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Two Paths to Connect QCD to the Effective Interaction

+ HOBET (Harmonic-Oscillator-Based Effective Theory)
»  Compute phase shifts in LQCD - Fit HOBET LECs

+ See arXiv:1511.02262 (CalLat LQCD)+ arXiv:
1902.03543 (McElvain, Haxton)

* Compute nucleon scattering spectrum in LQCD - Fit
HOBET LECs directly to spectrum + periodic boundary
conditions.



The Bloch-Horowitz Equation

* For practical calculation reasons we
often want to work in a subspace of
the full Hilbert space.

* P projects the subspace and Q=1-
P gets the rest.

* The BH equation is the answer to
the question: Does there exist an
operator Heff that lives in P with the
same eigenvalues and projected
eigenvectors of the full H.

Insert (P+ Q) in H"’/ji> — El.‘l//l.>
PHP|y, )+ PHO|v,)= EPly,)
OHP|y,)+QHOy, )= EQly,)

1
O O

I
P(H+ H E_on QH) Ply,)=EPly,)

of ~ I
HY(E)Ply,)=PH E_on

P|l//i> = EiP|Wi>



BH Characteristics

« Eigenstates of Heff(E) are projections with the same eigenvalues.
+ All eigenstates that overlap P are included!

* True even if P projects a finite number of states.

# It is continuous in energy, including across E=0. An effective

theory based on the BH equation can be fit in the continuum
and used to find bound states.

« Explicitly energy dependent: Must solve self consistently.

« Simple fixed point iteration converges rapidly.



HO Eltiectuve Theory

* Why the HO basis?
“ Discrete so we can use matrix techniques for solution.
+ Good for confined wave function of nucleus

« With a consistent A-body quanta cutoff the center of mass is
separable.

* In an HO ET with included space projector P(A,b), both UV and
IR are excluded.

* Major Issue

—

* The kinetic energy operator T is a hopping operator, strongly
connecting P & Q (IR).



HOBET Introduction

arXiv:1902.03543, McElvain & Haxton (2019)

* HOBET is based on a reorganization of the Bloch-
Horowitz equation by Haxton and Luu.

I

0 1 p
E-OT

Heﬁ,A(E):P[H 2 }P:P : [T+T—T+V+V QV}
E—0OH E—T0 E E-QH

* The reorganization isolates the impact of T for analytic
calculation to all orders.

* The remaining part is replaced by a long range potential
(like an OPEP) plus V; which is a short range expansion

around it.
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Recovers scattering wave function
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decay from gaussian fallotf of HO
state.

=4 =
E
b g={p=Eor]
: E—1 =

|
10




Sum 1 to All Orders

+ T contributions can be summed to all orders.

<j E el k i>=E(5..—b..)
. ey bl

“ A surprisingly simple result.

“ A non-perturbative sum of kinetic energy scattering is

key to a convergent ET expansion of the remaining parts.



T'he V5 Expansion

+ Vsis described in terms of HO lowering operators.

C lowers L, A lowers nodal n, [6,21] —

vi=a$,8(r)+as, (A'8(r)+5(r)4)+..
v =a (C78(r)+8(r)C? )+ a2 (C75(r) A+ ATs(r)C?)

NNLO

a0 (ERAS(r ) 5(r)AC?) ..

NNLO

* This is slightly simplified by absorbing a constant related
to coupling spins to angular momentum into the LECs.

+ [ C?is really ¢’=[a®a]” 0[6,®6,]" coupling angular
momentum to spins, with vector HO lowering op a |



LO
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HOBET Lepage Plots

LO
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» Hetf 5-D matrix elements in A=8 are are directly calculated at E=-2.2245 MeV from

HO matrix elements in A=400 and LECs fit in a scheme independent way.

* For the middle plot, O(1) errors appear at n’+n=8 making diagonal matrix elements

with n=4 unreliable. n=3 at 4hw=60 MeV is a reasonable breakdown scale.

« Convergence is good order by order, but the value of a good long range VIR is clear.
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Power Counting

* The expansion is for Vs,
whose range R is shorter

than that of V.

