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Remember: multipole expansion just follows from: 
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Example from electrostatics

The goal: compute electric potential generated 

by a localized charge distribution

- measure LECs & compute          via expansion in     (power counting, separation of scales) 
a

R

- expected natural size of the LECs (dimensional analysis):       q ∼ a
0
, P i ∼ a, Qij ∼ a

2
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Resolution 
scale << 1 fm: 

probing the structure
of the nucleons…

nucleons

(virtual) pions

Resolution ~ 1 fm
(momenta ~ 200 MeV)
only π‘s are resolvable 

chiral EFT

Resolution ~ a few fm  
(nucl. momenta << M

π
):

cannot resolve pions
π-less EFT
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 Part I: Crash course 

on Chiral Perturbation Theory
Weinberg, Gasser,  Leutwyler,  Bernard, Kaiser,  Meißner, Bijnens,  … 

1. Effective Lagrangian for pions

2. From effective Lagrangian to S-matrix

3. Inclusion of nucleons

4. Summary of part I



QCD and chiral symmetry

SU(2)L x SU(2)R  invariant break chiral symmetry
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spontaneous breakdown to SU(2)V ⊂ SU(2)L x SU(2)R          Goldston Bosons (pions)

⌧ ΛQCD
mu = 1.8 . . . 2.8 MeV

md = 4.3 . . . 5.2 MeV
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Chiral perturbation theory

Ideal world [                       ], zero-energy limit: non-interacting massless GBs 

(+ strongly interacting massive hadrons) 

Real world [                            ], low energy: weakly interacting light GBs 

(+ strongly interacting massive hadrons) 

expand about the ideal world (ChPT)
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Pions transform linearly under isospin (isotriplet):

Pions have to transform nonlinearly under chiral rotations 
(SU(2)L x SU(2)R ~ SO(4)          pion fields as coordinates on a 4-dimentional sphere) 

Nonlinear field redefinitions of the kind                                          do not change physics        
       all nonlinear realizations of χ symmetry are equivalent          use most convenient one!

Haag ’58; Coleman, Callan, Wess, Zumino ’69 
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|π+⌥ � |π−⌥�
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|π+⌥+ |π−⌥�
2i

, |π3⌥ = |π0⌥
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Example of an explicit construction: 
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Can be rewritten in terms of a 2 x 2 matrix:

Chiral rotations: with 

nonlinear realization
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Derivative expansion for the effective Lagrangian

0 derivatives:                           - irrelevant          only derivative couplings of GBs 

2 derivatives:

4 derivatives:
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The leading and subleading effective Lagrangians for pions

terms involving 
external fields

 Effective Lagrangian for pions
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Power counting (Naive Dimensional Analysis)

pion propagators:

momentum integrations:

delta functions:

derivatives: 

# of loops # of vertices with  
d derivatives

power of the soft scale Q for a given diagram

2. From effective Lagrangian to S-matrix



Examples:

 From effective Lagrangian to S-matrix



Examples:

 From effective Lagrangian to S-matrix

ΛχScattering amplitude is obtained via an expansion in           .  What is the value of     ?

Chiral expansion breaks down for 

Q/Λχ



Examples:

 From effective Lagrangian to S-matrix

ΛχScattering amplitude is obtained via an expansion in           .  What is the value of     ?

Chiral expansion breaks down for 

Q/Λχ

An upper bound for       from pion loops:  Λχ Λχ ∼ 4πFπ Manohar, Georgi ’84



Examples:

 From effective Lagrangian to S-matrix

ΛχScattering amplitude is obtained via an expansion in           .  What is the value of     ?

Chiral expansion breaks down for 

Q/Λχ

dimensional
arguments

An upper bound for       from pion loops:  Λχ Λχ ∼ 4πFπ Manohar, Georgi ’84



Examples:

 From effective Lagrangian to S-matrix

ΛχScattering amplitude is obtained via an expansion in           .  What is the value of     ?

Chiral expansion breaks down for 

Q/Λχ

dimensional
arguments

angular integration in 

4 dimensions

An upper bound for       from pion loops:  Λχ Λχ ∼ 4πFπ Manohar, Georgi ’84



1-loop, all vertices from tree, 1 insertion from  

2-loops, all vertices from 1-loop, 1 insertion from tree,  1 insertion from  

2 insertions from 

Q2/

Q4/

Q6/:

:

:

 Pion scattering lengths in ChPT



1-loop, all vertices from tree, 1 insertion from  

2-loops, all vertices from 1-loop, 1 insertion from tree,  1 insertion from  

2 insertions from 

#  of  LECs  increasing…

Predictive power?

