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tection of 0⌫�� decay is out of reach for the coming gen-
eration of experiments unless the decay is driven by the
exchange of a heavy particle, the existence of which we
have not yet discovered, or some other new physics (see
Sec. II B 2). If the hierarchy is inverted, the experiments
to take place in the next decade have a good chance to
see the decay, provided they have enough material. In-
deed, Fig. 1 shows that the current experimental limit
almost touches the upper part of the inverted-hierarchy
region.

How much material will be needed to completely cover
the region, so that we can conclude in the absence of a
0⌫�� signal that either the neutrino hierarchy is normal
or neutrinos are Dirac particles? And in the event of
a signal, how will we tell whether the exchange of light
neutrinos or some other mechanism is responsible? If it
is the latter, what is the underlying new physics? To
answer any of these questions, we need accurate nuclear
matrix elements.

B. Neutrinoless Double-Beta Decay

1. Light-neutrino Exchange

The beginning of this section closely follows Ref. [29],
which itself is informed by Ref. [38]. More detailed
derivations of the �� transition rates can be found in
Refs. [39–41].

The rate for 0⌫�� decay, if we assume that it is medi-
ated by the exchange of the three light Majorana neutri-
nos and the Standard Model weak interaction as repre-
sented in Fig. 2, is
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where Ee1, Ee2 and p1, p2 are the energies and momenta
of the two emitted electrons, Ei and Ef are the energies
of the initial and final nuclear states, and Z0⌫ is an am-
plitude proportional to an S-matrix element up to delta
functions that enforce energy and momentum conserva-
tion. The S matrix depends on the product of leptonic
and hadronic currents in the e↵ective low-energy semi-
leptonic Lagrangian density:
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L
the left-handed charge-changing hadronic cur-

rent density. Because Z0⌫ is second order in the weak-
interaction Lagrangian, it contains a lepton part that de-
pends on two space-time positions x and y, which are
contracted and ultimately integrated over:
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FIG. 2. Feynman diagram for 0⌫�� decay mediated by light-
neutrino exchange.

Here ⌫k is the Majorana mass eigenstate with mass mk

and Uek is the element of the neutrino mixing matrix
that connects electron flavor with mass eigenstate k. We
denote the charge conjugate of a field  by  c ⌘ i�2 ⇤

(in the Pauli-Dirac representation), and because ⌫k are
Majorana states we can take ⌫c

k
= ⌫k.

The contraction of ⌫k with ⌫c
k
turns out to be the usual

fermion propagator, so that the lepton part above be-
comes
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where q is the 4-momentum of the virtual neutrino. The
term with /q vanishes because the two currents are left
handed and if we neglect the very small neutrino masses
in the denominator, the decay amplitude becomes pro-
portional to
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Here � is the so-called Dirac phase, and ↵1,↵2 are Majo-
rana phases that vanish if neutrinos are Dirac particles.
We have inserted the absolute value in Eq. (5) consis-
tently with the amplitude in Eq. (1), because the expres-
sion inside can be complex.
To obtain the full amplitude Z0⌫ , one must multi-

ply the lepton part above by the nuclear matrix ele-
ment of two time-ordered hadronic currents and inte-
grate the product over x and y. Because Jµ

L
(x) =

eiHx0Jµ

L
(x)e�iHx0 (H is the hadronic Hamiltonian and

the current on the right-hand side is evaluated at time
x0 = 0), one can write the matrix element of an ordinary
product of hadronic currents between initial (i) and final
(f) nuclear states as
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A formal picture of the 0νββ decay.  
Since it is assumed that the exchanged  
Neutrino is light, the corresponding range  
is long. Neutrino mass here is associated  
with the See-saw type I mechanism and 
mν~v2/MN, where MN  is the very heavy  
sterile neutrino mass. 
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sterile-neutrino exchange [70, 79–82], left-right symmet-
ric models [78, 83–85], and the exchange of supersym-
metric particles [86–89] are common in the literature.

