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From Quarks and Gluons to
Nuclear Forces and Structure
Lecture 5: Intro to Hybrid Monte Carlo
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Up till now we’ve been doing local updates!

“Simulated Annealing”

Randomly select a degree of freedom (e.g. auxilliary field φ, link variable Uµ, or spin) on a
particular site x

Jiggle the degree of freedom using some random procedure

Calculate the change of some quantity due to the change of the state, which is usually the
change in the hamiltonian or action

Accept/reject the change according to some predescribed procedure (e.g. Metropolis-Hastings
algorithm)

Repeat
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The whole accept/reject procedure depends on a single site x (or clusters of sites).

If the interactions between sites are local, then the change of the action/hamiltonian can be
easily calculated since it only depends on the sites near x . This can be fast and efficient. This
is a local update.

WARNING! It can take a long time to sweep through all degrees of
freedom in this manner. For large lattices, this algorithm scales poorly!
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When do local updates fail?
We answer this question by posing more questions:

What happens when interactions are no longer local? Not so easy to calculate the change in
the state!

What if there is a phase transition, and some correlation length ξ diverges? Local updates
cannot capture such behavior. Indeed, slight pertubations near phase transitions can have
large consequences!

Example: D ≥ 2 Ising model
Example: Lattice QCD in the continuum limit (!)

In these cases local updates have bad acceptance rates and cannot capture all relevant
physical length scales. We encounter critical slowing down

Goal: global updates
We want to find an algorithm that allows us to update all degrees of freedom at the same time,
and then do the accept/reject.
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Some reminders in case you partied too hard over the weekend!
Definition (The partition function Z)

Z =

∫
D[φ]e−S[φ] (1)

The integration metric is

D[φ] =

∫ ∏
i

dφi , (2)

where the product i is over all degrees of freedom (e.g. sites, spins, color, flavor, etc. . . ).
Integrating over this metric is interpretated as the path integral.

Definition (Observable O)

〈O〉 =
1
Z

∫
D[φ]e−S[φ]O[φ] =

∫
D[φ]P[φ]O[φ] (3)
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Example actions S[φ] you’ve encountered thus far in these
lectures

Example: QED

Example: 1-D (an)Harmonic oscillator

Example: pure SU(3) gauge theory (yes, I know, the code was VERY slow)

Example: QCD (i.e. SU(3) gauge theory + fermions)

Example: Hubbard model (ok, it was just a 1-site problem, but it had fermions!)

NEW Example: Ising model

July 22, 2019 Thomas Luu, IAS-4 Page 6



But why the Ising model?

One of the goals of this lecture is to draw the connection between critical slowing down near
phase transitions

This motivates the need for global updates

Easiest to see phase transitions (or remnants of phase transitions in finite volumes) and their
consequences (e.g. diverging correlation lengths) using the 2D Ising model (IMO)

General concepts are applicable to phase transitions in other systems (e.g. lattice QCD in the
continuum limit, Hubbard model at critical coupling U (Mott-insulator phase transition))
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So what is the Ising model?

Collection of spins on an array of lattice sites
Hamiltonian

H (s1, . . . , sN) = −
∑

i,j

siJijsj +
∑

i

hisi

{
Jij > 0 ferromagnetic
Jij < 0 anti-ferromagnetic

Partition function
Z =

∑
s1,...,sN

e−βH(s1,...,sN )

Expectation value of some operator O

〈O〉 =
∑

s1,...,sN

O (s1, . . . , sN)
e−βH(s1,...,sN )

Z
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Wait! Is this problem really that hard?

Answer: yes and no

No answer (assumes only nearest neighbor interactions):

1-D problem is analytically solved (Ising did this, but then he assumed too much!)

