplitude is manifestly nonperturbative and has a singularity at g = 0...] See: Frank et al., Rev. Mod. Phys. 43 (1971) 36.
- Much interest in the 1960-ies due the peratization approach [Feinberg, Pais '63] in the context of weak interactions: summing up the most singular parts of perturbation graphs was (in some cases) found to lead to finite results. [The procedure sometimes (but not always) reproduces the leading term in the asymptotic expansion of the amplitude for small g.]
- A similar, manifestly nonperturbative method has been suggested to renormalize the LS equation with the OPEP.

[Pavon-Valderrama, Ruiz Arriola; Nogga et al.; see e.g. Beane, Bedaque, Savage, van Kolck, NPA700 (2002) 377]

8. How NOT to renormalize the Schrödinger equation

- The OPEP is an example of a singular potential: $V(r) \stackrel{r \to 0}{\sim} r^{-n}$, n > 2
- Attractive singular potentials have unbound spectrum & possess no unique solution. Physical interpretation requires unconventional BCs. In contrast, repulsive singular potentials do possess unique solutions. [Notice: scattering amplitude is manifestly nonperturbative and has a singularity at g = 0...] See: Frank et al., Rev. Mod. Phys. 43 (1971) 36.
- Much interest in the 1960-ies due the peratization approach [Feinberg, Pais '63] in the context of weak interactions: summing up the most singular parts of perturbation graphs was (in some cases) found to lead to finite results. [The procedure sometimes (but not always) reproduces the leading term in the asymptotic expansion of the amplitude for small g.]
- A similar, manifestly nonperturbative method has been suggested to renormalize the LS equation with the OPEP.

[Pavon-Valderrama, Ruiz Arriola; Nogga et al.; see e.g. Beane, Bedaque, Savage, van Kolck, NPA700 (2002) 377]

However:

- in the EFT context, the issue is irrelevant as the singularity of the OPEP is beyond the region one can trust the theory [EE, Meißner, Few Body Syst. 54 (13) 2175]
- no reason why "peratized" results should be correct [EE, Gegelia, EPJA 41 (09) 341]

EE, Gegelia, EPJA 41 (09) 341

An analytical example showing the failure of "peratization"

A toy model with separable interactions: $V(p, p') = v_l F_l(p) F_l(p') + v_s F_s(p) F_s(p')$

with the form-factors:
$$F_l(p)\equiv rac{\sqrt{p^2+m_s^2}}{p^2+m_l^2}\,,\quad F_s(p)\equiv rac{1}{\sqrt{p^2+m_s^2}}$$

EE, Gegelia, EPJA 41 (09) 341

An analytical example showing the failure of "peratization"

A toy model with separable interactions: $V(p, p') = v_l F_l(p) F_l(p') + v_s F_s(p) F_s(p')$

with the form-factors:
$$extbf{\emph{F}}_l(p) \equiv rac{\sqrt{p^2+m_s^2}}{p^2+m_l^2}\,, \quad extbf{\emph{F}}_s(p) \equiv rac{1}{\sqrt{p^2+m_s^2}}$$

It is convenient to express $v_{l,s}$ in terms of the dimensionless $\alpha_{l,s}$, $a_{l,s} = \alpha_{l,s}/m_{l,s}$

EE, Gegelia, EPJA 41 (09) 341

An analytical example showing the failure of "peratization"

A toy model with separable interactions: $V(p, p') = v_l F_l(p) F_l(p') + v_s F_s(p) F_s(p')$

with the form-factors:
$$extbf{\emph{F}}_l(p) \equiv rac{\sqrt{p^2+m_s^2}}{p^2+m_l^2}\,, \quad extbf{\emph{F}}_s(p) \equiv rac{1}{\sqrt{p^2+m_s^2}}$$

It is convenient to express $v_{l,s}$ in terms of the dimensionless $\alpha_{l,s}$, $a_{l,s} = \alpha_{l,s}/m_{l,s}$

"Chiral expansion" of the ERE coefficients:

$$egin{aligned} a &=& rac{1}{m_l} \Big(lpha_a^{(0)} + lpha_a^{(1)} rac{m_l}{m_s} + lpha_a^{(2)} rac{m_l^2}{m_s^2} + \dots \Big) \ & r &=& rac{1}{m_l} \Big(lpha_r^{(0)} + lpha_r^{(1)} rac{m_l}{m_s} + lpha_r^{(2)} rac{m_l^2}{m_s^2} + \dots \Big) \ & v_i &=& rac{1}{m_l^{2i-1}} \Big(lpha_{v_i}^{(0)} + lpha_{v_i}^{(1)} rac{m_l}{m_s} + lpha_{v_i}^{(2)} rac{m_l^2}{m_s^2} + \dots \Big) \end{aligned}$$

The dimensionless coefficients $\alpha_a^{(n)}$, $\alpha_r^{(n)}$ and $\alpha_{v_i}^{(n)}$ are determined by the form of the interaction and expressible in terms of $\alpha_{l,s}$.

