FROM QUARKS AND GLUONS TO NUCLEAR FORCES AND STRUCTURE

Lecture 2: Quantum Gauge Fields on a Lattice—A Primer

Thomas Luu

JUST A RECAP OF THE LAST LECTURE

• Introduced Euclidean path integral and gave expression for expectation value of an operator ${\cal O}$

$$\langle E_0|\hat{O}(\hat{x})|E_0\rangle = \frac{\int [d\mathbf{x}(t)]O(x)e^{-S[\mathbf{x}(t)]}}{\int [d\mathbf{x}(t)]e^{-S[\mathbf{x}(t)]}}$$

• Presented an algorithm to generate configurations with probability proportional to the Boltzmann factor

Metropolis-Hastings Algorithm

· Various properties of the system could be probed in the large time limit

WHATYOU MIGHT HAVE NOTICED...

$$\langle E_0 | \hat{O}(\hat{x}) | E_0 \rangle = \frac{\int [d\mathbf{x}(t)] O(x) e^{-S[\mathbf{x}(t)]}}{\int [d\mathbf{x}(t)] e^{-S[\mathbf{x}(t)]}}$$
$$= \lim_{t_f \gg t_i} \frac{\langle x_f, t_f | O(x) | x_i, t_i \rangle}{\langle x_f, t_f | x_i, t_i \rangle}$$

Independent of **x**_f and **x**_i?

$$\langle x_f | e^{-H(t_f - t_i)} | x_i \rangle = \langle x_f | U(t_f, t_i) | x_i \rangle \approx \left(\frac{m}{2\pi a}\right)^{N/2} \int_{-\infty}^{\infty} dx [1] \ dx [2] \ dx [3] \dots dx [N-1] e^{-S_{lat}[x]}$$

IT'S REALLY STATISTICAL PHYSICS

set $x_f = x_i \equiv x[0]$ and integrate over all values of x[0]

PBCs

$$\int [dx] \to \left(\frac{m}{2\pi a}\right)^{(N+1)/2} \int_{-\infty}^{\infty} dx [0] dx [1] dx [2] dx [3] \dots dx [N-1]$$

$$\langle E_0 | \hat{O}(\hat{x}) | E_0 \rangle = \frac{\int [d\mathbf{x}(t)] O(x) e^{-S[\mathbf{x}(t)]}}{\int [d\mathbf{x}(t)] e^{-S[\mathbf{x}(t)]}}$$
$$= \frac{1}{Z} \operatorname{tr} \left[\hat{O}e^{-\beta H} \right]$$
$$Z = \operatorname{tr} \left[e^{\beta H} \right]$$

HOW DO THINGS CHANGE WHEN DEALING WITH A QUANTUM FIELD THEORY?

· Recall that for field theories, degrees of freedom are represented as fields, e.g.

Quantum Mechanics

$$\boldsymbol{x}(t) \mapsto \phi(\boldsymbol{x}, t) = \phi(x)$$

Quantum Field Theory

• Field theories are defined by their Lagrangian—no problem, this is what we've been using all along!

Quantum Mechanics

$$\mathcal{L}[\dot{\boldsymbol{x}}(t), \boldsymbol{x}(t)] \mapsto \mathcal{L}[\dot{\phi}(x), \phi(x)]$$

Quantum Field Theory

LET'S TURN OUR I-D HO INTO A FIELD THEORY!