%

)

LECn,’n oc J‘r'z drr’drr

+ For a known Vs the LECs are

1.0

proportional to a non-local

Talmi integral. [/
7 4

# The tail overlap shrinks
rapidly with order.

* For a short range V5 the
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expansion parameter 1s
function of b/R.

ranging from 0 to 4.
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3

Local Talmi basis functions with p
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Energy Independence of LECs

« Enables fitting to data
a range of energies.

* The upper blue dots
are the result of solving
for aro at individual

samples (E;, i)
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©
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0
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* The lower gold dots represent an NLO fit to data from 1 and 10
MeV to determine anio followed by refitting aro at each energy
while holding anio constant.

+ Conclusion: Energy dependence is adsorbed into higher order

operators.
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Fiting LECs

« Principle: The BH equation is energy self consistent
Hejj?”ll (Ez) P‘l//i> = = Wi>

* At fixed order we instead have a nearby eigenstate.
H, (E,LECs) Ply])=¢.P|y))

+ The mismatch must be due to LEC values.

* Repair by minimizing Z (81' = )2 / O'iz

iesamples

* The variance for the difference can be estimated from the
sensitivity of g, to next order LECs, automatically suppressing
data outside the validity range for the current LEC order.

ik



Predlctmg the Deuteron

Prediction of Deuteron
WF from phase shift fit.

ET Wave functions
should match
projections of numerical
solutions with Avig-
solid blue lines

0.67

0.0r

0.87

- ~

Pro]ected Deuteron WF V5—OPEP

-------- NLO Heg D
----- NNLO Hesr S
----- NNLO He D

Seg

‘2““3““4““5““6

The matrix elements are continuous in energy across E=0, one can fit Vs in

the continuum and determine bound states.

Using the same phase shift data we get

+ With pionful Vig=OPEP, at N3LO Epinding=-2.2278 MeV

+ With pionless Vir=0, at N3LO Ebpinding=-2.0690 MeV




Conunuum Wave Functions

+ ET Wave functions
(long black dashes)

1

should match

projections of
numerical solutions

with Avig (dotted
colored lines)

u(r)=rR(r)
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* The energies chosen in the plot are deliberately chosen
to be distinct from the (E;,6;) used in fitting the LECs.

« Phase shifts are recovered by solving for é in

HY (E,,LECs,8)P|ly)=EP|y).

i 5




| . ECs —Phase Shifts

# Use fixed LECs at energy

E, dial phase shift 60; [ A 2 /T A
, = 0 1S0 - HOBET N°LO
produce eigenvalue | = Py i sa el |
| l - a 1P1-HOBETA°LO |
matCh to E. 40! T g B el ]
e SO o 3P1-HOBETN°LO

= s oo d o 3P1-HOBET NLO

= Even NLO 3P fit te B UL

= A 3P0 - HOBETNALO

pI‘OduceS a g()()d 2 , = v 3P0 - HOBET NLO
2 g xxxxxXXXxXXXxXXXXXXXXXXXXXXXXX 1Iyyis ek
reproduction of phase | =

shifts. O, 3P1 |
| 1P1 nnnnnnnn A

* A very small number of _,

0 0T R 80T 100 90

LECs reprOduce phase E_xs [MeV]
shifts. P channel NLO
has 1, other N3LO have 4.
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< Sources of error

Connecting to LQCD

+ Liischer’s method can be used to map the spectrum of two nucleons to
phase shifts.

« Use traditional path: collect enough
phase shift data in multiple channels

and use it to fit the HOBET effective
interaction.

+ This is the first method of connecting
QCD to HOBET.

« Tail of interaction exceeding L /2.

+ Divergences of the zeta function in
higher order terms of Liischer’s formula.

47
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+ Easier to construct in Cartesian HO

HOBET in Periodic Volumes

* Phase shifts as boundary conditions are
replaced by periodic boundary conditions.

Slice of 3D Cartesian State

basis.

« Key Observation: V;is short range and isolated from the boundary conditions by

Green’s functions. It is the same object in infinite volume, or periodic volumes.

