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In the first lecture we proved the exact equivalence between the 
Grassmann path integral and transfer matrix operator formalisms. 

For our example of two-component fermions with zero-range interactions, 
we had found that 

Auxiliary fields 



We now show the exact equivalence between the Grassmann path integral 
and the Grassmann path integral with auxiliary fields 
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where 



Grassmann path integral with auxiliary fields 

We can rewrite the same lattice Grassmann path integral using an 
auxiliary field  

There are many ways to introduce the auxiliary-field integral measure 
and coupling.  The simplest is a Gaussian measure and linear coupling 
corresponding with the original Hubbard-Stratonovich transformation  
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But there are many choices.  The only requirements for exact equivalence 
are that 

This can be used to derive several varieties of the discrete Hubbard-
Stratonovich transformation as well as compact continuous auxiliary field 
transformations. 

D.L., PRC 78 (2008) 024001; 

Drut, Lähde, Ten, PRL 106 (2011) 205302 
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This demonstrates the exact equivalence of the following three lattice 
formulations for arbitrary lattice spacings: 
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Transfer matrix operator with auxiliary fields 

We use the equivalence of the Grassmann path integral and normal-
ordered transfer matrix and apply it to the case of the auxiliary-field 
Grassmann path integral.  We find 

7	



This shows the exact equivalence of the following four lattice formulations for 
arbitrary lattice spacings: 
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Let us consider a system with A particles.  The idea of projection Monte 
Carlo is to choose a given initial and final state.  Very often they are 
chosen to be the same state.  The initial and final state will sandwich a 
product of a string of transfer matrices.  Pictorially the amplitude looks 
like this: 
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Using auxiliary fields, we have	

where the auxiliary field amplitude is 	

Projection Monte Carlo with auxiliary fields 



We can create a general single-particle state on the lattice with a creation 
operator multiplying a coefficient function f that depends on the spatial 
lattice sites and spin component i. 

To make the discussion concrete, we continue on with our example of 
two-component fermions with zero-range interactions. 

For sufficiently large Lt the amplitude Z(Lt) will be dominated by 
the ground state of our quantum system in the sector which is not 
orthogonal to our initial state. We will see the largest eigenvalue of 
the transfer matrix M, which we use to extract the corresponding 
ground state energy E0  
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For our projection Monte Carlo calculation we take our A-body initial  
state as an operator product 
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For the purposes of coding the projection Monte Carlo calculation, it is 
convenient to view the identical nucleons as carrying a fictitious label 
[j] = [1], …, [A]  that makes all of the particles distinguishable. 

We will sum over all possible assignments of these operator labels 
and the anticommuting algebra of the operators will give the proper 
antisymmetry as required.	



With these hidden labels our A-body initial state is 

where the summations are over all permutations, and sgn is the sign of 
the permutation.  In the last line we get the usual Slater determinant 
wave function. 

With these hidden indices our normal-ordered auxiliary-field transfer 
matrix at time step nt can be written as 
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All other terms coming from higher powers coming from the exponential 
will vanish due to the normal ordering.  This is because we have only 
one particle carrying each fictitious label [j] = [1], …, [A].  

In the projection Monte Carlo calculation we compute the amplitude 

for each configuration of the auxiliary field s.  We note that this A-body  
amplitude is just the determinant of the matrix of single nucleon amplitudes  
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In summary, we want to compute the following ratio for large Lt: 

Since we usually write the observable for our Markov chain in the  
numerator rather than the denominator, we will work with reciprocal  
of this ratio and calculate using auxiliary fields 

where the auxiliary field amplitudes are  
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In order to compute this using a Markov chain process, the updating of the 
auxiliary field is done most efficiently if you store the set of vectors  
for each single-particle initial state at each time step  

as well as the dual vectors at each time step propagating in the reverse  
temporal direction 



So now if we need to compute the update to an auxiliary field value at  
time step nt, we have an easy way to compute the change in the amplitude 

change here 
and re-evaluate	
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Theorem:  Any fermionic theory with SU(2N) symmetry and two-body 

potential energy that has a negative semi-definite Fourier transform 

obeys SU(2N) convexity bounds. 

Corollary:  The system can be simulated without sign oscillations 

Chen, D.L. Schäfer, PRL 93 (2004) 242302; 
D.L., PRL 98 (2007) 182501 
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There are 2N species of fermions.  Let the interaction have the form 

Where ρ is total density of particles summed over all 2N species.  The 

transfer matrix is  

in our auxiliary field transfer matrix.  More details on the next slide.   

We will couple an auxiliary field s to the total density 



The amplitude we want to calculate is 

where V -1  is the inverse of the potential.  The normalization of Ds is  

chosen to make this identity hold. 

Using the auxiliary field formalism we can also write as 
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We choose an initial state where there are K + 1 particles for the first 

j species and K particles for the remaining 2N - j species.  

 

    Species 1:   1, 2, 3 … K, K + 1 

    Species 2:   1, 2, 3 … K, K + 1 

         

    Species j:   1, 2, 3 … K, K + 1 

    Species j + 1:  1, 2, 3 … K       

          

    Species 2N - 1:  1, 2, 3 … K 

    Species 2N:   1, 2, 3 … K      

  

20	



1	

j	

2N	-	j	

1	

K+1 

K+1 

K 

K 

Then the matrix  

has the following block diagonal structure: 
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The path integral over auxiliary fields is then 
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Let n1 and n2 be integers such that 0 ≤ 2n1 ≤ j ≤ 2n2  ≤ 2N.  Let us 

define a new positive-definite integral measure 

Then the amplitude can be rewritten as 



The Hölder inequality states that for any positive p, q satisfying 

we must have 
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We now apply the Hölder inequality with  



This is an inequality for the path integrals of systems with different 

numbers of particles.  This can be written as 

We now take the limit of large Euclidean time.  This gives us convexity 
bounds for the ground state energies of the systems with different 
numbers of particles. 
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For similar convexity bounds applied to entanglement entropy bounds: 

Drut, Porter, PRL 114, 050402 (2015) 