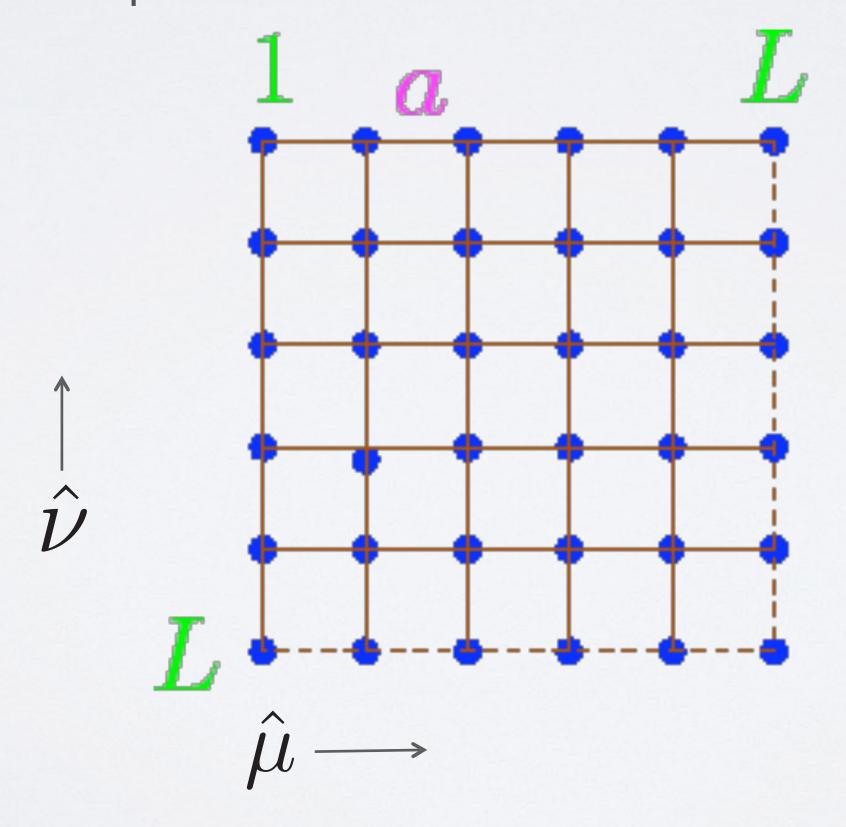
$$\frac{1}{2} \left(m\dot{x}^2 + m\omega^2 x^2 \right) + \lambda m^2 \omega^3 x^4$$

$$\mapsto \frac{1}{2} \dot{\phi}(x)^2 + \frac{1}{2} (\nabla \phi(x))^2 + \frac{m^2}{2} \phi(x)^2 + \lambda \phi(x)^4$$

phi-4 theory (Euclidean space)

AS BEFORE, WE DISCRETIZE THE COORDINATES

 Not only do we discretize the time coordinate, we discretize the spatial coordinates as well since the fields also depend on them



• Under this discretization, for example, we can approximate the Laplacean in the following manner:

$$\sum_{\mu=1}^{4} (\partial_{\mu})^{2} \phi(x) \approx \frac{1}{a^{2}} \sum_{\mu=1}^{4} (\phi(x + \hat{\mu}a) + \phi(x - \hat{\mu}a) - 2\phi(x))$$

• The action, defined as

$$S = \int d^4x \, \mathcal{L}[\dot{\phi}(x), \phi(x)]$$

can be approximated by discrete sums and differences over the field $\Phi(x)$ at the discrete lattice points

THERE ARE SOME FUNDAMENTAL DIFFERENCES, HOWEVER

• Generally, we are interested in calculating expectation values of various operators with respect to the ground state, but here the ground state of a field theory is simply the vacuum,

Quantum Mechanics $|E_0
angle\mapsto |0
angle$ Quantum Field Theory ''vacuum state''

What are the quantized excitations of a field theory?

Answer—The excitations of a field correspond to particles

THE PATH INTEGRAL FORMALISM IS AN INDISPENSIBLE TOOL FOR QFTHEORISTS

Expectation values are just as you would expect:

$$\langle 0|\hat{O}[\phi]|0\rangle \equiv \langle \hat{O}[\phi]\rangle = \frac{\int [d\phi]O[\phi]e^{-S[\phi]}}{\int [d\phi]e^{-S[\phi]}}$$

• We can extract information about the spectrum of particles (i.e. excitations) associated with a field by using various operators that act on the vacuum state

$$\langle \hat{\phi}(t') \hat{\phi}(t) \rangle = \frac{\int [d\phi] \, \phi(t') \phi(t) e^{-S[\phi]}}{\int [d\phi] \, e^{-S[\phi]}}$$
"Correlator"
$$= \sum_{n} \mathbb{C}_{n} e^{-E_{n}(t'-t)} \xrightarrow{t' \gg t} \mathbb{C}_{0} e^{-E_{0}(t'-t)}$$

