

HOBET: QCD to Effective Interaction and Effective Operators

Kenneth S. McElvain

Two Paths to Connect QCD to the Effective Interaction

- * HOBET (Harmonic-Oscillator-Based Effective Theory)
- Compute phase shifts in LQCD Fit HOBET LECs
 - * See arXiv:1511.02262 (CalLat LQCD)+ arXiv: 1902.03543 (McElvain, Haxton)
- * Compute nucleon scattering spectrum in LQCD Fit HOBET LECs directly to spectrum + periodic boundary conditions.

The Bloch-Horowitz Equation

- * For practical calculation reasons we often want to work in a subspace of the full Hilbert space.
 - P projects the subspace and Q=1 P gets the rest.
- * The BH equation is the answer to the question: Does there exist an operator Heff that lives in P with the same eigenvalues and projected eigenvectors of the full H.

Insert
$$(P+Q)$$
 in $H|\psi_{i}\rangle = E_{i}|\psi_{i}\rangle$
 $PHP|\psi_{i}\rangle + PHQ|\psi_{i}\rangle = E_{i}P|\psi_{i}\rangle$
 $QHP|\psi_{i}\rangle + QHQ|\psi_{i}\rangle = E_{i}Q|\psi_{i}\rangle$
 $Q|\psi_{i}\rangle = \frac{1}{E_{i}-QH}QHP|\psi_{i}\rangle$
 $P(H+H\frac{1}{E_{i}-QH}QH)P|\psi_{i}\rangle = E_{i}P|\psi_{i}\rangle$
 $H^{eff}(E)P|\psi_{i}\rangle = PH\frac{1}{E_{i}-QH}P|\psi_{i}\rangle = E_{i}P|\psi_{i}\rangle$

BH Characteristics

- * Eigenstates of Heff(E) are projections with the same eigenvalues.
 - * All eigenstates that overlap P are included!
 - * True even if P projects a finite number of states.
- * It is continuous in energy, including across E=0. An effective theory based on the BH equation can be fit in the continuum and used to find bound states.
- * Explicitly energy dependent: Must solve self consistently.
 - * Simple fixed point iteration converges rapidly.

HO Effective Theory

- * Why the HO basis?
 - * Discrete so we can use matrix techniques for solution.
 - * Good for confined wave function of nucleus
 - * With a consistent A-body quanta cutoff the center of mass is separable.
- * In an HO ET with included space projector $P(\Lambda,b)$, both UV and IR are excluded.
- * Major Issue
 - * The kinetic energy operator T is a hopping operator, strongly connecting P & Q (IR).

HOBET Introduction

arXiv:1902.03543, McElvain & Haxton (2019)

* HOBET is based on a reorganization of the Bloch-Horowitz equation by Haxton and Luu.

$$H^{eff,\Lambda}(E) = P \left[H \frac{E}{E - QH} \right] P = P \frac{E}{E - TQ} \left[T + T \frac{Q}{E} T + V + V \frac{1}{E - QH} QV \right] \frac{E}{E - QT} P$$

- * The reorganization isolates the impact of T for analytic calculation to all orders.
- * The remaining part is replaced by a long range potential (like an OPEP) plus V_{δ} , which is a short range expansion around it.

HOBET Introduction

arXiv:1902.03543, McElvain & Haxton (2019)

* HOBET is based on a reorganization of the Bloch-Horowitz equation by Haxton and Luu.

$$H^{eff,\Lambda}(E) = P \left[H \frac{E}{E - QH} \right] P = P \frac{E}{E - TQ} \left[T + T \frac{Q}{E} T + V + V \frac{1}{E - QH} QV \right] \frac{E}{E - QT} P$$

$$V_{IR} + V_{\delta} ET Substitution$$

- * The reorganization isolates the impact of T for analytic calculation to all orders.
- * The remaining part is replaced by a long range potential (like an OPEP) plus V_{δ} , which is a short range expansion around it.

E/(E-QT) Transform of Edge States

* Acting on edge state with $E/\hbar\omega = 1/2$.

Recovers scattering wave function with phase shift.

* Acting on edge state with
$$E/\hbar\omega=-1/2$$
.