2-D problem is solved thanks to Onsager

Yes answer (for general interactions, NOT just nearest neighbor):

For D > 2, answer not known

Numerically, even in 2-D the problem is non-trivial. One would have to sum 2N configurations
(where N is the number of lattice sites), and this starts to hit the “curse of dimensionality”!
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We are naturally interested in a numerical solution

But you’ve heard this story before!
Even if we could sum over all states, we’d be wasting a lot of cpu time

Most states contribute almost zero weight to the sum (the Boltzmann weight suppresses
them)

e−βH(s1,...,sN )

Z
Energy fluctuations scale as 〈

H2〉− 〈H〉2
〈H〉2 ∝ 1

N
This means that the number of configurations that contribute to the Boltzmann sum has
zero weight in the thermodynamic limit N →∞!

So we need to sample smart!
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How would you sample in a smart fashion?

You know how to do this!
Randomly choose a spin and flip it

Calculate change in action ∆S

Accept spin flip with probability
Pa/r = min

(
1, e−∆S

)
Repeat

A couple things to note:
Usually one does a “sweep” through all lattice sites before writing out a spin configuration

We are working in a discrete space (have only spin up or down per site)

What are the implications of this?
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You have access to a python script that does this

generateConfigs.py

for i in range ( ncfg ) : # now take s t a t i s t i c s . . .
for j in range ( nsweep ) :

x , y=random . r a n d i n t (0 , nx−1),random . r a n d i n t (0 , ny−1) # t h i s r o u t i n e randomly se lec t s s i t e s
del taS = ac t i on . ca lcDel taS 2d ( s , J , h , x , y , nx , ny )
i f random . uni form (0 ,1 ) <= math . exp(−del taS ) : # accept ! ( met ropo l is−hast ings )

s [ x ] [ y ] ∗= −1
prob=np . append ( prob , 1 . )

else : # otherwise r e j e c t
prob=np . append ( prob , 0 . )

m=np . append (m, s . mean ( ) ) # mean magnet izat ion per s i t e
absm=np . append (absm , abs ( s . mean ( ) ) ) # absolu te value o f mean magnet izat ion per s i t e
spins . append ( s )

Included in the codes is actions.py, which uses the package numba (JIT compilation). Comment out this stuff if your code segfaults (or update
numba)
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Some interesting observables

Energy per site

〈ε〉 =
1

N

∑
s1,...,sN

H (s1, . . . , sN )
e−βH(s1,...,sN )

Z
= −

1

N

∂

∂β
log(Z)

Net spin per site (magnetization)

〈m〉 =
1

N

〈∑
i

si

〉
=

1

Nβ

∑
i

∂

∂hi
log(Z)
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The spin-spin correlator g(r )

The spin-spin correlator is defined as1

g(i , j) = 〈(si − 〈si〉) (sj − 〈sj〉)〉 = 〈sisj〉 − 〈m〉2

Translational invariance implies that the correlator is function of the relative distance between spin
sites

g(r) = 〈sisi+~r 〉 − 〈m〉
2 ∼ e−r/ξ

Here ξ is the spin-spin “correlation length”.

1For those who did the exercise on autocorrelation functions, this should look VERY familiar!
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Near a phase transition
For D ≥ 2, the Ising model undergoes a phase transition at some critical value of βJ (here we assume h = 0)

For D = 2 have (thank you Onsager!)

(βJ)−1
c =

2

ln(1 +
√

2)
= 2.26919 . . .

Near phase transitions, correlation lengths diverge =⇒ all length scales are relevant!
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Near phase transitions, it takes longer and longer to obtain statistically independent results. Local updates cannot capture gross changes in the
system and acceptance rates plummet. We have “critical slowing down”. Need a way to do global updates before the accept/reject step.
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Enter Hybrid Monte Carlo (HMC)
First step: multiply by 1!