Problem #1 (moderate):

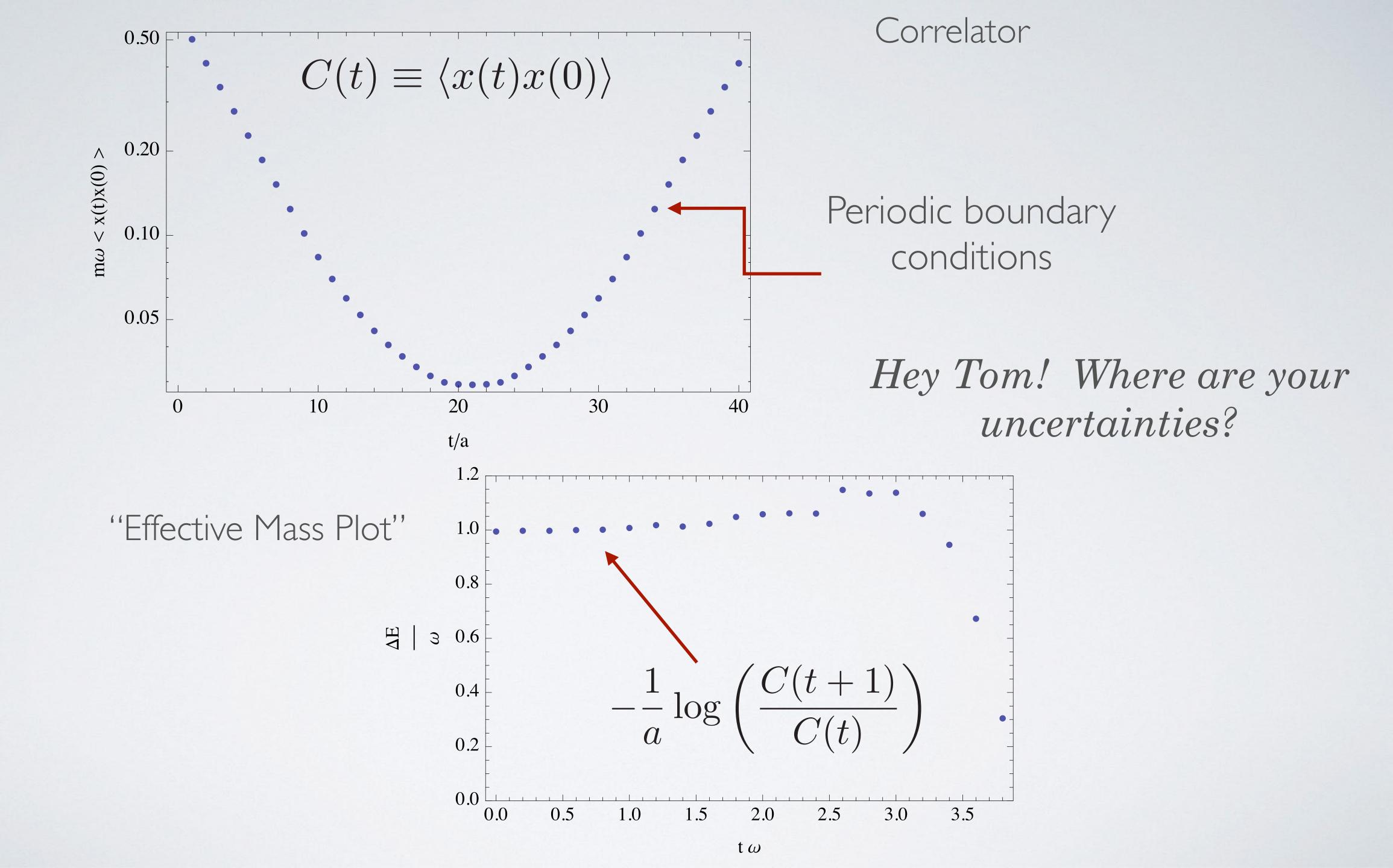
We can also extract information about excited states in our quantum mechanical I-D oscillator problem from the previous lecture.