Recovers bound state exponential decay from gaussian falloff of HO state.

$$G_{QT}P = \frac{E}{E - QT}P = \frac{E}{E - T} \left\{ P \frac{E}{E - T} P \right\}^{-1}, \qquad b_{ij} = \left\{ P \frac{E}{E - T} P \right\}_{ij}^{-1}$$

Sum T to All Orders

* T contributions can be summed to all orders.

$$\left\langle j \left| \frac{E}{E - TQ} \left[T - T \frac{Q}{E} T \right] \frac{E}{E - QT} \right| i \right\rangle = E \left(\delta_{ji} - b_{ji} \right)$$

- * A surprisingly simple result.
- * A non-perturbative sum of kinetic energy scattering is key to a convergent ET expansion of the remaining parts.

The V_{δ} Expansion

* V_{δ} is described in terms of HO lowering operators.

$$\hat{C}$$
 lowers L, \hat{A} lowers nodal n, $\left[\hat{C},\hat{A}\right]=0$

$$V_{\delta}^{S} = a_{LO}^{S} \delta(r) + a_{NLO}^{S} (\hat{A}^{\dagger} \delta(r) + \delta(r) \hat{A}) + \dots$$

$$V_{\delta}^{SD} = a_{NLO}^{SD} (\hat{C}^{\dagger 2} \delta(r) + \delta(r) \hat{C}^{2}) + a_{NNLO}^{22,SD} (\hat{C}^{\dagger 2} \delta(r) \hat{A} + \hat{A}^{\dagger} \delta(r) \hat{C}^{2}) + a_{NNLO}^{40,SD} (\hat{C}^{\dagger 2} \hat{A}^{\dagger} \delta(r) + \delta(r) \hat{A} \hat{C}^{2}) + \dots$$

. . .

- * This is slightly simplified by absorbing a constant related to coupling spins to angular momentum into the LECs.
- * $[\hat{C}^2 \text{ is really } \hat{C}^2 \equiv [\tilde{a} \otimes \tilde{a}]^{(2)} \odot [\vec{\sigma}_1 \otimes \vec{\sigma}_2]^{(2)}$, coupling angular momentum to spins, with vector HO lowering op \tilde{a}]

HOBET Lepage Plots

- * Heff S-D matrix elements in Λ =8 are are directly calculated at E=-2.2245 MeV from HO matrix elements in Λ =400 and LECs fit in a scheme independent way.
- * For the middle plot, O(1) errors appear at n'+n=8 making diagonal matrix elements with n=4 unreliable. n=3 at $4\hbar\omega$ =60 MeV is a reasonable breakdown scale.
- * Convergence is good order by order, but the value of a good long range V^{IR} is clear.

Power Counting

- * The expansion is for V_{δ} , whose range R is shorter than that of V.
- * For a known V_{δ} the LECs are proportional to a non-local Talmi integral.
- * The tail overlap shrinks rapidly with order.
- * For a short range V_{δ} the expansion parameter is function of b/R.

$$V_{\delta}(r',r) = V - V_{IR} + V \frac{1}{E - QH} QV$$

$$LEC_{n',n} \propto \int r'^{2} dr' r^{2} dr r'^{2(n'-1)} e^{-r'/2} V_{Q} e^{-r/2} r^{2(n-1)}$$

Local Talmi basis functions with p ranging from 0 to 4.

Energy Independence of LECs

- * Enables fitting to data a range of energies.
- * The upper blue dots are the result of solving for a_{LO} at individual samples (E_i, δ_i)

- * The lower gold dots represent an NLO fit to data from 1 and 10 MeV to determine a_{NLO} followed by refitting a_{LO} at each energy while holding a_{NLO} constant.
- * Conclusion: Energy dependence is adsorbed into higher order operators.

Fitting LECs

* Principle: The BH equation is energy self consistent

$$H_{eff}^{full}(E_i)P|\psi_i\rangle = E_iP|\psi_i\rangle$$

* At fixed order we instead have a nearby eigenstate.

$$H_{eff}(E_i, LECs)P|\psi_i\rangle = \varepsilon_i P|\psi_i\rangle$$

- * The mismatch must be due to LEC values.
- * Repair by minimizing $\sum_{i \in samples} (\varepsilon_i E_i)^2 / \sigma_i^2$
- * The variance for the difference can be estimated from the sensitivity of ε_i to next order LECs, automatically suppressing data outside the validity range for the current LEC order.