EE, Gegelia, EPJA 41 (09) 341

For example, the scattering length:

$$lpha_a^{(0)} = lpha_l \,, \qquad lpha_a^{(1)} = (lpha_l - 1)^2 lpha_s \,, \qquad lpha_a^{(2)} = (lpha_l - 1)^2 lpha_l lpha_s^2 \,, \qquad \dots$$

Similarly, for the effective range:
$$\alpha_r^{(0)} = \frac{3\alpha_l - 4}{\alpha_l}$$
, $\alpha_r^{(1)} = \frac{2\left(\alpha_l - 1\right)\left(3\alpha_l - 4\right)\alpha_s}{\alpha_l^2}$,

$$\alpha_r^{(2)} = \frac{\left(\alpha_l - 1\right)\left(3\alpha_l - 4\right)\left(5\alpha_l - 3\right)\alpha_s^2 + \left(2 - \alpha_l\right)\alpha_l^2}{\alpha_l^3}, \quad \dots$$

EE, Gegelia, EPJA 41 (09) 341

For example, the scattering length:

$$lpha_a^{(0)} = lpha_l \,, \qquad lpha_a^{(1)} = (lpha_l - 1)^2 lpha_s \,, \qquad lpha_a^{(2)} = (lpha_l - 1)^2 lpha_l lpha_s^2 \,, \qquad \dots$$

Similarly, for the effective range: $\alpha_r^{(0)} = \frac{3\alpha_l - 4}{\alpha_l}$, $\alpha_r^{(1)} = \frac{2(\alpha_l - 1)(3\alpha_l - 4)\alpha_s}{\alpha_l^2}$,

$$lpha_r^{(2)} = \frac{\left(lpha_l-1
ight)\left(3lpha_l-4
ight)\left(5lpha_l-3
ight)lpha_s^2+\left(2-lpha_l
ight)lpha_l^2}{lpha_l^3} , \qquad \cdots$$

[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 1st terms in the "chiral expansion" are determined by the long-range force alone.]

EE, Gegelia, EPJA 41 (09) 341

For example, the scattering length:

$$lpha_a^{(0)}=lpha_l\,, \qquad lpha_a^{(1)}=(lpha_l-1)^2lpha_s\,, \qquad lpha_a^{(2)}=(lpha_l-1)^2lpha_llpha_s^2\,, \qquad \ldots$$

Similarly, for the effective range: $\alpha_r^{(0)} = \frac{3\alpha_l - 4}{\alpha_l}, \qquad \alpha_r^{(1)} = \frac{2\left(\alpha_l - 1\right)\left(3\alpha_l - 4\right)\alpha_s}{\alpha_l^2},$

$$lpha_r^{(2)} = rac{\left(lpha_l-1
ight)\left(3lpha_l-4
ight)\left(5lpha_l-3
ight)lpha_s^2+\left(2-lpha_l
ight)lpha_l^2}{lpha_l^3} \, , \qquad \cdots$$

[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 1st terms in the "chiral expansion" are determined by the long-range force alone.]

Consider now the effective theory by replacing the short-range interaction by contact terms.

EE, Gegelia, EPJA 41 (09) 341

For example, the scattering length:

$$lpha_a^{(0)}=lpha_l\,, \qquad lpha_a^{(1)}=(lpha_l-1)^2lpha_s\,, \qquad lpha_a^{(2)}=(lpha_l-1)^2lpha_llpha_s^2\,, \qquad \ldots$$

Similarly, for the effective range: $\alpha_r^{(0)} = \frac{3\alpha_l - 4}{\alpha_l}$, $\alpha_r^{(1)} = \frac{2(\alpha_l - 1)(3\alpha_l - 4)\alpha_s}{\alpha_r^2}$,

$$\alpha_r^{(2)} = \frac{(\alpha_l - 1)(3\alpha_l - 4)(5\alpha_l - 3)\alpha_s^2 + (2 - \alpha_l)\alpha_l^2}{\alpha_l^3}, \dots$$

[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 1st terms in the "chiral expansion" are determined by the long-range force alone.]