First show that the following relation holds:

$$\langle x(t')x(t)\rangle \xrightarrow{t'\gg t} \mathbb{C}_0 e^{-(E_1-E_0)(t'-t)}$$

What is C_0 ?

Use the ensemble of configurations that you generated from the previous lecture to extract this energy shift. Use periodic boundary conditions in the time direction.



SOME DISCUSSION POINTS REGARDING QUANTUM FIELD THEORIES ON A LATTICE

- Quantum field theories, from a mathematical point of view, are ill-behaved in the ultra-violet limit—i.e. they suffer from infinities
 - Many people have contributed to "removing" these infinities (e.g. Feynman, Dyson, etc.)
 - Introduce cutoff; express observables in terms of physical parameters, instead of bare parameters; remove cutoff dependence with relevant counter-terms, i.e. renormalization
- By putting QFTs on a discretized lattice, we are already introducing a cutoff: the lattice spacing α
- Removing lattice discretization effects, as well as taking the continuum limit ("renormalization"), is a tricky business!

- QFTs also respect certain symmetries
 - Lorentz invariance
 - Gauge symmetries
- These symmetries are important since conservation laws are derived from them
- How/Can these symmetries be preserved on a lattice?
 - Lorentz invariance? But we understand its effects
 - Gauge symmetries? Yes, but does require some extra work—come back to this later
- Fermions obey particular statistics—How is this captured in our numerical path integral?
 - Good question! I will answer this question by avoiding it (for the time being)!

A FIRST LOOK AT QCD—BUT WITHOUT FERMIONS

• The QCD Lagrangian w/o fermions is sometimes referred to as Yang-Mills theory under SU(3):

$$\mathcal{L}_{ym} = \frac{1}{4} \operatorname{Tr} \left(F_{\mu\nu}(x) F_{\mu\nu}(x) \right)$$

$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) + ig\left[A_{\mu}, A_{\nu}\right]$$

The gauge fields are actually 3x3 Hermitian matrices that are part of the Lie algebra of SU(3)

This commutator is not zero →
The gauge fields interact with
each other! A consequence of
the *non-Abelian* nature of
SU(3).

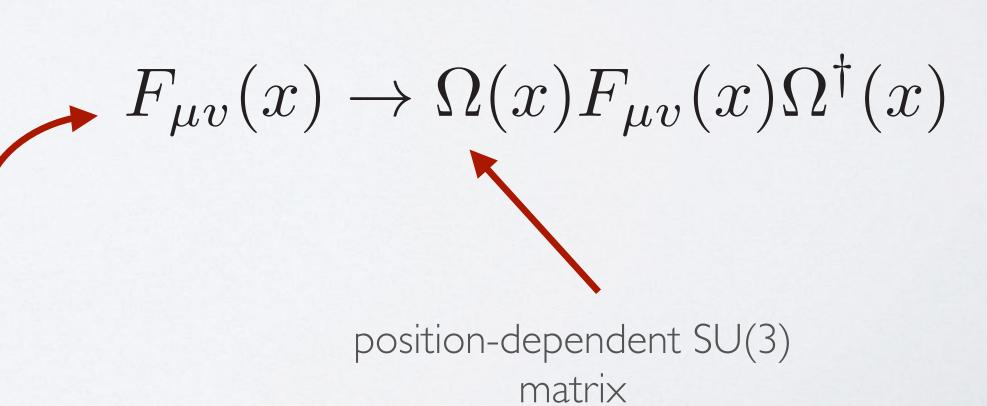
SO LET'S DISCRETIZETHIS THEORY

• A naı̈ive first step would be to just define values of the vector gauge field $A_{\mu}(x)$ at each lattice point

 $A_{\mu}(x+a\hat{
u})$ • • • • • • $A_{\mu}(x+a\hat{\mu})$

But this is really bad for the following reasons...

 A defining feature of QCD is that it is that the theory is invariant under SU(3) rotations—In other words, the Lagrangian doesn't change when



- This symmetry keeps the number of input parameters to QCD to a minimum and conserves color charge
 - From a numerical standpoint, we don't want many parameters in our simulations since they potentially all have to be tuned

 Unfortunately, finite differences and sums of the vector gauge fields **DO NOT** preserve this symmetry under the Lagrangian!

