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Neutrinoless Double Beta Decay
In the hypothesis that the 0𝜈DBD is mediated by the exchange of a light neutrino:

Lepton space-phase integral Nuclear matrix element (NME) Effective Majorana mass
✤Depends on the Q-value of the 

decay and the charge of the final 
state of the nucleus 


✤Can be calculated precisely: for 
most of the emitters of interest 

✤Open issues for theorists 

✤Spread of about a factor 2-3 in the 

predicted values for NME for a given 
isotope


✤Theoretical predictions for these 
models compared with single beta 
decays: g_A quenching 

✤Depends on combination of 
neutrino masses and oscillation 
parameters


✤Uncertainties in the parameters 
extracted by oscillation 
experiments and cosmology

10�15 � 10�16yr�1

[T 0⌫
1/2]

�1 = G0⌫(Q,Z) |M0⌫ |2 m2
�� Javier Menendez arXiv:1703.08921 (2017)



The Basic Model
! The nucleus is a system made of A interacting nucleons, its energy is given by

H = T+V =
A

∑
i=1

ti+∑
i<j
υij+ ∑

i<j<k
Vijk+ ...

where υij and Vijk are 2- and 3-nucleon interaction operators

! Current and charge operators describe the interaction of nuclei with external
fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi+∑
i<j
ρij+ ... , j=

A

∑
i=1
ji+∑

i<j
jij+ ...

q
+ . . .

N N

γ

! EM current operator j satisfies the current conservation relation (CCR) with the
nuclear Hamiltonian, hence V, ρ , j need to be derived consistently

q · j= [H, ρ ]
CCR does not constrain transverse (orthogonal to q) currents
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The basic model of nuclear theory
The basic model of nuclear theory: description of the static and dynamic properties of 
nuclear systems.

Electroweak current 
operators:

jEW =
AX

i=1

ji +
AX

i<j=1

jij +
AX

i<j<k=1

jijk + ....

+

+

+ ….

th+exp

Inputs for the basic model:

Many-body interactions 
between the constituents One-body Two-body (NN) Three-body (3N)

H =
AX

i=1

p2
i

2mi
+

AX

i<j=1

vij +
AX

i<j<k=1

Vijk + .....

N

N

N

N N N

NN N

N

+

+ ….

{ th+exp{
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One-body Two-body Many-body

Nucleon-nucleon (NN) scattering data: “thousands” of experimental data available
The spectra, properties, and transition of nuclei: BE, radii, magnetic moments, beta 
decays rates, weak/radiative captures, electroweak form factors, etc.
The nucleonic matter equation of state: for ex. EOS neutron matter

………



Chiral EFT: from QCD to nuclear systems

QCD

Effective chiral Lagrangian

Nuclear forces and currents

Nuclear structure and dynamics

Symmetries in particular the 
approximate chiral symmetry 
between hadronic d.o.f (𝝅, N, 𝝙)

Leff (⇡, N,�)

Calculate amplitudes+prescription 
to obtain potentials + regularization 
(of high momentum components)

Leff = L(0) + L(1) + L(2) + ...

Few- and many-body 
methods: QMC, NCSM, 
CC, etc

Approximate chiral symmetry requires 
the pion to couple to other pions and to 
baryons by powers of its momentum 

L(n) ⇠
⇣ Q

⇤�

⌘n

~ 1     GeV hard scale
~ 100 MeV soft scale

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)

Given a power counting scheme



Nuclear Hamiltonian: Chiral EFT formulation of the basic model
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Figure 23: Chiral 2NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

relevant to our present discussion)

⇤L�i=0
� = �̄(i⌥0 ��M)�� hA

2f�

�
N̄T�S�+ h.c.

⇥
·⇤� �DT N̄⇥�⇧N ·

�
N̄T�S�+ h.c.