〈O〉 =

∫
D[φ]e−S[φ]O[φ]∫
D[φ]e−S[φ]

=

∫
D[p]D[φ]e−

1
2
∑

i p2
i −S[φ]O[φ]∫

D[p]D[φ]e−
1
2
∑

i p2
i −S[φ]

=

∫
D[p]D[φ]e−H[p,φ]O[φ]∫
D[p]D[φ]e−H[p,φ]

where

D[p] =
∏

i

dpi

H[p, φ] =
1
2

∑
i

p2
i + S[φ] (artificial Hamiltonian)

For each degree of freedom i , we essentially introduced a normalized gaussian variable pi

And we can easily (numerically) perform these gaussian integrals since we have fast routines for
sampling gaussians!
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Equations of motion of H[p, φ]
The Euler-Lagrange equations of motions for p and φ that keep H[p, φ] invariant:

φ̇i =
∂H
∂pi

= pi

ṗi = −∂H
∂φi

= − ∂S
∂φi

Integrating these equations exactly tells us how to evolve

φ → φ′

p → p′ ,

such that
H[p, φ]→ H[p′, φ′] = H[p, φ] .

Any numerical integration of Euler-Lagrange equations:

H[p, φ]→ H[p′, φ′] = H[p, φ] + ∆H .
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The Hybrid Monte-Carlo Algorithm

1 Input: some ensemble of φ

2 Generate pi from normal distribution (i.e. perform MC integration over p field)

3 Integrate EoM numerically for some trajectory length τ (molecular dynamics trajectory)

4 Calculate ∆H and accept new phi ′ with probability

min{1, e−∆H}

5 Go back to 2

Note: ALL fields φ were evolved at the same time to determine ∆H!

July 22, 2019 Thomas Luu, IAS-4 Page 18



Why is this called hybrid MC?

To perform the numerical integration of the EoMs, one uses a “molecular dynamics” integrator.
So our routine involves both MC (gaussian) sampling/integration (e.g. quantum fluctuations) of
conjugate variables and MD integration (to solve the EoMs). This is what is meant by hybrid
algorithm.

The ACCEPT/REJECT step at the end differentiates this problem as hybrid MC

Note: there are certain constraints that must be enforced on the integrator!

symplectic (or area preserving): the integration scheme must leave the measure D[p]D[φ]
invariant
reversible: integrating backwards from the new configuration should give the old
configuration
These conditions are needed to ensure detailed balance

Must ensure ergodicity in φ (come back to this later)
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The leap-frog integrator
This integrator satisfies the conditions for area preservation and reversibility

3-step leap-frog integration of length τ = 2ε

p(0) → p(ε/2) −→ p(3ε/2) −→ p(5ε/2) → p(3ε)
φ(0) −→ φ(ε) −→ φ(2ε) −→ φ(3ε)

Here, for example

p
( ε

2

)
=p(0)− ε

2
× ∂S
∂φ(0)

φ(ε) =φ(0) + ε× p
( ε

2

)

Leap-frog is the limit of the more general Omelyan integrator
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If one starts at p(3ε) and φ(3ε), and sets ε→ −ε in the leap-frog integrator, one arrives back at
p(0) and φ(0). This is the same for and n-step integration procedure. This demonstrates
reversibility:

Pmd (p′, φ′|p, φ) = Pmd (−p, φ| − p′, φ′) = Pmd (p, φ|p′, φ′)
As one moves from φ→ φ′ and p → p′, one must account for the change of variables

dpdφ→ dp′dφ′ = det
[
∂(p′, φ′)
∂(p, φ)

]
dpdφ

Can be shown that Jacobian det
[
∂(p′,φ′)
∂(p,φ)

]
= 1 =⇒ area preservation.
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(Outline of) Proof of detailed balance

We use these results to (quasi-) prove detailed balance

Probability of φ→ φ′

P(φ′|φ) =

∫
D[p]D[p′]Pa/r (p

′, φ′|p, φ)Pmd (p′, φ′|p, φ)e−p2/2

where

Pa/r (p
′, φ′|p, φ) = min

(
1,

exp(−H[p′, φ′])
exp(−H[p, φ])