• The upshot: for gauge fields, we need an alternative discretization scheme that preserves gauge symmetry

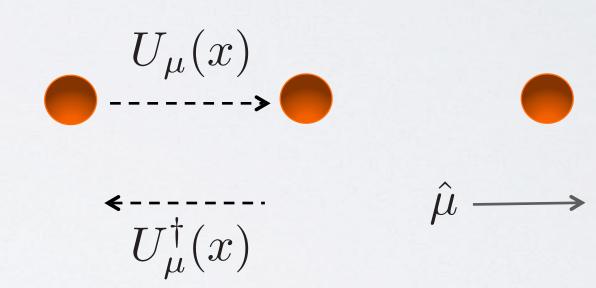
PRESERVING GAUGE INVARIANCE ON A LATTICE

Let us define the following objects:

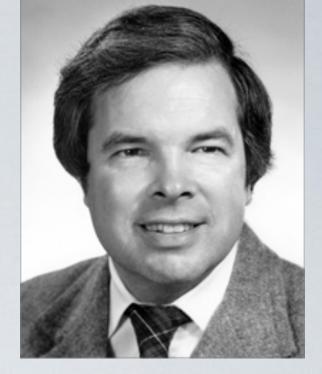
$$U_{\mu}(x) = e^{-i\int_{x}^{x+a\hat{\mu}} gA_{\mu}(x')dx'} \approx e^{-igaA_{\mu}(x)}$$

What are these objects?

- They are simply 3×3 unitary matrices with det = 1, i.e. SU(3) matrices
- They depend on position



- They do not reside at lattice points, but between them
 - "link variables"



Kenneth Wilson

CONSTRUCTING GAUGE INVARIANT OBJECTS USING LINK VARIABLES

How do these link variables transform under SU(3) rotations?

$$U_{\mu}(x) \to \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x + a\hat{u})$$

• The simplest gauge invariant quantity that one can construct is the "plaquette"

$$P_{\mu\nu}(x) = \frac{1}{3} \operatorname{Re} \operatorname{Tr} \left[U_{\mu}(x) U_{\nu}(x + a\hat{\mu}) U_{\mu}^{\dagger}(x + a\hat{u} + a\hat{\nu}) U_{\nu}^{\dagger}(x) \right]$$

$$U_{\mu}(x)=e^{-igaA_{\mu}(x)}$$
 $\hat{v}_{\mu}^{\dagger}(x+a\hat{u}+a\hat{\nu})$
 $U_{\nu}^{\dagger}(x)$
 $\hat{v}_{\nu}^{\dagger}(x+a\hat{u}+a\hat{\nu})$
 $U_{\nu}^{\dagger}(x+a\hat{\mu})$
 $U_{\nu}^{\dagger}(x)$
 $\hat{v}_{\nu}^{\dagger}(x+a\hat{\mu})$

AND FINALLY, THE ACTION...

· It turns out that the original action can be expressed in terms of the plaquettes

$$S_{ym} = \int d^4x \, \frac{1}{4} \, \text{Tr} \left[F_{\mu\nu}(x) F_{\mu\nu}(x) \right]$$

$$= \frac{6}{g^2} \sum_{x,\mu>\nu} (1 - P_{\mu\nu}(x)) + O\left(a^2\right)$$
"Wilson action"

Problem 1.5: prove this!

- Since the plaquettes are gauge invariant, our discretized action is gauge invariant!
 - It turns out that correction terms are gauge invariant also!

SO HOW DO WE GENERATE A CONFIGURATION OF THESE GAUGE FIELDS?

