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Pionless (or Contact) EFT
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Pionful (or Chiral) EFT
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Are nuclear amplitudes perturbative?

Weinberg's IR enhancement
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but still keep CANNOT JUST COUNT POWERS OF Q
perturbative expansion in
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> perturbative pions
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Processes with external probes
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An advantage of Chiral EFT

Possibility to disentangle symmetry-violating sources:
each breaks chiral symmetry in a particular way,
and thus produces different hadronic interactions

(For Pionless EFT, only isospin is left...)
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Conclusion

EFTs connect symmetry violation
beyond the Standard Model and nuclear physics
in a controlled and systematic way

Nonperturbative renormalization
in nuclear EFTs

generically leads to violation of NDA




P.S.
Response to a question of E. Epelbaum:
(paraphrasing)
What is wrong with the argument against taking the cutoff to infinity
in the case of the EFT for the toy model in

Epelbaum + Gegelia, arXiv:0906.3822 [nucl-th]

(I had no access to printed version when preparing this answer)







but still keep CANNOT JUST COUNT POWERS OF Q
perturbative expansion in

Q/M,, (1) (O ~ 4 [ Q )
/M, VP Q~M,) mNM.c,(Mm]

DWBA
various orders in the potential ==  same order in amplitude

eg. VP2V® in TG

-
potential must depend on regulator
must contain enough LECs
~/

t-; not trivial when resuming higher orders




In other words,

Different orders in the potential contribute to the same order in amplitudes

Observables are properties of amplitudes

If you iterate subleading terms in the potential,
in general there will be problems

(Well understood in EFT; example:
1/mg effects in heavy quark EFT -- treated exactly, prevent continuum limit)

eg Sommer '10 for pedagogical explanation

if, nevertheless, you insist to iterate subleading terms in the potential,
i) you should first make sure that lower orders have been renormalized properly;
i) the burden is on YOU to show that you don't run into problems

- and please do not blame me if you do




Epelbaum + Gegelia, arXiv:0906.3822 [nucl-th]

Toy model:

completely removing (or taking very large values of) the cutoff. To that aim, we construct
effective theory for an exactly solvable quantum mechanical model with long- (r; ~ m; ")
and short-range (rs ~ m_ " < m; ) interactions of a separable type valid for momenta of the
order k£ ~ my;. This can be viewed as a toy-model for pionful EFT. We explain the meaning

p? + m? 1
V ")y =u Fl(p) Fi(p Fi(p) Fs(p'), Filp) = =, Fip) =
. ) = w Fip) ) + 0 B RG), Rl =5 B0 S ey

(9

specific form of the imnteraction potential. We fine tune the strengths of the long- and short-
range Interactions in such a way that they generate scattering lengths of a natural size. More




Perturbative-
contact

approach : " = :Iﬁmili

= AL -

It is then easy to verify that the scattering amplitude 70V + 7@ + TW {5 /;-independent

up to terms of order Q2. Further, the effective range function is given at this order by

where Q) = {my, p}. As expected, the first three terms in the “chiral” expansion of all ERE
coeflicients are reproduced correctly at NNLO. Notice further that the contributions beyond
the order of accuracy of the calculation are explicitly renormalization-scale dependent, see
section II for a general discussion. The above results reveal the meaning of the LETs n
the present context. All i-th terms ot in the “chiral” expansion of the coeflicients m the
ERE, = = {a, r, vy, ...} are correlated with each other due to the long-range interaction
and its interplay with the short-range mteraction in the underlying model. The knowledge

of ay } for one particular z; 1s sufficient to predict am,f for all k #£ j. In an EFT, short-range

ph}rsms 1s incorporated 1n a systematic way by taking imto account contact mteractions with
an increasing number of derivatives. Matching the strengths of the corresponding LECs to

the first n terms in the “chiral” expansion of some of the ERE coefhicients allows to correctly

describe the “chiral” expansion of all ERE coefficients up to order m;'/m”. It should be
emphasized that at low energies and in the absence of external sources, the appearance of
the above mentioned correlations 1s the only signature of the long-range interaction in the

)ﬂq 2N system.