Consider now the effective theory by replacing the short-range interaction by contact terms.

LO: long-range interaction alone, trivially reproduce $\alpha_a^{(0)}$, $\alpha_r^{(0)}$ and $\alpha_{v_i}^{(0)}$ (LETs)

EE, Gegelia, EPJA 41 (09) 341

For example, the scattering length:

$$lpha_a^{(0)}=lpha_l\,, \qquad lpha_a^{(1)}=(lpha_l-1)^2lpha_s\,, \qquad lpha_a^{(2)}=(lpha_l-1)^2lpha_llpha_s^2\,, \qquad \ldots$$

Similarly, for the effective range: $\alpha_r^{(0)} = \frac{3\alpha_l - 4}{\alpha_l}$, $\alpha_r^{(1)} = \frac{2(\alpha_l - 1)(3\alpha_l - 4)\alpha_s}{\alpha_l^2}$,

$$\alpha_r^{(2)} = \frac{(\alpha_l - 1)(3\alpha_l - 4)(5\alpha_l - 3)\alpha_s^2 + (2 - \alpha_l)\alpha_l^2}{\alpha_l^3}, \dots$$

[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 1st terms in the "chiral expansion" are determined by the long-range force alone.]

Consider now the effective theory by replacing the short-range interaction by contact terms.

LO: long-range interaction alone, trivially reproduce $\alpha_a^{(0)}$, $\alpha_r^{(0)}$ and $\alpha_{v_i}^{(0)}$ (LETs)

NLO: C_0 is insufficient to absorb all UV divergences \rightarrow do a finite- Λ theory:

- calculate the amplitude for a fixed Λ ,
- renormalize by tuning $C_0(\Lambda)$ to the scattering length (viewed as "datum")

EE, Gegelia, EPJA 41 (09) 341

According to the LETs, expect to reproduce $\alpha_r^{(1)}$, $\alpha_{v_i}^{(1)}$. E.g. the effective range:

$$r_{\Lambda} \ = \ \frac{1}{m_{l}} \left[\frac{3\alpha_{l} - 4}{\alpha_{l}} + \frac{2\left(\alpha_{l} - 1\right)\left(3\alpha_{l} - 4\right)\alpha_{s}}{\alpha_{l}^{2}m_{s}} m_{l} + \left(\frac{4\left(\alpha_{l} - 2\right)\alpha_{s}}{\pi\alpha_{l}m_{s}^{2}}\left(\ln\frac{m_{s}}{2\Lambda} + 1\right) \right. \right. \\ \left. + \frac{\left(\alpha_{l} - 1\right)\left(3\alpha_{l} - 4\right)\left(5\alpha_{l} - 3\right)\alpha_{s}^{2} + \left(2 - \alpha_{l}\right)\alpha_{l}^{2}}{\alpha_{l}^{3}m_{s}^{2}}\right) m_{l}^{2} + \mathcal{O}\left(m_{l}^{3}\right) \right]$$

Works as advertised. Λ -dependence appears in terms beyond the accuracy of the calculation. For $\Lambda \sim m_s$, their contributions are suppressed (NDA).

EE, Gegelia, EPJA 41 (09) 341

According to the LETs, expect to reproduce $\alpha_r^{(1)}$, $\alpha_{v_i}^{(1)}$. E.g. the effective range:

$$r_{\Lambda} \ = \ \frac{1}{m_{l}} \left[\frac{3\alpha_{l} - 4}{\alpha_{l}} + \frac{2\left(\alpha_{l} - 1\right)\left(3\alpha_{l} - 4\right)\alpha_{s}}{\alpha_{l}^{2}m_{s}} m_{l} + \left(\frac{4\left(\alpha_{l} - 2\right)\alpha_{s}}{\pi\alpha_{l}m_{s}^{2}}\left(\ln\frac{m_{s}}{2\Lambda} + 1\right) \right. \\ \left. + \ \frac{\left(\alpha_{l} - 1\right)\left(3\alpha_{l} - 4\right)\left(5\alpha_{l} - 3\right)\alpha_{s}^{2} + \left(2 - \alpha_{l}\right)\alpha_{l}^{2}}{\alpha_{l}^{3}m_{s}^{2}}\right) m_{l}^{2} + \mathcal{O}\left(m_{l}^{3}\right) \right]$$

Works as advertised. Λ -dependence appears in terms beyond the accuracy of the calculation. For $\Lambda \sim m_s$, their contributions are suppressed (NDA).