Procedure to generate $\{U\}_{n+1}$ from $\{U\}_n$:

At link j, change U(x) to U(x) M, where M is a random SU(3) matrix

Replace $U(x) \rightarrow U(x)$ M and compute the change in action ΔS

```
for j in xrange( 10 ): # at each site update 10 times
  num_of_updates += I
  old_U = U[t][x][y][z][u]
  U[t][x][y][z][u] = dot( generateSU3_matrix(mu), U[t][x][y][z][u] )

  dS = actions.deltaS_Wilson( U[t][x][y][z][u], old_U , beta, Gamma_u )

  if dS > 0 and exp(-dS) < uniform(0,1):
     U[t][x][y][z][u] = old_U  # don't accept change
  else:
     num_of_accepts += I  # tally acceptance</pre>
```

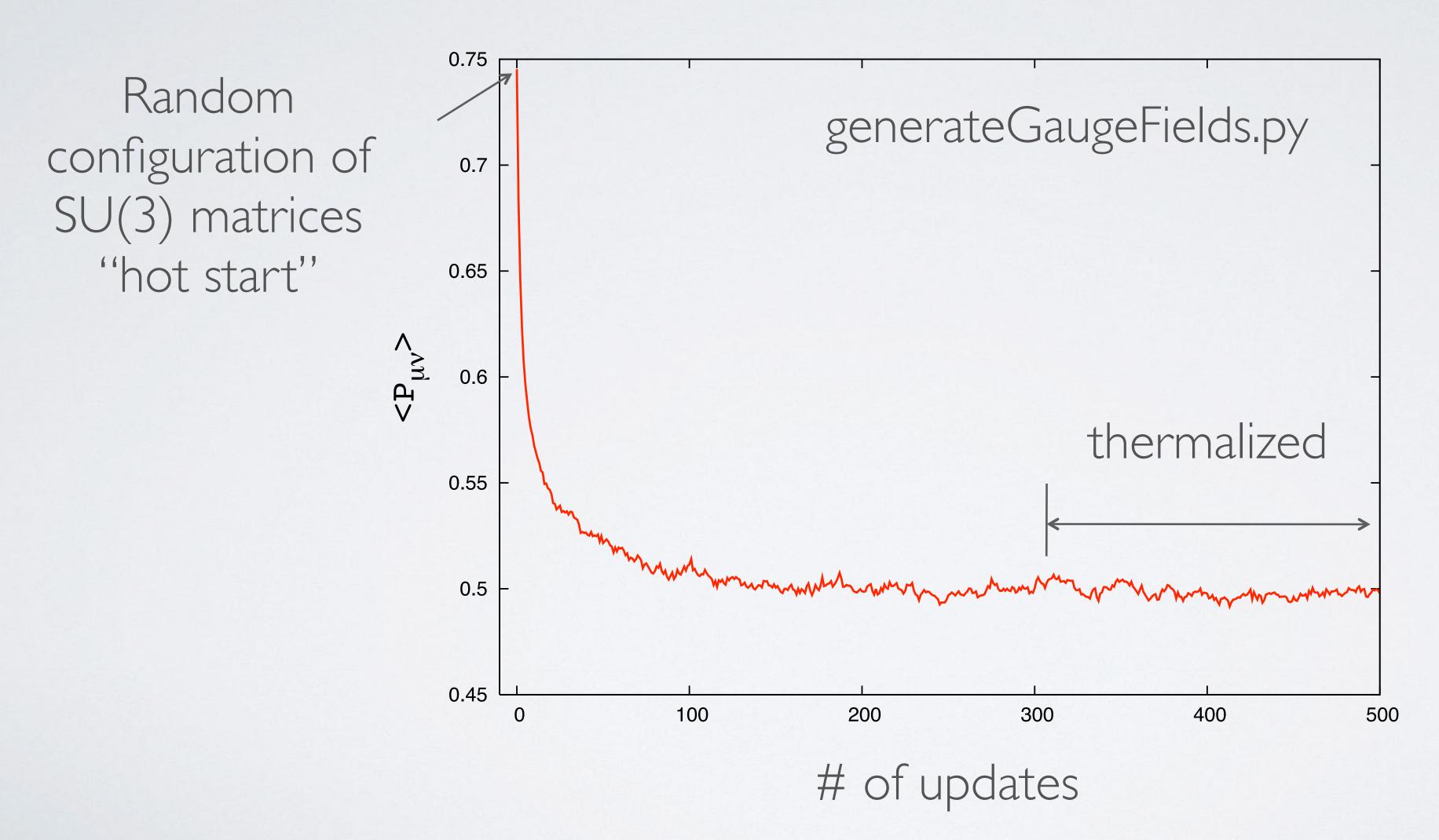
 $Gamma_u = actions.calc_Gamma_u([t,x,y,z], U, u, nT, nX)$