)
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Now can do the following manipulation:

Pa/r (p
′, φ′|p, φ) = min

(
1,

exp(−H[p′, φ′])
exp(−H[p, φ])

)
= e−H[p′,φ′]+H[p,φ] min

(
exp(−H[p, φ])

exp(−H[p′, φ′])
, 1
)

= e−H[p′,φ′]+H[p,φ]Pa/r (p, φ|p′, φ′)

= e−p′2/2−S[φ′]+p2/2+S[φ]Pa/r (−p, φ| − p′, φ′)

The last step relies on the fact that p and p′ are degrees of freedom, i.e. they are quadratic in the
action.
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Detailed balance
Now plugging everything in and integrating over p and p′ gives

P(φ′|φ) =

∫
D[p]D[p′]e−p′2/2−S[φ′ ]+p2/2+S[φ]Pa/r (−p, φ| − p′, φ′)Pmd (p, φ|p′, φ′)e−p2/2

=

∫
D[p]D[p′]e−p′2/2−S[φ′ ]+S[φ]Pa/r (−p, φ| − p′, φ′)Pmd (p, φ|p′, φ′)

=

∫
D[p]D[p′]e−p′2/2−S[φ′ ]+S[φ]Pa/r (−p, φ| − p′, φ′)Pmd (−p, φ| − p′, φ′) (reversibility)

=

∫
D[p]D[p′]e−p′2/2−S[φ′ ]+S[φ]Pa/r (p, φ|p′, φ′)Pmd (p, φ|p′, φ′) (p → −p, p′ → −p′)

= e−S[φ′ ]+S[φ]P(φ|φ′)

=⇒ e−S[φ]P(φ′|φ) = e−S[φ′]P(φ|φ′)

So we have detailed balance!
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HMC is magical!
Let’s look at the last equation of the previous slide again:

P(φ′|φ) =

∫
D[p]D[p′]e−p′2/2−S[φ′]+S[φ]Pa/r (p, φ|p′, φ′)Pmd (p, φ|p′, φ′)

Assume we have an exact MD integrator. This implies that

Pa/r (p, φ|p′, φ′) = 1 ∀ p′, φ′ (exact integrator)

Integration over D[p′] above (no integration over D[p] since it is constrained by Hamilton’s
equations) gives the same detailed balance result, namely,

e−S[φ]P(φ′|φ) = e−S[φ′]P(φ|φ′)

The Accept/Reject method corrects numerical errors of the MD integrator! (when averaged over
the ensemble)
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First application of HMC: The long-distance Ising model
Here we set Jij = J

N and hi = h ∀ i , j :

H(s, h) = −1
2

J
N

∑
i,j

sisj − h
∑

i

si

= −1
2

Ĵ
∑

i,j

sisj − h
∑

i

si

Our partition function:

Z =
∑
{si}=±1

e−βH(s,h) =
∑
{si}=±1

eβJ( 1
2N
∑

i,j si sj +
h
J
∑

i si )

But the total spin s =
∑

i si . So we can simplify the sum over spins

∑
i,j

sisj =

(∑
i

si

)2

= s2 =⇒ Z =
∑
{si}=±1

eβJ( 1
2N s2+ h

J s)
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Now apply HS transformation

Recall:

e−
1
2 |U|s

2
=

∫ ∞
−∞

dφ√
2π|U|

e−
φ2

2|U|±iφs

e
1
2 |U|s

2
=

∫ ∞
−∞

dφ√
2π|U|

e−
φ2

2|U|±φs

In our case, U = βJ/N = βĴ. Assume J > 0 (ferromagnetic case):

Z =
∑
{si}=±1

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ
+(βh±φ)s
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Now sum over all spins!

