
 
Inclusion of pions
Goal: EFT for NN scattering at typical momenta Q ~ Mπ

How to test whether pion dynamics is 

being treated properly? 

Are pions perturbative?

Low-Energy Theorems as a tool to test 

predictive power beyond ERE



 Modified Effective Range Expansion (MERE)

is meromorphic in

Two-range potential:     

What are the low-energy theorems?

with

5. LETs and the MERE
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Example: proton-proton scattering
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Coulomb phase shift Sommerfeld factor Digamma function
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MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems)
[Cohen, Hansen ’99; Steele, Furnstahl ’00; Baru, EE, Filin, Gegelia ’15,’16]

The emergence of the LETs can be understood in the framework of MERE:

meromorphic  for can be computed if the 

long-range force is known

− approximate              by first 1,2,3,…  terms in the Taylor expansion in 

− calculate all “soft” quantities

− reconstruct           and predict all coefficients in the ERE



where

and (all in fm-1)
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Low-Energy Theorems

where

and (all in fm-1)
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for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341



 Toy model: phase shifts & error plots
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 Chiral EFT for NN scattering

6. KSW with perturbative pions

KSW: µ, µi ∼ O(p)

Weinberg: µ ∼ O(1), µi ∼ O(p) V LO
Weinberg

∼ O(1)

V LO
KSW

∼ O(p−1)

Recall the differences between the W and KSW counting schemes:

[i.e. scaling of C2n according to NDA (~ O(1))]

V NLO
Weinberg

∼ O(p2)

V
NLO

KSW
∼ O(1)

[i.e. scaling of C2n as C2n ~ O(p-1-n)]

,

,
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While the two schemes are equivalent for pionless theory, they suggest different 

scenarios for pionful (chiral) EFT:

V1π = −

✓

gA

2Fπ

◆

2 ~�1 · ~q ~�2 · ~q

q2 + M2

π

~⌧1 · ~⌧2 ∼ O(1)

OPE is expected to be:

— LO contribution (nonperturbative) in the Weinberg scheme,

— NLO contribution (perturbative) in the KSW scheme.
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For more details see:

Kaplan, Savage, Wise, Nucl. Phys. B534 (1998) 329. 
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 LETs for NN S-waves
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Use these results to test the LETs for S-waves: [Cohen, Hansen, PRC 59 (1999) 13] 



 LETs for NN S-waves

) = p cot δ0(p) =
4π

m

 1

A
−1

−

A0

(A
−1)2

+ . . .

�

+ ip
!
= −

1

a
+

1

2
rp2+v2p

4+v3p
6+v4p

8+ . . .
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[Cohen, Hansen, PRC 59 (1999) 13] 
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[Cohen, Hansen, PRC 59 (1999) 13] 

1S0 partial wave a [fm] r [fm] v2 [fm
3] v3 [fm

5] v4 [fm
7]

NLO KSW from Ref. [23] fit fit −3.3 18 −108− −

Nijmegen PWA −23.7 2.67 −0.5 4.0 −20

Cohen, Hansen ’99 

3S1 partial wave a [fm] r [fm] v2 [fm
3] v3 [fm

5] v4 [fm
7]

NLO KSW from Ref. [23] fit fit −0.95 4.6 −25

LO Weinberg fit

Cohen, Hansen ’99 − −

Nijmegen PWA 5.42 1.75 0.04 0.67 −4.0

large deviations suggest that pions should be treated nonperturbatively…
[Even stronger evidence at N2LO, see: Fleming, Mehen, Stewart, NPA 677 (2000) 313. See however: Kaplan, arXiv:1905.07485.] 



Static OPEP in coordinate space: 
tensor operator:

singular potential in all S=1 channels
(solutions to the Schröd./LS equation still exist in repulsive cases)

 Nonperturbative inclusion of pions

7. Nonperturbative inclusion of pions

LO scattering amplitude:
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Complications (as compared to pionless theory): 

—       is not separable, no analytic results beyond 2 loops are available,

— 1/r3 singularity of

V1π(

V1π(

S12 = 3 ~�1 · r̂ ~�2 · r̂ − ~�1 · ~�2

Need counter terms in all spin-triplet waves! In fact, infinitely many c.t.’s are 

needed in every spin-triplet channel to remove UV divergences from iterations…  
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Consider iterations of the LO potential                                         in the LS equation VLO = V1π + CS + CT⇧⌅1 · ⇧⌅2

G0 =
m
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[However, numerical estimations show no enhancement of renormalized 

higher-order counter terms, Gegelia, Scherer, Int. J. Mod. Phys. A21 (2006) 1079]