Q2/

Q4/

Q6/:

:

:

 Pion scattering lengths in ChPT



1-loop, all vertices from tree, 1 insertion from  

2-loops, all vertices from 1-loop, 1 insertion from tree,  1 insertion from  

2 insertions from 

#  of  LECs  increasing…

Predictive power?

Q2/

Q4/

Q6/:

:

:

 Pion scattering lengths in ChPT

S-wave ππ scattering length

from: Colangelo, 

    PoS KAON:038,08

[Weinberg ’66] 

[Gasser, Leutwyler ’83] 

[Bijnens et al. ’95] 

[Colangelo et al.]

LO:

NLO:

NNLO:

NNLO + disp. relations:



 ChPT vs Multipole Expansion

Chiral Perturbation Theory Electric potential 

Most general effective Lagrangian for pions [and matter fields], 

chiral symmetry!

Most general expression 

for the electric potential  

(rotational invariance) 
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 Summary of Chiral Perturbation Theory 

QCD features approximate SU(2)L x SU(2)R symmetry spontaneously broken 

down to SU(2)V. Pions are Goldstone Bosons of the broken axial generators. 

ChPT = EFT to describe QCD at low energy using GBs & matter fields as DOF. 

It provides perturbative (GBs!) expansion of the amplitude in powers of p ~ Mπ 

over Λχ ~ Mρ ~ 1 GeV.
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down to SU(2)V. Pions are Goldstone Bosons of the broken axial generators. 

ChPT = EFT to describe QCD at low energy using GBs & matter fields as DOF. 

It provides perturbative (GBs!) expansion of the amplitude in powers of p ~ Mπ 

over Λχ ~ Mρ ~ 1 GeV.
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 Inclusion of nucleons

3. Inclusion of the nucleons

In the baryon sector, it is more convenient to work with     defined via                .  Then:=: u2 U =: u2, u

The so-called compensator field K is a complicated SU(2)-valued function of θL, θR, U (and 

thus of space-time), K = K(L,R,U), except for isospin (i.e. vector) rotations with θL = θR = θV:

K(V, V, U) = V

u −→ u
0 =

√
RUL† =: RuK

�1 ⇒ K = (
√
RUL†)�1

R

√
U

Notice: the transformation property of     can also be written as                                  .u −→ u
0
= KuL

†
=: u2
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The Coleman-Callan-Wess-Zumino (CCWZ) nonlinear realization of the chiral group:

✓

U

N

◆

g

−→

✓

U 0

N 0

◆

=

✓

RUL†

K(L,R,U)N

◆
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 Inclusion of nucleons

Covariant derivatives of the nucleon and pion fields:

DµN := (∂µ + Γµ)N, Γµ :=
1
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†
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uµ := iu
† (∂µU)u†
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Problem (?): new hard mass scale  m          power counting ??   

divergence has to be 

absorbed by m from the 

LO Lagrangian… 
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 Inclusion of nucleons
Making power counting manifest: The Heavy-Baryon approach 

Write the nucleon momentum as                            with               and pµ
= mvµ

+ lµ v2
= 1 lµ ⌧ m

Jenkins & Manohar ’91;  Bernard, Keiser, Meißner ’92;  Mannel, Roberts, Ryzak ’92
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N̄(i∂/ − m)N = . . . = N̄viv · ∂Nv − h̄v(iv · ∂ + 2m)hv + N̄vi∂⊥hv + h̄vi∂⊥Nv

For the free Dirac Lagrangian, one then obtains:

A⊥ := A − (v · A)v

L
(1)
πN

= N̄v (iv · D + gAS · u)Nv + O(m−1) whereN, Sµ ≡ iγ5σµνv
ν

the small component      behaves as a heavy field and can be integrated out:)hv

[exercises]



 Inclusion of nucleons
Making power counting manifest: The Heavy-Baryon approach 

Write the nucleon momentum as                            with               and pµ
= mvµ

