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Ovpp from lattice QCD

..computational cost...signal to
noise....quark masses....
systematics...yada yada yada. ..

hey André, why don't you calculate
my counter term already?

well...even if we ca/culam

A pp, wewouldn't know how to
L interpret it




Ovpp from lattice QCD

Largely correlated challenges ahead

(¢ contraction cost A
¢ FEuclidean spacetime: t3; — —itp
§ finite volume focus of this and
- = the next talk
8 : phys. !
\_ quark masses: Mg — Mg ) and no, no Quantum
computing needed &5
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two-nucleon electroweak process

Consider a process 2-nucleons coupling via a local current to a final 2-nucleon state

~N

.
[ Matthias will discuss

N
\ non-local currents

electroweak ®
amplitudes /
®
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Schindler
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two-nucleon electroweak process

Consider a process 2-nucleons coupling via a local current to a final 2-nucleon state

electroweak \ ®
amplitudes /
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We would naturally expect that these may be accessed via appropriately designed
three-point correlators

( )

| Caprs = (O () T (te) O1(0))
L\ ] =D _ Fm(ty,tes L) {n; LT (0)|n; L)

finite-volume
matrix elements :

[ Fam(ts,te: L) = (0]O4(0)|n; L) (m; L|OI(0)|0) et En—te(Em=En) ]




two-nucleon electroweak process

Consider a process 2-nucleons coupling via a local current to a final 2-nucleon state
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finite-volume
matrix elements
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all matrix nuclear elements calculations

have been of deeply bound states
(see Zohreh’s talk)




two-nucleon electroweak process

Consider a process 2-nucleons coupling via a local current to a final 2-nucleon state
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three-point correlators
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finite-volume
matrix elements :
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Ovpp requires understanding
this for unbound states
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two-nucleon electroweak process

( )

electroweak \ ® seemingly reasonable

amplitudes /
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EFTs
Lypr =Lz + LNz +LNn+ -+

- N ~ ~

finite-volume ‘ J not gOOd enough. |
matrix elements § DR O requires well defined EFT

] convergence?

- J
O heavy quark masses?
O perturbative
1.e. how much would your final result depend on pure QCD O kinematic restrictions

and how much depends on your choice and order of the EFT? _‘ 0 str ange sector of QCD




two-nucleon electroweak process

electroweak ‘\ ®
amplitudes /
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all-orders mapping

finite-volume
matrix elements :

¢ RB & Hansen (2015) A
& Baroni, RB, Hansen, Ortega (2018)




Two-body scattering

Unitarity using all orders perturbation theory:

IR limit of QCD, only interested in
hadronic d.o.f.




Two-body scattering

Unitarity using all orders perturbation theory:

- ><+>©< X X OG-

{><+ + 0+ O X+ }

non-perturbative kernel including
all diagrams not shown...

“yep, the left hand cut is there”




Two-body scattering

Unitarity using all orders perturbation theory:
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Two-body scattering

Unitarity using all orders perturbation theory:

— + e

Tﬁ)(++... }

{ K-matrix




Two-body scattering

Unitarity using all orders perturbation theory:

Im[s]

square root singularity. ]

Rels]




Two-body scattering

Unitarity using all orders perturbation theory:

S P
Im[s]

/{ e.g. deuteron
Rel[s

— O AAAARels|




Two-body scattering
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Two-to-two scattering with current - (full amp.)

Let's isolate all possible singularities of... \ é ®
o e



Two-to-two scattering with current - (full amp.)

Kinematic divergences

— m?2 + e

Wy, .o, T SMoOOth”




Two-to-two scattering with current - (full amp.)

Kinematic divergences



Two-to-two scattering with current - (df amp.)

Divergence-free amplitude

Wty = )%)(%)(@?)G@OCX)(

New class of diagrams:
(" )
DO P 1B GO )

B [11721C,0}lél[11mk]

o J

\_ same square-root (and possibly pole)
singularities as two-body amplitudes

\




Two-to-two scattering with current - (df amp.)