Most of the new-physics mechanisms involve the ex-
change of heavy particles. However, the direct exchange
between nucleons, represented by the contact operator in
the bottom diagram in Fig. 4 in the heavy-particle limit,
occurs less often in most models than exchange between
pions or between a pion and a nucleon, shown in the
top and middle diagrams of the figure. In �EFT each
pion propagator carries a factor ⇤2

b
/m2

⇡
, where ⇤b ⇠ 500

MeV�1 GeV is the chiral-symmetry breaking scale, at
which the e↵ective theory breaks down. Each ordinary
two-nucleon–pion (NN⇡) vertex comes with a derivative,
which results in a factor of p/⇤b or m⇡/⇤b, where p is a
typical momentum. Because the contact interaction has
no derivatives in most models, pion mediation enhances
the amplitude [90]. The two-pion mode at the top of
the figure is thus generally the dominant one. The one-
pion graph in the middle is nominally smaller by a factor
of ⇤b/m⇡ and the four-nucleon graph at the bottom is
smaller by another factor of the same quantity. The lead-
ing one-pion-exchange contribution to 0+ ! 0+ 0⌫��
decay is forbidden by parity symmetry, however, and so
the middle graph ends up contributing at the same order
as the contact term [90]. The counting is di↵erent for
nuclear forces, where the contact and one-pion exchange
interactions both appear at leading order [19, 20]. The
usual one-pion exchange interaction diagram contains a
derivative at each vertex; the derivatives counteract the
pion propagator, placing the diagram at the same chiral
order as the four-nucleon contact diagram. Two-pion ex-
change occurs at higher order. Computations of matrix
elements in supersymmetric models, even when they do
not rely explicitly on �EFT, support the statement that
pion-exchange modes are the most important [91–93].

The �EFT counting should be confirmed by explicit
calculations, as additional suppression or enhancement
may occur [94]. Lattice QCD studies that explicitly in-
corporate hadronic degrees of freedom are underway [95],
and will provide accurate input for the e↵ective field the-
ory treatment of these decay modes.

The four-nucleon contact vertex represented at the
bottom of Fig. 4 is further suppressed by nuclear struc-
ture. In the light-neutrino exchange 0⌫�� decay mode,
typical internucleon distances are of the order of few fem-
tometers. The exchange of heavy particles, with mass
mH & 100 GeV [90], requires nucleons to be closer to
each other and will thus be suppressed. Pions have a
mass of m⇡ ' 138 MeV ⇡ 1.4 fm�1, a distance com-
parable to the average internucleon spacing, and so the
graphs with pions propagating between nucleons will not
be suppressed. This behavior is apparent in potentials as-
sociated with the three modes of heavy-particle exchange.
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FIG. 4. Diagrams for the two-pion-exchange (top), one-pion-
exchange (middle) and contact (bottom) modes of 0⌫�� de-
cay caused by lepton-number violation associated with the
exchange of a heavy particle.

In momentum space, they have the form
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(16)

The first of these is clearly more strongly a↵ected at high
momentum transfer than the two pion-exchange modes.
It is worth noting that the induced pseudoscalar term
discussed in Sec. II B 1 also involves pion-exchange, in
combination with the usual exchange of a light neutrino.
There the pion brings no enhancement because the light-
neutrino is already long range.
In addition to being suppressed, the contact term is

di�cult to treat well. Its matrix elements depend on the
nuclear wave function at internucleon distances that are
less than the size of a nucleon. Our many-body methods
all have nucleons as elementary degrees of freedom and
may break down on scales at which the nucleon is not
a point particle. The four-nucleon contact term is thus
likely to carry a large uncertainty. It is fortunate that
terms involving pion exchange are usually more impor-
tant.
Within specific models, heavy-particle exchange with

Another possibility  involves an  
exchange of some heavy, often 
new, particle. This is therefore 
effectively a contact four nucleon 
vertex. The physics of this type  
of lepton number violation is  
present in the See-saw type II  
or type III models. 
 