⇥
, (6.1)

where � is a four-component spinor in both spin and isospin space representing the �-isobar and hA and
DT are LECs.5 Moreover, Si are 2 ⇥ 4 spin transition matrices which satisfy SiSj† = (2�ij � i⇥ijk⇧k)/3
and T a are similar isospin matrices with T aT b† = (2�ab � i⇥abc⌃ c)/3. Notice that, due to the heavy baryon
expansion, the mass of the �-isobar, M�, has disappeared and only the small mass di⇥erence �M enters.

The LECs of the ⌅N Lagrangian are usually extracted in the analysis of ⌅-N scattering data and clearly
come out di⇥erently in the �-full theory as compared to the �-less one. While in the �-less theory, the
magnitude of the LECs c3 and c4 is about 3-5 GeV�1 (cf. Table 2), they turn out to be around 1 GeV�1 in
the �-full theory [221].

In the 2NF, the virtual excitation of�-isobars requires at least one loop and, thus, the contribution occurs
first at ⇤ = 2 (NLO), see Fig. 23. The � contributions to the 2PE were first evaluated in Refs. [53, 54, 220]
using time-ordered perturbation theory and later by Kaiser et al. [56] in covariant perturbation theory.

5Our convention for hA is consistent with Refs. [54, 56, 70, 107] and di⇥ers by a factor of two from Refs. [218, 221, 223].
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Figure 24: The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

Recently, also the NNLO contributions have been worked out [221]. Krebs et al. [221] verified the consistency
between the �-full and �-less theories by showing that the contributions due to intermediate �-excitations,
expanded in powers of 1/�M , can be absorbed into a redefinition of the LECs of the �-less theory. The
corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
⇥
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the �

resonance.
The studies of Refs. [56, 221] confirm that a large amount of the intermediate-range attraction of the 2NF

is shifted from NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that
the NNLO 2PE potential of the �-less theory provides a very good approximation to the NNLO potential
in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO.
In the �-full theory, this term has the same mathematical form as the corresponding term in the �-less
theory, Eqs. (5.2) and (5.3), provided one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the
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Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and
dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds,
and stars denote vertices of index � = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

The ability to calculate observables (in principle) to any degree of accuracy gives the

theory its predictive power.

3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is � = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (� Q0). They are
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Figure 23: Chiral 2NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.
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p

p0Regularization 
schemes for NN interactions

V3NV

p0
1 p0

2

p1 p2

Separation of long- and 
short-range physics

p = (p1 � p2)/2

p0 = (p0
1 � p0

2)/2

q = (p1 � p0
1)

Many of the available versions of chiral potentials are formulated in momentum-
space and are strongly nonlocal:                              hard to use in QMC methods

Note:
p ! �ir

Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014; Lynn et al. PRL 113, 192501 2014
Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016



LO : Q0

NLO : Q2

N2LO : Q3

k

p -p

-p0p0

vS12 : short-range contact component up to order N3LO (Q4) parametrized by (2+7+11) CI 
and (2+4) IB LECs  

Local chiral NN potential with 𝝙’s

vEM
12 : EM component including corrections up to ↵2

O
l=7,...,11
12 = L · S , L · S ⌧1 · ⌧2 , (L · S)2 , L2

, L2 �1 · �2

O
l=1,...,6
12 = [1 , �1 · �2 , S12]� [1 , ⌧1 · ⌧2]

Ol=12,...,16
12 = T12 , (�

z
1 + �z2 ) , �1 · �2 T12 , S12 T12 , L · ST12

O
l=7,...,11
12 = L · S , L · S ⌧1 · ⌧2 , (L · S)2 , L2

, L2 �1 · �2

O
l=1,...,6
12 = [1 , �1 · �2 , S12]� [1 , ⌧1 · ⌧2]

Ol=12,...,16
12 = T12 , (�

z
1 + �z2 ) , �1 · �2 T12 , S12 T12 , L · ST12

O
l=7,...,11
12 = L · S , L · S ⌧1 · ⌧2 , (L · S)2 , L2

, L2 �1 · �2

O
l=1,...,6
12 = [1 , �1 · �2 , S12]� [1 , ⌧1 · ⌧2]