Infinite-∧ limit (peratization)

Take the limit $T_{\infty} := \lim_{\Lambda \to \infty} T_{\Lambda}(p, p)$. Fixing again $C_0(\infty)$ from the scattering length we get Λ -independent predictions for the effective range (and shape parameters):

$$egin{aligned} r_{\infty} &= rac{1}{m_l} \Big[rac{3lpha_l - 4}{lpha_l} + rac{4\left(lpha_l - 1
ight){}^2lpha_s}{lpha_l^2 m_s} m_l \ &\qquad \qquad + rac{lpha_l^3\left(8lpha_s^2 - 1
ight) + lpha_l^2\left(2 - 20lpha_s^2
ight) + 16lpha_llpha_s^2 - 4lpha_s^2}{lpha_l^3 m_s^2} m_l^2 + \ldots \Big] \end{aligned}$$

EE, Gegelia, EPJA 41 (09) 341

According to the LETs, expect to reproduce $\alpha_r^{(1)}$, $\alpha_{v_i}^{(1)}$. E.g. the effective range:

$$r_{\Lambda} \ = \ \frac{1}{m_{l}} \left[\frac{3\alpha_{l} - 4}{\alpha_{l}} + \frac{2\left(\alpha_{l} - 1\right)\left(3\alpha_{l} - 4\right)\alpha_{s}}{\alpha_{l}^{2}m_{s}} m_{l} + \left(\frac{4\left(\alpha_{l} - 2\right)\alpha_{s}}{\pi\alpha_{l}m_{s}^{2}} \left(\ln\frac{m_{s}}{2\Lambda} + 1\right) \right. \\ \left. + \ \frac{\left(\alpha_{l} - 1\right)\left(3\alpha_{l} - 4\right)\left(5\alpha_{l} - 3\right)\alpha_{s}^{2} + \left(2 - \alpha_{l}\right)\alpha_{l}^{2}}{\alpha_{l}^{3}m_{s}^{2}} \right) m_{l}^{2} + \mathcal{O}\left(m_{l}^{3}\right) \right]$$

Works as advertised. Λ -dependence appears in terms beyond the accuracy of the calculation. For $\Lambda \sim m_s$, their contributions are suppressed (NDA).

Infinite-∧ limit (peratization)

Take the limit $T_{\infty} := \lim_{\Lambda \to \infty} T_{\Lambda}(p, p)$. Fixing again $C_0(\infty)$ from the scattering length we get Λ -independent predictions for the effective range (and shape parameters):

$$r_{\infty}=rac{1}{m_l}\Big[rac{3lpha_l-4}{lpha_l}+egin{bmatrix} 4\left(lpha_l-1
ight){}^2lpha_s \ lpha_l^2m_s \end{pmatrix}$$
 \qquad while Λ -independent, the results violate the LETs which is unacceptable from the EFT point of view $+rac{lpha_l^3\left(8lpha_s^2-1
ight)+lpha_l^2\left(2-20lpha_s^2
ight)+16lpha_llpha_s^2-4lpha_s^2}{lpha_l^3m_s^2}m_l^2+\dots\Big]$

Summary of part II

- NN interaction is strong, some diagrams (ladder) need to be resummed, large scattering lengths require some fine tuning...
- The simplest EFT for NN is pionless EFT. While equivalent to the ERE (for 2N), it may serve as a simple playground to test various concepts.
- Power counting depends on the choice of renormalization conditions. The KSW and W counting schemes are equivalent for pionless EFT (but differ when pions are included...). Alternatively, can do finite-cutoff EFT with implicit renormalization (without actually specifying power counting).
- A proper inclusion of pions must fulfill LETs (MERE). The KSW approach (perturbative pions) strongly violates the LECs, W's approach works fine.
- A nonperturbative inclusion of the 1π -exchange in the nonrelativistic framework (Lippmann-Schwinger) requires infinitely many counterterms to absorb all divergences. It is, therefore, not legitimate to take the infinite-cutoff limit. This may lead to results incompatible with the LECs (peratization rather than renormalization).

Discussion

Open questions:

What expansion of the amplitude does the W. approach correspond to?

- $-\pi$ -less theory: ERE (regardless of the size of the scattering length)
- theory with known long-range forces: MERE
- chiral EFT (long-range force from ChPT): no rigorous answer known...

Are there alternative approaches?

Yes! In particular, the RG analysis by Birse, studies by Pavon-Valderrama and Yang/Long suggest different specific pattern for contact operators...

Can these scenarios be tested/discriminated?

Yes, possibly by looking at the convergence pattern (requires high orders + uncertainty estimation...)