actions.actionS += dS # update action

If ΔS < 0, accept the new value of U(x) and continue to link j+1

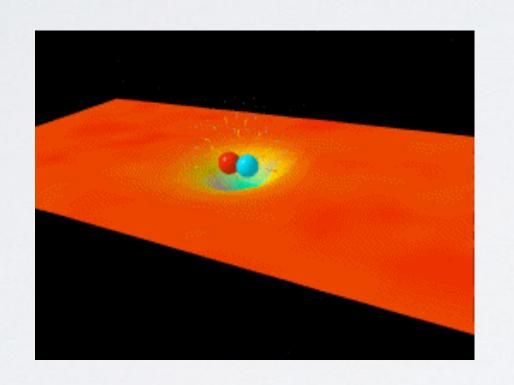
If $\Delta S > 0$, sample a number ρ uniformly distributed from 0 to 1. If $\exp(-\Delta S) > \rho$ accept the new value of U(x), otherwise reject change. Continue to link j+1

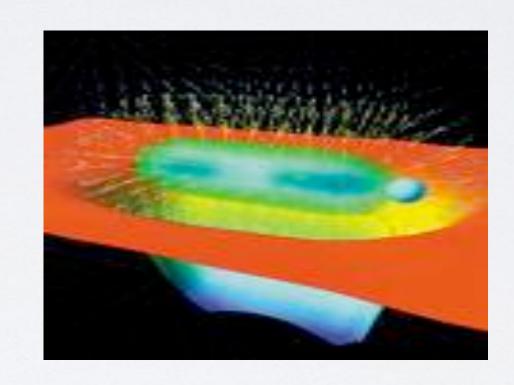
EXAMPLE OF THERMALIZING GAUGE FIELD CONFIGURATIONS



CONFINEMENT WITHIN YANG-MILLS THEORY

• One of the great hallmarks of QCD is that it exhibits confinement: there is never a lonely quark in the universe





Indicative of a linear potential at large separations

• Our theory of QCD w/o fermions already shows this feature!

HEAVY (INFINITE) QUARK POTENTIALS

• We can insert an infinitely massive quark and anti-quark within our soup of gauge fields and compute the potential between them as a function of separation distance

• Because the quarks are infinitely massive, they do not propagate spatially, i.e. they stay put

$$G(x,t) \approx U^{\dagger}(x,t-a)U^{\dagger}(x,t-2a)\cdots U^{\dagger}(x,a)U^{\dagger}(x,0)$$