Ol=12,...,16
12 = T12 , (�

z
1 + �z2 ) , �1 · �2 T12 , S12 T12 , L · ST12

‣  known LECs:     ,     ,       Dependence on gA,
F� and hA = 3 gA/

p
2

Dependence on gA,
F� and hA = 3 gA/

p
2

b3 + b8 (L(2)
�N�)

c1, c2, c3, c4 (L(2)
�N )‣  unknown LECs:                               

(Krebs at al. EPJ A32, 127 2007)
b3 + b8 (L(2)

�N�)

c1, c2, c3, c4 (L(2)
�N )

Dependence on gA,
F� and hA = 3 gA/

p
2

‣  the functional form taken as                                       with                                  a (b) models

In coordinate-space it reads as:

v12 ⌘ v
L
12 + v

S
12 =

16X

l=1

v
l(r)Ol

12v12 ⌘ v
L
12 + v

S
12 =

16X

l=1

v
l(r)Ol

12

‣  dependence only on the momentum transfer k=p′-p

: chiral OPE and TPE component with 𝝙’s vL12

Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016

v12 = vEM
12 + vL12 + vS12



The 26 LECs are fixed by fitting the pp and np Granada database up to two ranges 
of  Elab = 125 MeV and 200 MeV, the deuteron BE and the nn scattering length

To minimizing the χ2  we have used the Practical Optimization Using No Derivatives (for 
Squares), POUNDers (M. Kortelainen, PRC 82, 024313 2010) 
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Fitting procedure: NN PWA and database

Models a (b) cutoff~500 MeV 
(600 MeV) in momentum-space



c1 c3 c4

 Inclusion of 3N forces at N2LO:

1) Fit to:
cD

Local chiral 3N potential with 𝝙’s

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

courtesy of Laura E. Marcucci 
(Universita’ di Pisa)

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

2and =(0.645± 0.010) fm
‣              

‣              

2) Fit to:
cE

‣              

‣ GT m.e. in 3H 𝜷-decay          

-4 -3 -2 -1 0 1 2 3 4
cD

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

G
T th

/G
T ex

p

linear fit: f(cD)=1.00651+0.0102375 cD; χ2/datum=0.999953

400k MC configs.; NVIa with tau12, RS=0.8 fm-1

1.0026

0.9974

cD=[-0.89; -0.38]
cE=[-0.01; -0.17]

Model Ia Model Ia*

courtesy of Laura E. Marcucci 
(Universita’ di Pisa)

Ia*



Figure by Diego Lonardoni, LANL

Ab initio Methods: HH and QMC
Hyperspherical Harmonics (HH) expansion for A=3 and 4 bound and continuum states

| i =
X

µ

cµ |�µi cµ from E =
h |H| i
h | i

HH basis

{
Kievsky et al., JPG: NPP 35, 063101 (2008)

Quantum Monte Carlo (QMC) methods encompass a large family of computational 
methods whose common aim is the study of complex quantum systems  

https://en.wikipedia.org/wiki/Quantum_system


QMC: Variational Monte Carlo (VMC)

Minimize the expectation value of H: ET =
⇥�T |H|�T ⇤
⇥�T |�T ⇤

� E0

Trial wave function (involves variational 
parameters): 

| T i =
h
1 +

X

i<j<k

Uijk

i h
S
Y

i<j

(1 + Uij)
i
| Ji

The search in the parameter space is made using COBYLA (Constrained Optimization 
BY Linear Approximations) algorithm available in NLopt library 

R.B. Wiringa, PRC 43, 1585 (1991)

(s-shell nuclei): Jastrow wave function, fully antisymmetric|⇥J� =
hQ

i<j fc(rij)
i
|�(JMTTz)� (s-shell nuclei): Jastrow wave

function, fully antisymmetric
S
Q

i<j represents a symmetrized product: represents a symmetrized product

Uij =
X

p=2,6

up(rij)O
p
ij : pair correlation operators

Uijk =
X

x

✏x V
x
ijk : three-body correlation operators

| T i are spin-isospin vectors in 3A dimension with 2A
✓

A
Z

◆



QMC: Diffusion Monte Carlo (DMC)