Dr

0
(µ)



 Nonperturbative inclusion of pions

Consider iterations of the LO potential                                         in the LS equation VLO = V1π + CS + CT⇧⌅1 · ⇧⌅2

G0 =
m

⇧p 2
−
⇧l 2 + i⇥

T = V +

 
V G0V +

  
V G0V G0V + . . . where

The 2n iteration will generally produce (among other) overall Log-divergences          

×(QmN)
2n

Q ∈

⌦

|⇧p |, M
π

↵

, where                         (in s=0 channels no powers of        can appear): 
⌦

|⇧p |, M

∝

1

d− 4

g2
A
C2

256π2F 2
m2

N
M2

π

need to include D0M
2

π
=

⇤

δD0 +D(µ0) +
g2
A
C2

256π2F 2
m2

N
ln

�

µ

µ0

⇥⌅

M2

π

[However, numerical estimations show no enhancement of renormalized 

higher-order counter terms, Gegelia, Scherer, Int. J. Mod. Phys. A21 (2006) 1079]

Dr

0
(µ)

(spin-triplet)  ∝

1

d− 4
⇧p 6 m6

NAnother example:



Nuclear chiral EFT
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LS equation is linearly divergent already at LO            

               infinitely many CTs are needed to absorb all UV divergences from iterations!
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See: Lepage, „How to renormalize the Schrödinger equation“,  nucl-th/9607029 and talk@INT in 2000 

— Introduce a finite UV regulator Λ ~ Λb (Λb ~ 600 MeV)

— Solve the LS equation & tune the bare LECs Ci(Λ) to data (implicit renormalization)

— (Numerical) self-consistency checks via error analysis and Λ-variation

Commonly used approach: finite-Λ EFT [EGM, EM, EKM, Gezerlis et al., Piarulli et al., Carlsson et al., …]:

— Include short-range operators in VNN according to NDA 
minimal possible set;
alternatives have been proposed…
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(Some) alternatives:

renormalizable approach based on the Lorentz invariant Leff  [EE, Gegelia ’12 - ’16]

non-perturbative „renormalization“ within the non relativistic framework using Λ >> Λb 
[van Kolck, Pavon Valderrama, Long, …]

RG-based approach to determine the counting for contacts  [Birse]
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(Some) alternatives:
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non-perturbative „renormalization“ within the non relativistic framework using Λ >> Λb 
[van Kolck, Pavon Valderrama, Long, …]

RG-based approach to determine the counting for contacts  [Birse]

is more in spirit of peratization [EE, Gegelia EPJA 41 (09) 341]

 Nonperturbative inclusion of pions



 Nonperturbative inclusion of pions

a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

1S0 partial wave

LO fit 1.50 −1.9 8.6(8) −37(10)

NLO fit fit −0.61 . . . − 0.55 5.1 . . . 5.5 −30.8 . . . − 29.6

NLO KSW fit fit −3.3 18 −108

Empirical values −23.7 2.67 −0.5 4.0 −20

3S1 partial wave

LO fit 1.60 −0.05 0.82 −5.0

NLO fit fit 0.06 0.70 −4.0

NLO KSW fit fit −0.95 4.6 −25

Empirical values 5.42 1.75 0.04 0.67 −4.0

EE, Gegelia, PLB617 (12) 338

EE, Gegelia, PLB617 (12) 338

EE et al., EPJA51 (15) 71

Baru et al., PRC94 (16) 014001

Cohen, Hansen ’98

Cohen, Hansen ’98

LETs for neutron-proton scattering: nonperturbative vs perturbative OPEP 

perturbative inclusion of pions (KSW approach) fails

1S0 channel: limited predictive power of the LETs due to the weakness of the OPEP;
                     taking into account the range correction (NLO) leads to improvement

3S1 channel: LETs work as advertised (strong tensor part of the OPEP)
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8. How NOT to renormalize the Schrödinger equation

The OPEP is an example of a singular potential: V (r)
r→0
∼ r−n, n > 2
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singular potentials do possess unique solutions. [Notice: scattering amplitude is manifestly 

nonperturbative and has a singularity at g = 0…] See: Frank et al., Rev. Mod. Phys. 43 (1971) 36.
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(but not always) reproduces the leading term in the asymptotic expansion of the amplitude for small g.]
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8. How NOT to renormalize the Schrödinger equation

The OPEP is an example of a singular potential: V (r)
r→0
∼ r−n, n > 2

However: 

— in the EFT context, the issue is irrelevant as the singularity of the OPEP is

     beyond the region one can trust the theory [EE, Meißner, Few Body Syst. 54 (13) 2175]

— no reason why „peratized" results should be correct [EE, Gegelia, EPJA 41 (09) 341]
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nonperturbative and has a singularity at g = 0…] See: Frank et al., Rev. Mod. Phys. 43 (1971) 36.