My conclusion:

The power counting in this situation is one
in which the contact interactions
should be treated perturbatively

which, btw, is consistent with:
the scattering length is natural
and
the long-range potential is not singular



. - _ o
Nonperturbative- v v I

contact

approach: ) I ) K ) I[

the characteristic hard scale in the problem, A ~ m,. Taking values A > m, artificially
enhances certain higher-order contributions in the “chiral” expansion of the ERE coethcients
spoiling the predictive power of the theory.

My conclusion:

A good example of the statement in my talk that

each order in potential
must contain enough LECs

not trivial when resuming higher orders




My answer:

The argument is consistent with the fact that,
in general, you cannot take the cutoff to infinity
when iterating subsets of subleading interactions.
It does not contradict the view that what matters
is renormalization of the amplitude at each order
in the appropriate power counting.
If X (where X is a short- or long-range interaction)
is perturbative, renormalize in perturbation theory.
If Y (whereY is a short- or long-range interaction)
is non-perturbative, renormalize nonperturbatively.
(Not very profound, I know.)




While at it:
Epelbaum, Gasparyan, Gegelia + Meiner, arXiv:1810.02646 [nucl-th]

Let us consider the potential
Vir) = ! (e—mwg_ e_Mr) N a(my — f';f) e~ M N a(M —mq)2e ™"
r 2r
— %cu (2my — 3mao + M) (M —my) 2e” ™", (14)

where the light mass M 1s the small scale and the heavy masses mi, ms are the large scales. Our choice of parameters
is @ = —36GeV™2, M = 0.1385 GeV, m; = 0.75 GeV and ms = 1.15 GeV. The factor a sets the strength of the
interaction. This strength 1s taken equal for all terms, so that the potential V (r) vanishes for » — 0 and it behaves
as —ae Mr / r3 for large r. In Fig. 2 we show the full potential and its long range part extended to small values of r.

-|---|1---|---|---|---|---|-

r [GeV']

FIG. 2: Exact and approximate potentials as discussed in the text. The solid (blue) and the long-dashed (magenta) lines
s =t corresponds to the exact and the approximate potentials, respectively.
- e




Considering the expression of Eq. (14) as an “underlying fundamental” potentia]can construct the correspond-

me EEL. The LO EF1 potential consists of a constant contact interaction corresponding to the delta potential i
coordinate space and the long range part —ae™ M7 /r3 which is singular if extended to the small r region. The
coupling constant a = —36 GeV 2 =~ —1 /(0.167 GeV)? is chosen such that the full LO potential as well as its long
range part are non-perturbative for the momenta & ~ M = 0.1385 GeV. A simple UV analysis shows that the

are reasonably well described by the LO EFT potential. For increasing cutoff, the region where the phase shifts are
well described at LO decreases eventually vanishing in the removed cutoff limit. Note turther that the phase shifts




My conclusion:

The power counting in this situation is one
in which the contact interactions
should be treated perturbatively

which, btw, is consistent with
the repulsive singular potential being properly renormalized
without a contact interaction



nonperturbative one-pion exchange alone: Nogga, Timmermans+ v.K. ‘05
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well described at LO decreases eventually vanishing in the removed cutoff imit. Note further that the phase shifts
corresponding to a repulsive long-range singular potential without adding a strong attractive contact interaction have
a well defined removed cutolt imut which strongly deviates trom the data as seen 1 Fig. 3. Une might be tempted
to try to reproduce the data by treating the higher order contact interactions perturbatively. However, and on top
to the conceptual problems discussed above, such a perturbative treatment would be questionable due to the large
discrepancy between the data and the LO phase shitts, see also Ref. [?4] for a related discussion. Thus, as mentioned

3 | : I

= 50| : /| ~— ]

o Tl /

£ -

CR | 7 7 _

- [ | ~

@ L / — -.:-.

g -5 | | S= 7
000 005 010 015 020 025  0.30

k [GeV]