Divergence-free amplitude
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Two-to-two scattering with current

Divergence-free amplitude

Wty = )%)(%)(@?)G@OCX)(
M (%ﬁ N é) iM

Complex function...depending
on the one-body form factors

Naive Watson’s theorem
does not apply!

finite-volume quantities must be
able to recover this singularity




Two-to-two scattering with current

Divergence-free amplitude
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few-nucleons systems in LQCD

lattice QCD

—

finite-volume spectrum

NN & NNN amplitudes
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analytic
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Putting particles in a box

¢ Finite-volume arise from the interactions with mirror images
¢ Assuming L >> size of the hadrons ~ 1/m
¢ This is a purely infrared artifact
¢ We can determine these artifact using hadrons are the degrees of freedom

¢ Note m,L is a natural parameter

\ pion cloud

ma(L) = mp(c0) + O(e™ ")




Two-particle in finite volume

Consider the finite-volume two-particle correlator (E~2m):
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Consider the finite-volume two-particle correlator (E~2m):
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Two-particle in finite volume

Consider the finite-volume two-particle correlator (E~2m):
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\_ F replaces . a simple square root singularity is replaced by
a function that has both simples poles and the

\ square root singularity




Two-particle in finite volume

Consider the finite-volume two-particle correlator (E~2m):
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Two-particle in finite volume

Consider the finite-volume two-particle correlator (E~2m):
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These ideas in practice

had/gpec

Arguably the most advanced implementations of this are currently in the
meson sector, where it is increasingly common to extract 30-100 energy levels
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RB, Dudek, Edwards & Wilson (2017)




had/gpec

Arguably the most advanced implementations of this are currently in the
meson sector, where it is increasingly common to extract 30-100 energy levels

These ideas in practice
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These ideas in practice had/spec

Arguably the most advanced implementations of this are currently in the
meson sector, where it is increasingly common to extract 30-100 energy levels
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few-nucleons systems in LQCD

lattice QCD
—
finite-volume spectrum NN & NNN amplitudes analytic bound states
. ; . ! continuation

e I Sl

these tools have been applied to study

unitarity and the finite-volume
spectrum in the 3-body sector

\ r ‘ outside the box

inside the box

Hansen Szczepaniak




few-nucleons systems in LQCD

& RB, Hansen & Walker-Loud (2014)

. & RB & Hansen (2015
lattice QCD (2015)
f_l a [ h e p
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few-nucleons systems in LQCD

> ><

electroweak N <r

amphtudes /

lattice QCD
—1
finite-volume spectrum
o o
1-to-2
FV matrix L ..
elements }( A
2-to-2 .o o
FV matrix \X
elements .

electroweak \

amplitudes /

NN & NNN amplitudes analytic
continuation
e ——

bound states

==

transition } :
form factors

elastic form >_é_<

factors

& RB & Hansen (2015)
¢ Baroni, RB, Hansen, Ortega (2018)




Two-particle in finite volume with current

Same as before...but with a current

o _ @+@+@@+...
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Same as before...but with a current
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Two-particle in finite volume with current

Same as before...but with a current

CP = +@+ T

...everything is the same as before except for...

- §v-~p+ v;;‘b +Q'%}oo + O(e™k)

------------------

Eeads to the presence of F-functions... }

EIO’[ too surprising that Wyremerges... }




Two-particle in finite volume with current

Same as before...but with a current

o _ @+@+@@+...

...everything is the same as before except for...
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Two-particle in finite volume with current

-

New finite-volume function: ; ;
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Two-particle in finite volume with current

-

New finite-volume function: ; ; \
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Two-particle in finite volume with current

-

New finite-volume function:
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Two-particle in finite volume with current

After lots of massaging...

[L3<2\j\2>L — RWL,df}

Building block #1) Lellouch-Liischer matrices:

s (E - E,)
R(En, P) = Ehi%n F~YP, L)+ M(P) ]

derivatives of amplitudes and F-function
at the finite-volume spectra




Two-particle in finite volume with current

After lots of massaging...

£L3<2\j\2>L — RWL,df}

Building block #2) stable particle form factor

Wy ar — WHEHn ZM GY) U (—g?)) M

form factors of single-particle states




Two-particle in finite volume with current

After lots of massaging...