= We can use Cartesian-spherical brackets to relate V; in both domains. The

Cartesian Vs can be written in terms of the infinite volume spherical LECs!

« If Vir is longer range than L /2, introduce images of Vir.

* This is a key advantage over Liischer’s method which requires a free
propagation region outside the range of V, but inside the volume.

18



Evaluate by Insertung Periodic Basis

= [T+T2T} = b
E-TO E |E-QT

ﬁ> = E(éﬁ’ﬁ T bﬁ’ﬁ)

=
b,=1P——P
b Bl

* VR matrix elements are the most expensive part of Hess

(7

Sum T to all orders: <ﬁ

= o
GTQ‘/IRGQT‘n>: Z Qbﬁ’j T (s|m ><m

—= /) —_ —_
m ,m,S .t

E
b
E—A’/_ﬁ I .n

m,m’ are discrete momentum states; s.,t are HO states

Vel ) (|7

“ All pieces are precomputed, but sum is still very large.

* For #’,n e P~ Gor=1, which can be used to check results.
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(Choose
V.

T'estung Plan

Solve Filter to Fit LECs to
H\W=_EW Aj reproduce

In box spectrum spectrum

Insert LECs in Selt consistency

infinite volume determines
Heg phase shifts

Traditional
ceneration of

phase shitts
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Induced Mixing

Setup: spherical well potential in a
periodic finite volume.

The wave function is sampled on sphere
outside potential and displayed as a
radial displacement from a unit sphere.

Higher order structure induced by
periodic boundary conditions is
obvious.

All this mixing is isolated in E/(E-QT)

Green’s functions.




Test Setup: Range( )>L/ 2

o 1 046 |

| | copn /(mﬂr) |
- L=1423 fin

= . .. atlongrange ; =t
=100} -5 > ]

, = ]

e s e h T e ek S 20.22 , - O
150} \\le = Sy ] an 1
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-200} !
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» Periodic images of the potential make a Rep  MeV. L=0 L=2 L=4 L=6

e AT 44428 05 0 0.866 0

contribution. AF 2.0314 0.155 0 0.988 0
+

» Continuum extrapolation done on N3 §+ lggggg 8 8:3?3 828; 8§gg

lattice with N={350,400,450}. A7 21.6167 0.326 0 0.265 0.908

E*  23.2423 0 0468 0.597 0.651

- Infinite volume bound state at AT 29.4041 0.521 0 0.853 0.023

_4.052 MeV. E* 309457 0 0567 0.428 0.704

AT 35.2449 0.655 0 0.189 0.732

» LECs are fit using states with L=0 overlap. £ 384043 ~ 0 0882 0176 0437
AT 45.1402 0.526 0 0.576 0.625




Phase Shift Setup

* Reference phase shifts for L=0 and L=4 are directly calculated
from V.

* HOBET S-channel phase shifts are computed from the N3LO
LECs that reproduce the spectrum. The phase shift is found by
dialing the phase shift to produce energy self consistency.

« Liischer’s method phase shifts come from the formula
(17 + 1228877 2., (1; kz)
Tl o coto,

Luu, Savage,
arXiv:1101.3347

kcot o, ——Z

\/_LOO

“ An effective range expansion up to kéis used to interpolate.

+O(tan 54)

+ For simplicity the second term is evaluated using the L=4 phase
shift directly determined from V. -



L=1423 fn

Phase Shift Results . .-

Leading Next Order
E MeV V HOBET Liischer Luscher
Eloy ol 1 142.023 141.931 142.552 142.751
2 128.972 128.860 129.571 129.823
should be 4 113.602 113.464 114.205  114.403
: 8 96.919  96.752 97.575 97.3135
considered the 10 91.473  91.296 92.228 91.6403
reference. 15 81.672  81.480 82.852 81.3184
20 74.876  74.691 76.667 74.0936

+ ET bound state found at -4.066 MeV v.s. -4.052 MeV (directly from
V).

+ HOBET errors are from PV solution + Momentum basis cutoff.