FIG. 3: S-wave phase shifts versus the particle momentum in the center-of-mass frame. The solid (red) line corresponds to the
underlying potential and the dashed lines with decreasing length of dashes are phase shifts for the cutoff A = 0.6, 0.8, 1.0, 1.4, 2.0
and 3.0 GeV, respectively. The constant contact interaction term is fitted to reproduce the scattering length. The dotted (black)
line represents the phase shifts corresponding to the singular long range potential in the infinite cutoff limit.
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plus similar expressions for its derivatives, where a local
contact-range potential is used: Csy,¢?". The regulariza-
tion is slightly different than in the original manuscript,
but it is certainly simpler and nonetheless equivalent. The
details of the calculation are analogous to those of Ref. [8],
but extended to higher orders. The (5, couplings are de-
termined by fitting to the toy model phase shifts in the
20 — 80 MeV (80 — 200 MeV) range for v = 1,3 (v =5, 7).
Calculations are shown for the cutoffs R, = 0.3,0.6,1.2
and 1.8fm up to order Q7 (N®LO) in the EFT expan-

sion. The conclusion is that the standard EF'T approach of
Ref. [2] is perfectlv able to describe the phvsics of the tov

model of Epelbaum et al. [1]. In addition it improves over

the proposal of Ref. [1] (namely, a purely non-perturbative

approach with a judiciously chosen cutoff), in the sense

that there are no strong restrictions on the cutoff (besides

the numerical ones, R, > 0.3fm in this case), which can

be taken harder than the breakdown scale if one wishes to.

Notice that even though the existence ot the K, — 0 lmit
has not been proven, this i1s not a necessary condition for
the present approach to be useful.

. E. Epelbaum, A. M. Gasparyan, J. Gegelia, and
U.-G. MeiBner, Eur. Phys. J. A54, 186 (2018),
arXiv:1810.02646 [nucl-th] .

A. Nogga, R. G. E. Timmermans, and U. van Kolck,
Phys. Rev. C72, 054006 (2005), nucl-th /0506005 .

M. Pavon Valderrama,
Int. J. Mod. Phys. E25, 1641007 (2016),
arXiv:1604.01332 [nucl-th] .

D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl.
Phys. B534, 329 (1998), nucl-th/9802075 .

M. Pavon Valderrama and E. Ruiz Ar-
riola, Phys. Rev. C74, 064004 (2006),
arXiv:nucl-th /0507075 .

M. C.  Birse, Phys. Rev. C74, 014003 (2006),
arXiv:nucl-th /0507077 .

M. Pavon Valderrama and D. R.
Phillips, Phys. Rev. Lett. 114, 082502 (2015),

arXiv:1407.0437 [nucl-th] .
M. Pavon Valderrama, Phys.Rev. C84, 064002 (2011),
arXiv:1108.0872 [nucl-th] . |



And for the record:

Epelbaum + Gegelia, arXiv®7.2420 [nucl-th]

the 1/m-expansion. When pions are treated non-perturbatively as suggested in the
Weinberg scheme, the formulation we propose. being renormalizable, offers the ap-
pealing possibility to remove the UV cutoff in the way compatible with the princi-
ples of EFT. We have analyzed two-nucleon scattering at LO in the modified Wein-
berg approach. We found that the integral equation does not possess a unique solu-
tion in the ° P, partial wave similarly to the Skomyakov—Ter-Martirosyan equation
for spin-doublet nucleon-deuteron scattering. One possible way to fix the solution

in this channel is to include the corresponding contact interaction whose strength
1s tuned to reproduce the low-energy data [37]. The obtained cutoff-independent
results for phase shifts at LO in the modified Weinberg scheme are in a reasonably
good agreement with the Nijmegen PWA. The LETs for the coefficients in the ef-

[37] P. F. Bedaque, H. W. Hammer and U. van Kolck. Phys. Rev. Lett. 82, 463 (1999)
[nucl-th/9809025].

as claimed earlier by

A. Nogga, R.G.E. Timmermans and U.van Kolck,
Phys. Rev. C 72 (2005) 054006 [nucl-th/0506005]
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