£L3<2\j\2>L — RWL,df}

Building block #3) G-function

Wi .ae — WHEHn ZM [G(J) FI (=g M

..............

known geometric function, which “adds
missing singularities by hand”




Checks: Ward-Takahashi ldentity

Ward-Takahashi identity implies (for specific kinematics), the five-point

U
function with JQED is determined from the four-point function and the
QED charge

e d )
War = 2P7 QM
- 5

[t is not obvious, but this implies

4 Q )
L3(2| 712} = —
(21T |2)r, = RWrL at 25

i.e., the QED charge is protected, even for unbound states

N\

- Jackura (IU)




Checks: Bound-state limit

Intuitively, in the limit that our state is bound, all these effects
must vanish exponentially fast. BN

----------------

Well known for the spectrum: [E . =FEg+0O (G_KL) }

Also applies for the matrix elements:

4 )

LARIT2) = R Wit = 22EL 4 oy

\ T 2\/E;Ey

/

remember, this is doubly singular ~

>_é_<N si;qSB FR(QQ) i

-

. Jackura (IU)




Checks: Implications for the physical deuteron

The deuteron is loosely bound, so these effects will be big
- mal )

4 5 6 7 8
O | | | | |
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> 2 e —
J N
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| —6 [.-" - dashed lines = keeping only Oe~"2h)
S gt d}=0 —
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~ 3 el T T Tmell
s | el ,
ol T el K g
O —
3 /
—1 | | | | |
scalar charge 4 5 6 7 ]
| M L ) Jackura (IU)




Take-home message: it can be done

(

finite-volume
spectrum
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Liischer

formalism

one-body

matrix elements :

two-to-two

matrix elements i

partial wave
amplitudes

electroweak
amplitudes

o<

.\ ® two-hadron
./ form factors
®

analytic
continuation

structure and

RB & Hansen (2016)
Baroni, RB, Hansen, &Ortega (2016)

nature of states

Multiple birds with one stone:

2|T12)p, ~R - [ Wyt + f MG M|

-

/! structural information composite states:

\

Access:
?5 transition electroweak amplitudes

M elastic electroweak amplitudes

€ bound states
& resonance

I remove all finite-volume systematics




Take-home message: it can be done
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Take-home message: it can be done
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Take-home message: it can be done
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Take-home message: it can be done
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structure and
nature of states

r

S,

Unitarity
\ é‘
/ °
. J
( A
WTI check

FV formalism for
spinless states

Perturbative check

............

r

L

Bound states check

r

do some calculations
already...




few-nucleons systems in LQCD

lattice QCD
—

finite-volume spectrum
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factors
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few-nucleons systems in LQCD
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electroweak N <r
amplitudes /

electroweak \
amplitudes /
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lattice QCD
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finite-volume spectrum
S o
1-to-2
FV matrix L}(
elements i A
2-to-2 .7 [
FV matrix \X
elements 0./ |
1-to-1 s’
with two j@i .
Cu r re n t S "’m," .::.... A

amplitudes / \

Davoudi

(to appear)

NN & NNN amplitudes analytic bound states
continuation
. ﬁ

==

form factors j :

transition

elastic form >_é_<

factors

Hansen
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few-nucleons systems in LQCD

These techniques are being tested and implemented for A=0 systems first, but they
are necessary and will be applied for light nuclear systems...

NN & NNN amplitudes
® —‘ three nucleon forces

<, <

N - to - Delta/Nmt electroweak N <
weak transitions amplitudes ./
( N — NN - to - NN
electroweak \ ¢ 4
weak transitions

amplitudes /

electroweak L"\,‘ <
litud
neutrino(full /less) ‘ lamp HHEES / )

double beta decay




few-nucleons systems in LQCD

Extrapolating to bigger systems

Lattice QCD NN & NNN amplitudes
'\ St S
o e o e
non-perturbatively match, I‘V ) 1
so as to get a result that is ( Match to EFTs
as true to QCD as possible electroweak Ta
| amplitudes < Lxpr = L+ LNz +LNN + -
minimize bias - L

electroweak \ ® l
°

amplitudes /

extrapolate to heavier

systemes...
electroweak L‘y ,J‘ﬂ

amphtudes / \
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ABSTRACT -

The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they

are resonances whose existence is deduced from enhancements in the energy dependence of
scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum
chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the

limits of the electroweak sector of the standard model consider processes which feature hadron