+ lµ v2
= 1 lµ ⌧ m

Split the nucleon fields into                                                            withNv = eimv·xP+

v
N, hv = eimv·xP−

v
N P±

v
:=

1 ± v/

2

The HB propagator of the nucleon                               has an obvious interpretation:S(p) =
i

v · p + i✏

S(x − y) =

Z
d4p

(2⇡)4
i

p0 + i✏
e−ip·(x−y) = ✓(x0 − y0)�
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[Exercises:  verify the form of the HB propagator by performing 1/m expansion of the standard Dirac propagator 

                      for the fermion field.]
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Power counting: ν = 1 + 2L +
X

i

Vi∆i , ∆i = −2 +
ni

2
+ di

# of nucleon fields

Perturbation theory works since GBs interact via derivative couplings…

 Inclusion of nucleons

In the HB formulation, the nucleon mass does not appear in the nucleon 

propagator and contribute only through 1/m corrections to vertices

power counting is manifest!

[exercises]

For example:
(δm)HB = −

3g2

A
M3

π

32πF 2

π
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(3)
i [π]N +

X

i

eiN̄Ô
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Pion-nucleon scattering
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(3)
i [π]N +

X

i

eiN̄Ô
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 Summary of part I

QCD is approximately SU(2)L x SU(2)R invariant. The chiral symmetry is 

spontaneously broken down to SU(2)V (isospin group). Pions are Goldstone 

Bosons of the broken axial generators. They would be massless in the chiral 

limit. 

It is easy to write down the most general chiral invariant effective Lagrangian 

for pions. The choice of a particular realization of the chiral group is irrelevant 

(provided proper imbedding of the isospin group). Being Goldstone Bosons, 

only derivative interactions are allowed → suppression at low energy! Can 

incorporate explicit breaking due to the quark masses. 

Feynman calculus with DR: every loop is suppressed by Q2 (power counting) 

→ can calculate quantum corrections! 

It is straightforward to extend the effective Lagrangian to nucleons. Because 

of the nucleon mass, loops calculated with just DR are not suppressed. Either 

use additional finite subtractions (EOMS) or perform nonrelativistic expansion 

of the Lagrangian (the HB approach). 



 (Some) topics in and beyond ChPT

Resummation of leading Log’s 

Covariant baryon ChPT

Unitarized ChPT and resonance physics

Combining ChPT and dispersion theory

ChPT with explicit spin-3/2 degrees of freedom

ChPT and/for lattice QCD

Leading logs can be computed for higher loops, all orders possible in certain cases

Weinberg, Bijnens, Colangelo, Bissiger, Fuhrer, Kivel, Polyakov, Vladimirov, …

Colangelo, Gasser, Leutwyler, Bernard, Meißner, Descotes Genon, Knecht, Pelaez, Hoferichter, Kubis, Ruiz de Elvira,  …

HB expansion has a very limited convergence range for some types 
of diagrams          better to resum 1/m recoil corrections up to infinite 
order (IR-ChPT). Alternatively, use manifestly covariant framework + 
appropriate subtraction (EOMS) to enforce power counting

Becher, Leutwyler, Bernard, Meißner, Kubis, Gegelia, Scherer, Camalich, Geng, Ren, …

Δ(1232) has low excitation energy ~ 300 MeV          better to include as an explicit DOF…

Hemmert, Bernard, Fettes, Meißner, Pascalutsa, Vanderhaeghen, Kaiser, Gegelia, EE, Gasparyan, Krebs, Siemens, …

Chiral extrapolations, finite volume corrections, quenched ChPT, …

Colangelo, Beane, Savage, Jiang, Tiburzi, Procura, Weise, Walker Loud, Bernard, Meißner, Rusetsky, Hemmert, …

Oeller, Meißner, Dobado, Pelaez, Oset, Hanhart, Llanes-Estrada, Kaiser, Weise, ,…



 Adding more nucleons…

0N, 1N: Perturbation theory works since GBs interact via 
              derivative couplings…



 Adding more nucleons…

∼ const ∼

~�1 · ~q ~�2 · ~q

~q 2 + M2

π

= O(1)

Low-energy nucleon-nucleon interactions are NOT 

suppressed in the chiral limit

No reason to expect perturbation theory to be valid

(indeed, there are shallow bound states…)

0N, 1N: Perturbation theory works since GBs interact via 
              derivative couplings…