The diffusion Monte Carlo (DMC) method (ex. GFMC or AFDMC) overcomes the 
limitations of VMC by using a projection technique to determine the true ground-state

| T i =
X

n

cn| ni H| ni = En| ni

|�(⌧ = 0)� = |�T �lim
⌧!1

| (⌧)i = lim
⌧!1

e�(H�E0) ⌧ | T i = c0| 0i

where τ is the imaginary time

Basic model

Chiral 2N
interactions

Chiral 3N
interactions

EWK
interactions

EWK QE
response

Outlook

GFMC for A  12
RMP by Carlson et al. (2015)

Propagation in imaginary time

E0 = lim
⌧!1

h V |H e
�⌧ H | V i

h V |e�⌧ H | V i
Exponential growth with A (in 12C st-states ⇠ 4⇥ 10

6)

 V =

X

s2A

X

t2A

�st(r1, . . . , rA)�st(1, . . . , A)

The method relies on the observation that       can be expanded in the complete set of 
eigenstates of the Hamiltonian according to

 T

The evaluation of         is done stochastically in small time steps Δτ (τ = n Δτ) using a 

Green’s function formulation

 (⌧)

J. Carlson et al., RMP. 87, 1067 (2015)



Spectra of Light Nuclei: Phenomenology vs 𝝌EFT

Piarulli et al. PRL 120, 052503 (2018)

The rms from experiment is 0.72 MeV for NV2+3-Ia compared to 0.80 MeV for AV18+IL7

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

repulsion (attraction) in light-nuclei (the opposite effect in PNM)

repulsion (attraction) in light-nuclei (same effect in PNM but very small)



Energies of Light Nuclei: Model-dependence

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Model-dependence for NV2+3 up to 7-8% of the total binding energy

repulsion (attraction ) in light-nuclei (the opposite effect in PNM)

repulsion (attraction) in light-nuclei (same effect in PNM but very small)

Fit type (1)



Polarization observables in pd elastic scattering at 3 MeV: HH calculations with the NV2+3 
models Ia-Ib (IIa-IIb), are shown by the green (blue) band. The black dashed line are 
results obtained with only the two-body interaction NV2-Ia

More sophisticated 3N force???  Different way to fix the 3N??? subleading 
contact terms in 3N interaction???

Girlanda, Kievsky, Marcucci, Viviani



Equation of State of Pure Neutron Matter in 𝝌EFT

Cutoff sensitivity: modest in NV2 models; 

very large in NV2+3 models


The EoS of pure neutron matter (PNM): neutrons stars
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w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Fit type (1)

AFDMC: Preliminary

AFDMC: Preliminary

Logoteta, Piarulli, Bombaci, Lovato, Wiringa in preparation

• Compact objects: R ~ 10km, 

• Composed predominantly of neutrons between the inner 

crust and the outer core

• NS from gravitational collapse of a massive star after a 

supernova explosion
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The Basic Model
! The nucleus is a system made of A interacting nucleons, its energy is given by

H = T+V =
A

∑
i=1

ti+∑
i<j
υij+ ∑

i<j<k
Vijk+ ...

where υij and Vijk are 2- and 3-nucleon interaction operators

! Current and charge operators describe the interaction of nuclei with external
fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi+∑
i<j
ρij+ ... , j=

A

∑
i=1
ji+∑

i<j
jij+ ...

q
+ . . .

N N

γ

! EM current operator j satisfies the current conservation relation (CCR) with the
nuclear Hamiltonian, hence V, ρ , j need to be derived consistently

q · j= [H, ρ ]
CCR does not constrain transverse (orthogonal to q) currents
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N N

NN

𝛄, 
W

± , Z + ….+

Beyond Energy Calculations

Electroweak Response functions

G.T. matrix elements involved in beta decays

Radiative/weak captures

❖ Electroweak structure and reactions:

Magnetic moments and radii
Electroweak form factors

Electroweak current 
operators:

Inputs besides nuclear interactions:
……..

jEW =
AX

i=1

ji +
AX

i<j=1

jij +
AX

i<j<k=1

jijk + ....