« Liischer errors are from Range(V) > L/2 and magnification of errors
by Zeta function poles. 24



Effecuve Operators

* The Bloch Horowitz equation tell us how to renormalize

an operator: O7*(E)=P I A
E.—~HQ E,—QH
i,j Label eigenstates of H. (P+Q)H|w.)=E|w)
* The Green’s functions reconstruct  EPly,)=(E, - QH )|y,
the full wave function from the By
projection. Vi) = E —QH Vi)

* In bound states the boundary condition for E/(E-QH) is
an exponential decay outside the range of V.
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Operator Expansion

+ Short range operators can also be matched to an expansion.

e 5 5,
" E-HQ E,—~QH
. B P B2 Lop
pe gy g0 o puapg =g = gule = p
E —TQ E,—HQ E —QH E-HQ E—-QH" |E-QT
i 7
> P : P

0+0 "
Ej—TQ[ 5]Ei—QT
» s has an expansion much like V;with an expansion in harmonic
oscillator quanta.

* Key Point: The LECs 'of the expansion can be fit to a set of LQCD
measurements. The boundary conditions are then replaced in E/ (E-
QT) with the infinite volume boundary conditions (phase shifts) to
give the effective operator in infinite volume. -



Operator Expansion

+ Short range operators can also be matched to an expansion.

N

= E orlorricanze
JI Ej_HQ EI—QH // l

e B B E
—p = ) 00—l pULV0 0
j E-HQ  E—QH

2 = ,
>PEj —]TQ[0+05]Ei—QT

P

» s has an expansion much like V;with an expansion in harmonic
oscillator quanta.

* Key Point: The LECs 'of the expansion can be fit to a set of LQCD
measurements. The boundary conditions are then replaced in E/ (E-
QT) with the infinite volume boundary conditions (phase shifts) to
give the effective operator in infinite volume. -



Application to Ovpp Operators

2
0. -90,.: -
e e o) 4g1?2 Tor zq 22 g E;h{);zcggle’zza(}.lg)lnys. Rev. Lett.
| (g m) '
Running of 1S-1S Matrix Element, E=-1.961 MeV
¥ 1s-1s

& Boxed part 1065 | .
¢+ HO Length scale b=1.7fm °** e =
+ Start in A. =80 and 0.0001 nie '

integrate out shell by i —

Shell. o | e ; gEe | FE s ‘ Frie b
* Note jump when 1S ~0.0001 - :

becomes an edge state at e

AP:O. ~0.0002 A -

27



Effective Operators in A-Body Context

A Spectators : 0
“ The E in O¢ff is the A-body E. 6 —o- |

# Translation invariance requires a ,.‘5'."‘;{' 5 :
e I 00— o

total A cutott. If spectators are

excited - red dots, then A1 must be reduced.

* We add a spectator quanta index to the standard density
matrix. The interacting particles are then in a 2 particle
P space defined by A12=A-As.

eff ,A

+ Matched with this we produce 05 ™ for A, =0...A

28



+» Last we will evaluate various Ovfp

Implementation with BIGSTICK

* We (Evan Rule erule@berkeley.edu) are constructing a 2-
body spectator dependent density matrix for BIGSTICK.

+ We will use a realistic potential for H in Oeff,

« Given universality with respect ‘%1/ e
to the starting potential, we hope for the e X

. Aeff A I
same with Oz, : VZ)JJ?\

+ We will test with operators associated
with experiments.

e +G1'qo-2'q

@

e Tl TZ (‘ ‘2 5 2
+m)
operators. > -

2
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Summary

+ HOBET can be connected to QCD via LQCD observables, or an

LQCD nucleon scattering spectrum in finite volume.

« Operators have an expansion, with LECs isolated from boundary
conditions by Green’s functions and can be fit to LQCD
measurements.

+ We have made progress on operator renormalization and
evaluation in an A-body context. We hope to have results for Ovfp

soon via a hybrid approach with a standard shell model.

* Longer term we are continuing on a path to a HOBET based shell
model code.
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