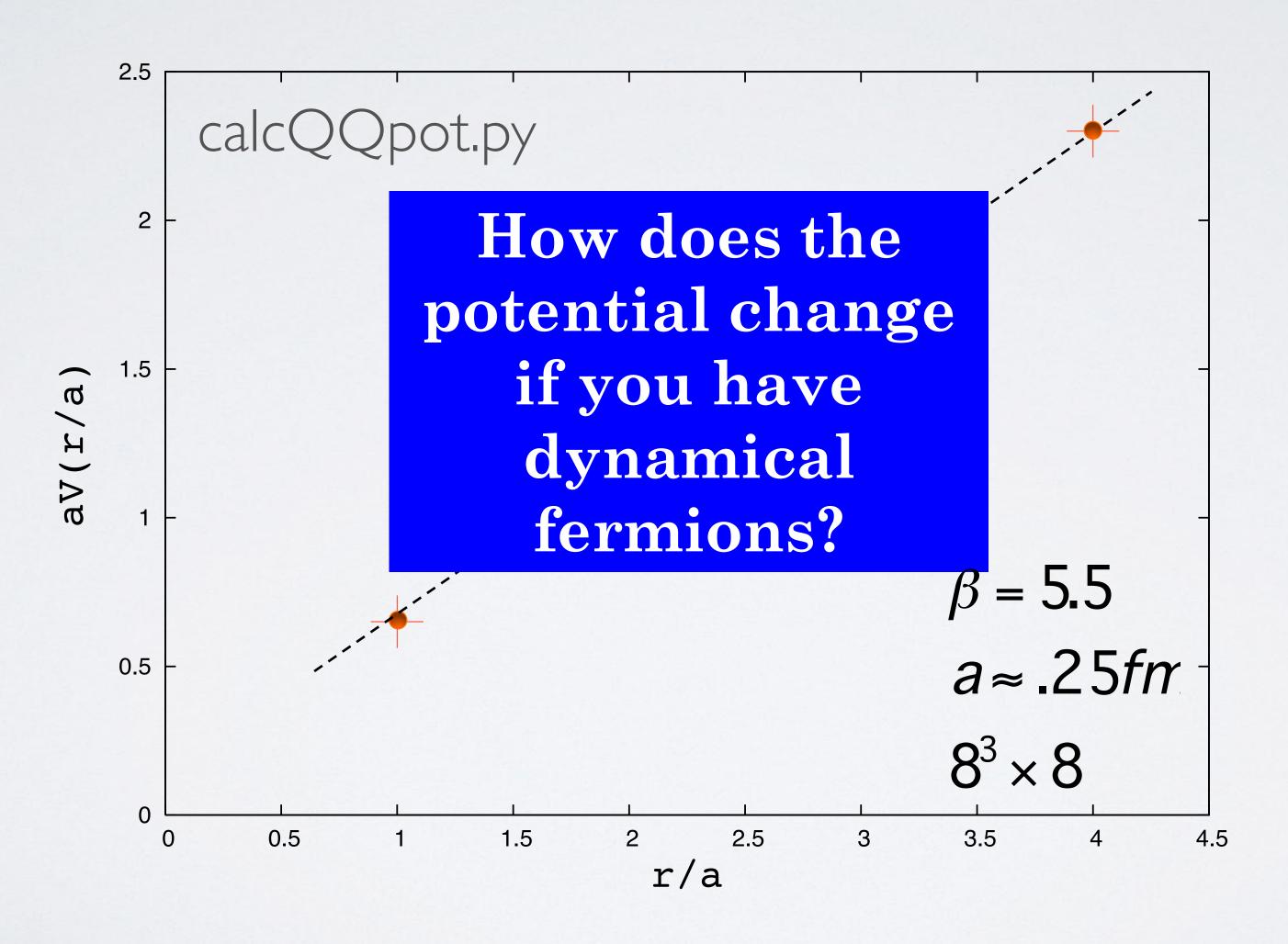
• The time-propagation from θ to T of an infinitely massive quark/anti-quark pair separated by distance R can be ascertained by looking at expectation values of the Wilson loop of dimension R x T

$$W(R=2a,T)=$$

• The expectation value of the Wilson loop at large times behaves as

$$\langle \operatorname{Re}\operatorname{tr} W(R,T) \rangle \xrightarrow{T\gg 1} Ce^{-aV(R)T}$$

MY RESULTS FOR THE POTENTIAL



Problem #2 (easy):

Download the python routines that generate gauge ensembles and calculate QQb-potential. Play with the codes to try to make sense of the concepts presented in this lecture.

Some things to note:

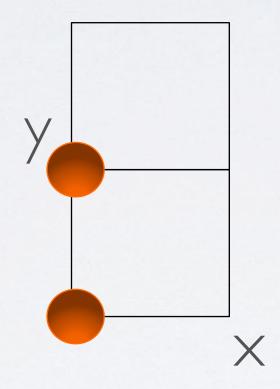
If you run *generateGaugeFields.py*, the default option is to start from a "hot" (i.e. random) configuration. The configurations will be stored in the folder *cnfgs*.

The routine calcQQpot.py needs thermalized configurations to perform measurements.

In the python routines, each configuration is stored as a list of 3x3 arrays: U[x][y][z][t][mu], where mu goes from 0 to 3.

FORTHE MASOCHIST IN YOU...

• The calcQQpot.py routine I've given you only calculates separation distances along axis lines, e.g.



• Try modifying the routine to make measurements along diagonals (be careful of boundary conditions!)