Current operators constructed in correspondence to the phenomenological interactions 
based on meson-exchange approach Marcucci et al. PRC 72, 014001 (2005)

Current operators derived in 𝝌EFT: Pastore et al. PRC 78, 064002 (2008), PRC 80, 
034004 (2009); Piarulli et al. PRC 87, 014006 (2013), Baroni et al. PRC 93, 015501 
(2016); Kölling et al. PRC 86, 047001 (2012), Krebs et al., Ann. Phys. 378, 317 (2017)



Nuclear axial currents and beta-decays in light-nuclei

A single unknown LEC in the axial 
contact current fixed in 3H beta-decay

Matrix Element and decay rate
Understanding “quenching” of  
Relevant for neutrinoless double beta decay since rate 

Nuclear astrophysics (Sun chain reaction)

Pastore, Piarulli, Schiavilla, 

Wiringa, Baroni, Carlson, 

Gandolfi, in preparation

 Schiavilla et al. PRC 99, 034005 (2019)
Baroni et al. PRC 93, 015501 (2016)
Pastore et al. PRC 78, 064002 (2008)

Pastore et al. PRC 97 022501 (2018)



𝝁-  Capture on 2H and 3He in 𝝌EFTMotivation

http://www.npl.illinois.edu/exp/musun/

Same “ingredients” !

http://www.npl.illinois.edu/exp/musun/

✤Upcoming measurement of           by the MuSun collaboration at PSI with a 1% error �(
2
H)

Muon capture on deuteron and 3He

Laura Elisa Marcucci (University of Pisa and INFN)

In collaboration with:

• L. Girlanda, A. Kievsky, S. Rosati, M. Viviani (Univ. Pisa & INFN)

• M. Piarulli and R. Schiavilla (Jlab & ODU)

• µ− + d→ n + n + νµ

• µ− + 3He→ 3H + νµ (70%)

• µ− + 3He→ n + d + νµ (20%)

• µ− + 3He→ n + n + p + νµ (10%)

�(
2
H) = 399± 3 sec

�1

Same theoretical inputs of: 

✤Good agreement with available experimental data although the muon-capture on the 
deuteron have large errors

✤Two-body currents important to achieve this agreement

Marcucci & Piarulli FBS 49, 35-39 (2011) Marcucci et al. PRC 83, 014002 (2011)
Marcucci et al. PRL 108, 052502 (2012)

Muon capture on deuteron and 3He

Laura Elisa Marcucci (University of Pisa and INFN)

In collaboration with:

• L. Girlanda, A. Kievsky, S. Rosati, M. Viviani (Univ. Pisa & INFN)

• M. Piarulli and R. Schiavilla (Jlab & ODU)

• µ− + d→ n + n + νµ

• µ− + 3He→ 3H + νµ (70%)

• µ− + 3He→ n + d + νµ (20%)

• µ− + 3He→ n + n + p + νµ (10%)
�
EXP

(
3
He) = (1496± 4) sec

�1

�(
3
He) = (1494± 21) sec

�1



We are testing our models of NN+3N interactions with Δ-isobar based on chiral EFT 
framework in both light-nuclei and infinite nuclear matter

Conclusions 

For the time being, we are interested in studying the model-dependence of the nuclear 
observables by exploring different cutoffs and range of energies used to fit the NN 
interactions as well as analyzing different strategies fo fit the TNI 

We are investigating the effect of subleading 3N contact interactions in light-nuclei (we 
will do so also for infinite nuclear matter)

We mainly focused our attention on studying properties of nuclei up to A=12 and EoS of 
infinite neutron matter

It looks like that the formulation of the TNI with only       and       terms is too simplistic if 
we want to have a good descriptions of spectra, properties of light-nuclei, infinite nuclear 
matter, three-body observables with a certain degree of accuracy
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