Predicting the Deuteron

- Prediction of DeuteronWF from phase shift fit.
- * ET Wave functions should match projections of numerical solutions with Av₁₈ solid blue lines

- * The matrix elements are continuous in energy across E=0, one can fit V_{δ} in the continuum and determine bound states.
- * Using the same phase shift data we get
 - * With pionful V_{IR}=OPEP, at N3LO E_{binding}=-2.2278 MeV
 - * With pionless V_{IR}=0, at N3LO E_{binding}=-2.0690 MeV

Continuum Wave Functions

* ET Wave functions
(long black dashes)
should match
projections of
numerical solutions
with Av₁₈ (dotted
colored lines)

- * The energies chosen in the plot are deliberately chosen to be distinct from the (E_i, δ_i) used in fitting the LECs.
- * Phase shifts are recovered by solving for δ in $H^{eff}(E_i, LECs, \delta)P|\psi\rangle = E_i P|\psi\rangle$.

LECs → Phase Shifts

- Use fixed LECs at energy
 E, dial phase shift
 produce eigenvalue
 match to E.
- * Even NLO 3P1 fit produces a good reproduction of phase shifts.
- * A very small number of LECs reproduce phase shifts. P channel NLO has 1, other N3LO have 4.

Connecting to LQCD

- * Lüscher's method can be used to map the spectrum of two nucleons to phase shifts.
 - * Use traditional path: collect enough phase shift data in multiple channels and use it to fit the HOBET effective interaction.
 - This is the first method of connecting QCD to HOBET.
- * Sources of error
 - * Tail of interaction exceeding L/2.
 - * Divergences of the zeta function in higher order terms of Lüscher's formula.

Connecting to LQCD

- * Lüscher's method can be used to map the spectrum of two nucleons to phase shifts.
 - * Use traditional path: collect enough phase shift data in multiple channels and use it to fit the HOBET effective interaction.
 - This is the first method of connecting QCD to HOBET.
- * Sources of error
 - * Tail of interaction exceeding L/2.
 - * Divergences of the zeta function in higher order terms of Lüscher's formula.

HOBET in Periodic Volumes

This is the second way to connect QCD to HOBET.

- Phase shifts as boundary conditions are replaced by periodic boundary conditions.
- Easier to construct in Cartesian HO basis.

Slice of 3D Cartesian State

- * Key Observation: V_{δ} is short range and isolated from the boundary conditions by Green's functions. It is the same object in infinite volume, or periodic volumes.
 - * We can use Cartesian-spherical brackets to relate V_{δ} in both domains. The Cartesian V_{δ} can be written in terms of the infinite volume spherical LECs!
- * If V_{IR} is longer range than L/2, introduce images of V_{IR} .
 - * This is a key advantage over Lüscher's method which requires a free propagation region outside the range of V, but inside the volume.

Evaluate by Inserting Periodic Basis

Sum T to all orders:
$$\left\langle \vec{n}' \middle| \frac{E}{E - TQ} \left[T + T \frac{Q}{E} T \right] \frac{E}{E - QT} P \middle| \vec{n} \right\rangle = E \left(\delta_{\vec{n}'\vec{n}} - b_{\vec{n}'\vec{n}} \right)$$

$$b_{ij} = \left\{ P \frac{E}{E - T} P \right\}_{ii}^{-1}$$

* VIR matrix elements are the most expensive part of Heff

$$\left\langle \vec{n}' \middle| G_{TQ} V_{IR} G_{QT} \middle| \vec{n} \right\rangle = \sum_{\vec{m}', \vec{m}, \vec{s}, \vec{t}} b_{\vec{n}', \vec{s}} \frac{E}{E - \lambda_{\vec{m}'}} \left\langle \vec{s} \middle| \vec{m}' \right\rangle \left\langle \vec{m}' \middle| V_{IR} \middle| \vec{m} \right\rangle \left\langle \vec{m} \middle| \vec{t} \right\rangle \frac{E}{E - \lambda_{\vec{m}}} b_{\vec{t}, \vec{n}}$$

 \vec{m} , \vec{m}' are discrete momentum states; s,t are HO states

- * All pieces are precomputed, but sum is still very large.
- * For $\vec{n}', \vec{n} \in P^ G_{QT}=1$, which can be used to check results.