Z[J > 0] =

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ
∑
{si}=±1

e(βh±φ)s

=

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ

N∏
i=1

∑
si =±1

e(βh±φ)sj

=

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ

N∏
i=1

2 cosh(βh ± φ)

=

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ [2 cosh(βh ± φ)]N =

∫ ∞
−∞

dφ√
2πβĴ

e
− φ2

2βĴ
+N log[2 cosh(βh±φ)]
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Expectation values of operators O

As usual, the expectation value of some operator O is simply

〈O〉 =
1
Z

∫ ∞
−∞

dφ√
2πβĴ

O[φ]e
− φ2

2βĴ
+N log[2 cosh(βh+φ)]

=

∫ ∞
−∞

dφ O[φ] P[φ]

where

P[φ] =
1
Z

e
− φ2

2βĴ
+N log[2 cosh(βh+φ)]√

2πβĴ
.

Goal: Generate ensemble of φ using HMC
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Multiply top and bottom by 1

1 =

∫ ∞
−∞

dp√
2π

e−p2/2

Have

〈O〉 =
1
Z̃

∫ ∞
−∞

dp√
2π

dφ√
2πβĴ

O[φ]e
− p2

2 −
φ2

2βĴ
+N log(2 cosh(βh+φ))

where

Z̃ =

∫ ∞
−∞

dp√
2π

dφ√
2πβĴ

e
− p2

2 −
φ2

2βĴ
+N log(2 cosh(βh+φ))

=

∫ ∞
−∞

dp√
2π

dφ√
2πβĴ

e−H[p,φ]

July 22, 2019 Thomas Luu, IAS-4 Page 30



Derive equations of motion from H[p, φ]

Problem: Derive the following expressions

φ̇ =
∂

∂p
H = p

ṗ = − ∂

∂φ
H = − φ

βĴ
+ N tanh(βh + φ)
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Problem: code up the leapfrog integrator
Draw p0 ∈ N0,1

Set (Π,Φ) = (p0, φ0)

First (half) step of leapfrog:

Φ = Φ +
ε

2
Π

Nmd − 1 steps (repeat Nmd − 1 times):

Π = Π− ε
(

Φ

βĴ
− N tanh(βh + Φ)

)
Φ = Φ + εΠ

Last step of leapfrog:

Π = Π− ε
(

Φ

βĴ
− N tanh(βh + Φ)

)

Φ = Φ +
ε

2
Π

Set (pf , φf ) = (Π,Φ)

5 10 15 20

0.001

0.010

0.100

1

N

|H
(p
f,
ϕ
f)
-
H
(p
0
,ϕ
0
)|

Since this is a numerical integrator, we do not
have exact constants of motions but should find
that H(pf , φf ) = H(p0, φ0) +O(ε2), which can be
improved by increasing Nmd while keeping the
overall trajectory length constant.
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Combine with Metropolis-Hastings to generate ensemble!

Et voilà! You now have implemented HMC!
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Now you can calculate observables!
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Let’s define some observables
The average magnetization per site and energy persite are given by

〈m〉 =
1

N

〈∑
i

si

〉
=

1

N
〈s〉 =

1

Z
1

N

∑
{si}=±1

se
βJ
(

1
2N s2+ h

J s
)

=
1

Z

∑
{si}=±1

1

Nβ

∂

∂h
e
βJ
(

1
2N s2+ h

J s
)

=
1

Nβ

∂

∂h
log(Z)

〈ε〉 =
1

N
〈H〉 = −

1

N

∂

∂β
log(Z)

Problem:
Show that the corresponding operators in this case is

O[φ] =

{
tanh(βh + φ) (magnetization)

1
2βN −

φ2

2β2J − h tanh(βh + φ) ( energy )
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Code up HMC and calculate some observables!

Calculate, for example, the magnetization and energy as a function βJ
and βh.

This problem is meant only as a warmup to HMC.

There is only one degree of freedom on the long-range Ising model: φ
k
d >

1
2 !

Thus this problem does not show the power of HMC, which is the ability to do global updates.

This comes tomorrow!
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