Much interest in the 1960-ies due the peratization approach [Feinberg, Pais ’63] in the 

context of weak interactions: summing up the most singular parts of perturbation 

graphs was (in some cases) found to lead to finite results. [The procedure sometimes 

(but not always) reproduces the leading term in the asymptotic expansion of the amplitude for small g.]

A similar, manifestly nonperturbative method has been suggested to renormalize 

the LS equation with the OPEP.
[Pavon-Valderrama, Ruiz Arriola;  Nogga et al.;  see e.g. Beane, Bedaque, Savage, van Kolck, NPA700 (2002) 377]
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An analytical example showing the failure of „peratization“

, Fl(p) ≡

q

p2 + m2

s

p2 + m2

l

, Fs(p) ≡

1
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s

A toy model with separable interactions:   V (p, p0) = vl Fl(p)Fl(p
0) + vs Fs(p)Fs(p

0)

with the form-factors:

EE, Gegelia, EPJA 41 (09) 341
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It is convenient to express       in terms of the dimensionless       , al,s =: αl,s/ml,svl,s αl,s
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For example, the scattering length:
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[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 

1st terms in the „chiral expansion“ are determined by the long-range force alone.]
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[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 

1st terms in the „chiral expansion“ are determined by the long-range force alone.]

Consider now the effective theory by replacing 

the short-range interaction by contact terms.
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[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 

1st terms in the „chiral expansion“ are determined by the long-range force alone.]

LO: long-range interaction alone, trivially reproduce       ,        and         (LETs)α
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Consider now the effective theory by replacing 

the short-range interaction by contact terms.
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[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 

1st terms in the „chiral expansion“ are determined by the long-range force alone.]

NLO: C0 is insufficient to absorb all UV divergences          do a finite-Λ theory:

— calculate the amplitude for a fixed Λ,

— renormalize by tuning C0(Λ) to the scattering length (viewed as „datum“)
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Consider now the effective theory by replacing 

the short-range interaction by contact terms.

 Renormalization vs. peratization
EE, Gegelia, EPJA 41 (09) 341



According to the LETs, expect to reproduce       ,        . E.g. the effective range:
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Works as advertised. Λ-dependence appears in terms beyond the accuracy of 

the calculation. For Λ ~ ms, their contributions are suppressed (NDA).
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Infinite-Λ limit (peratization)

T∞ := lim
Λ→∞

TΛ(p, p)Take the limit                                   . Fixing again             from the scattering length 

we get Λ-independent predictions for the effective range (and shape parameters):
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while Λ-independent, the results violate the LETs 

which is unacceptable from the EFT point of view
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 Summary of part II

NN interaction is strong, some diagrams (ladder) need to be resummed, large 

scattering lengths require some fine tuning…

The simplest EFT for NN is pionless EFT. While equivalent to the ERE (for 2N), 

it may serve as a simple playground to test various concepts. 

Power counting depends on the choice of renormalization conditions. The 

KSW and W counting schemes are equivalent for pionless EFT (but differ 

when pions are included…). Alternatively, can do finite-cutoff EFT with implicit 

renormalization (without actually specifying power counting).

A proper inclusion of pions must fulfill LETs (MERE). The KSW approach 

(perturbative pions) strongly violates the LECs, W’s approach works fine.  

A nonperturbative inclusion of the 1π-exchange in the nonrelativistic 

framework (Lippmann-Schwinger) requires infinitely many counterterms to 

absorb all divergences. It is, therefore, not legitimate to take the infinite-cutoff 

limit. This may lead to results incompatible with the LECs (peratization rather 

than renormalization). 



 Discussion

Open questions:

Are there alternative approaches? 

Yes! In particular, the RG analysis by Birse, studies by Pavon-Valderrama

and Yang/Long suggest different specific pattern for contact operators…

Can these scenarios be tested/discriminated?

Yes, possibly by looking at the convergence pattern 

(requires high orders + uncertainty estimation…)

What expansion of the amplitude does the W. approach correspond to?

— π-less theory: ERE (regardless of the size of the scattering length)

— theory with known long-range forces: MERE

— chiral EFT (long-range force from ChPT): no rigorous answer known…