Testing Plan

Induced Mixing

- * Setup: spherical well potential in a periodic finite volume.
- * The wave function is sampled on sphere outside potential and displayed as a radial displacement from a unit sphere.
- * Higher order structure induced by periodic boundary conditions is obvious.
- * All this mixing is isolated in E/(E-QT) Green's functions.

Test Setup: Range(V)>L/2

L = 14.3 fm $m_{\pi}L = 10$

- * Periodic images of the potential make a contribution.
- * Continuum extrapolation done on N³ lattice with N= $\{350,400,450\}$.
- Infinite volume bound state at -4.052 MeV.
- * LECs are fit using states with L=0 overlap.

Rep	MeV	L=0	L=2	L=4	L=6
$\overline{A_1^+}$	-4.4428	0.5	0	0.866	0
A_1^+	2.0314	0.155	0	0.988	0
E^+	7.5995	0	0.424	0.361	0.830
E^+	15.2980	0	0.474	0.393	0.788
A_1^+	21.6167	0.326	0	0.265	0.908
E^+	23.2423	0	0.468	0.597	0.651
A_1^+	29.4041	0.521	0	0.853	0.023
E^+	30.9457	0	0.567	0.428	0.704
A_1^+	35.2449	0.655	0	0.189	0.732
E^+	38.4043	0	0.882	0.176	0.437
A_1^+	45.1402	0.526	0	0.576	0.625

Phase Shift Setup

- * Reference phase shifts for L=0 and L=4 are directly calculated from V.
- * HOBET S-channel phase shifts are computed from the N3LO LECs that reproduce the spectrum. The phase shift is found by dialing the phase shift to produce energy self consistency.
- * Lüscher's method phase shifts come from the formula

$$k \cot \delta_0 = \frac{2}{\sqrt{\pi}L} \mathcal{Z}_{0,0}(1; \tilde{k}^2) + \frac{12288\pi^7}{7L^{10}} \frac{\mathcal{Z}_{4,0}(1; \tilde{k}^2)^2}{k^9 \cot \delta_4} + \mathcal{O}(\tan^2 \delta_4) \qquad \text{Luu, Savage,}$$
arXiv:1101.3347

23

- * An effective range expansion up to k⁶ is used to interpolate.
- * For simplicity the second term is evaluated using the L=4 phase shift directly determined from V.

Phase Shift Results

L = 14.3 fm $m_{\pi}L = 10$

The V column should be considered the reference.

			Leading	Next Order
E MeV	V	HOBET	Lüscher	Lüscher
1	142.023	141.931	142.552	142.751
2	128.972	128.860	129.571	129.823
4	113.602	113.464	114.205	114.403
8	96.919	96.752	97.575	97.3135
10	91.473	91.296	92.228	91.6403
15	81.672	81.480	82.852	81.3184
20	74.876	74.691	76.667	74.0936

- * ET bound state found at -4.066 MeV v.s. -4.052 MeV (directly from V).
- * HOBET errors are from PV solution + Momentum basis cutoff.
- * Lüscher errors are from Range(V) > L/2 and magnification of errors by Zeta function poles.

Effective Operators

- * The Bloch Horowitz equation tell us how to renormalize an operator: $\hat{O}_{ji}^{eff,\Lambda}(E) = P \frac{E_j}{E_i HQ} \hat{O} \frac{E_i}{E_i QH} P$
- * *i*, *j* Label eigenstates of H.
- * The Green's functions reconstruct the full wave function from the projection.

$$(P+Q)H|\psi_{i}\rangle = E_{i}|\psi_{i}\rangle$$

$$E_{i}P|\psi_{i}\rangle = (E_{i}-QH)|\psi_{i}\rangle$$

$$|\psi_{i}\rangle = \frac{E_{i}}{E_{i}-QH}P|\psi_{i}\rangle$$

* In bound states the boundary condition for E/(E-QH) is an exponential decay outside the range of V.

Operator Expansion

* Short range operators can also be matched to an expansion.

$$\begin{split} \hat{O}_{ji}^{eff} &= P \frac{E_{j}}{E_{j} - HQ} \hat{O} \frac{E_{i}}{E_{i} - QH} P \\ &= P \frac{E_{j}}{E_{j} - TQ} \left[\hat{O} + VQ \frac{E_{j}}{E_{j} - HQ} \hat{O} + \hat{O} \frac{E_{i}}{E_{i} - QH} QV + VQ \frac{E_{j}}{E_{j} - HQ} \hat{O} \frac{E_{i}}{E_{i} - QH} QV \right] \frac{E_{i}}{E_{i} - QT} P \\ &\to P \frac{E_{j}}{E_{i} - TQ} \left[\hat{O} + \hat{O}_{\delta} \right] \frac{E_{i}}{E_{i} - QT} P \end{split}$$

- * O_{δ} has an expansion much like V_{δ} with an expansion in harmonic oscillator quanta.
- * **Key Point:** The LECs of the expansion can be fit to a set of LQCD measurements. The boundary conditions are then replaced in E/(E-QT) with the infinite volume boundary conditions (phase shifts) to give the effective operator in infinite volume.

Operator Expansion

* Short range operators can also be matched to an expansion.

- * O_{δ} has an expansion much like V_{δ} with an expansion in harmonic oscillator quanta.
- * **Key Point:** The LECs of the expansion can be fit to a set of LQCD measurements. The boundary conditions are then replaced in E/(E-QT) with the infinite volume boundary conditions (phase shifts) to give the effective operator in infinite volume.

Application to 0vBB Operators

Example:
$$V_i^{nn \to pp} = -O_i \frac{g_A^2}{4F_\pi^2} \left[\tau_1^+ \tau_2^+ \frac{\sigma_1 \cdot \mathbf{q} \, \sigma_2 \cdot \mathbf{q}}{\left(|q|^2 + m_\pi^2 \right)^2} \right]$$

Nicholson et al. Phys. Rev. Lett. **121**, 172501 (2018)

Running of 1S-1S Matrix Element, E=-1.961 MeV

- * Boxed part * 106.
- * HO Length scale b=1.7fm
- * Start in Λ_{∞} =80 and integrate out shell by shell.
- * Note jump when 1S becomes an edge state at Λ_{P} =0.

Effective Operators in A-Body Context

- * The E in Ôeff is the A-body E.
- * Translation invariance requires a total Λ cutoff. If spectators are excited red dots, then Λ_{12} must be reduced.

Spectators

- * We add a spectator quanta index to the standard density matrix. The interacting particles are then in a 2 particle P space defined by $\Lambda_{12}=\Lambda-\Lambda_{\rm S}$.
- * Matched with this we produce $O_{ij}^{eff,\Lambda_{12}}$ for $\Lambda_{12} = 0...\Lambda$.

Implementation with BIGSTICK

- * We (Evan Rule <u>erule@berkeley.edu</u>) are constructing a 2-body spectator dependent density matrix for BIGSTICK.
- * We will use a realistic potential for H in Ôeff.
- * Given universality with respect to the starting potential, we hope for the same with $\hat{O}_{ij}^{eff,\Lambda_{12}}$.

- We will test with operators associated with experiments.
- * Last we will evaluate various $0\nu\beta\beta$ operators.

$$\hat{O} = \tau_1^+ \tau_2^+ \frac{\sigma_1 \cdot \mathbf{q} \, \sigma_2 \cdot \mathbf{q}}{\left(|q|^2 + m_\pi^2 \right)^2}$$

Summary

- * HOBET can be connected to QCD via LQCD observables, or an LQCD nucleon scattering spectrum in finite volume.
- * Operators have an expansion, with LECs isolated from boundary conditions by Green's functions and can be fit to LQCD measurements.
- * We have made progress on operator renormalization and evaluation in an A-body context. We hope to have results for $0v\beta\beta$ soon via a hybrid approach with a standard shell model.
- * Longer term we are continuing on a path to a HOBET based shell model code.

End