Figure from Prezeau, Ramsey-Musolf and Vogel, Phys. Rev D68, 034016 (2003) 

EFT is often used when treating matrix elements of the 
short range operators. One can then express the various  
contributions as expansion in different powers of the  
parameter p/ΛH, where ΛH = 4πfπ ~ 1 GeV.   
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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for 0⌫��
decay candidates as a function of mass number A. All the
plotted results are obtained with the assumption that the ax-
ial coupling constant gA is unquenched and are from di↵erent
nuclear models: the shell model (SM) from the Strasbourg-
Madrid (black circles) [111], Tokyo (black circle in 48Ca) [112],
and Michigan (black bars) [82] groups; the interacting bo-
son model (IBM-2, green squares) [107]; di↵erent versions
of the quasiparticle random-phase approximation (QRPA)
from the Tübingen (red bars) [113, 114], Jyväskylä (orange
times signs) [81], and Chapel Hill (magenta crosses) [115]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [116, 117] and non-relativistic
(blue triangles) [118]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [119, 122, 123], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [124, 125]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
energy Ei.
The configuration space usually comprises only a rela-

tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
single-particle states,

|�̄ii =
X

j

cij | ji , (18)

with the cij determined by exact diagonalization of He↵.
The shell model describes ground-state nuclear proper-

ties such as masses, separation energies, and charge radii
quite well. It also does a good job with low-lying excita-
tion spectra and with electromagnetic moments and tran-
sitions [119, 122, 123]. The wide variety of successes over
a broad range of isotopes reflects the shell model’s ability
to capture both the excitation of a single particle from
an orbital below the Fermi surface to one above, in the
spirit of the original naive shell model [126, 127], and col-
lective correlations that come from the coherent motion
of many nucleons in the configuration space. The exact
diagonalization of He↵ means that the shell model states
|�̄ii contain all correlations (isovector and isoscalar pair-
ing, quadrupole collectivity, etc.) that can be induced by
He↵.
This careful treatment of correlations, on the other

hand, restricts the range of shell model to relatively
small configuration spaces, at present those for which the
Hilbert-space dimension is less than about (1011) [128,
129]. For this reason most shell model calculations of

Figure from review by Engel and Menendez (2017) 
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operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [119, 122, 123], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [124, 125]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
energy Ei.
The configuration space usually comprises only a rela-

tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
single-particle states,

|�̄ii =
X
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cij | ji , (18)

with the cij determined by exact diagonalization of He↵.
The shell model describes ground-state nuclear proper-

ties such as masses, separation energies, and charge radii
quite well. It also does a good job with low-lying excita-
tion spectra and with electromagnetic moments and tran-
sitions [119, 122, 123]. The wide variety of successes over
a broad range of isotopes reflects the shell model’s ability
to capture both the excitation of a single particle from
an orbital below the Fermi surface to one above, in the
spirit of the original naive shell model [126, 127], and col-
lective correlations that come from the coherent motion
of many nucleons in the configuration space. The exact
diagonalization of He↵ means that the shell model states
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ing, quadrupole collectivity, etc.) that can be induced by
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This careful treatment of correlations, on the other

hand, restricts the range of shell model to relatively
small configuration spaces, at present those for which the
Hilbert-space dimension is less than about (1011) [128,
129]. For this reason most shell model calculations of

Calculated M0ν by different methods (color coded) 
The spread of the M0n values for each nucleus is ~ 3. On the other 
hand, there is relatively little variation from one nucleus to the next. 
(Remember the ``provocative” paper by Bahcall, Muryama, and  
Pena-Garay (2003)) 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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How does the matrix element M0ν
GT depend on the distance 

between the two neutrons that are transformed into two 
protons ? This is determined by the function C0ν

GT(r) 
 
 
 
It is normalized by the obvious relation  
 
Thus, if we could somehow determine C(r) we could simply obtain M0ν.  
 
  

Quite generally the double beta decay nuclear matrix element consists 
of three parts: 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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The Gamow-Teller part MGT is the dominant one. When treated 
in the closure approximation it is 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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Function C0ν(r) evaluated in QRPA in the ``standard scenario”.  
Note the peak at ~ 1fm. There is little contribution from r > 2-3 fm.  
The functions for different nuclei look very similar, essentially universal.  
The magnitude of M0ν is determined basically by the height of the peak. 
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Now C(r) evaluated in the nuclear shell model. All relevant 
features look the same as in QRPA despite the very different 
way the equations of motion are formulated and solved.  
The peak heights are, naturally, different given the different 
values of the matrix elements in NSM and QRPA. 

From Menendez 
et al, Nucl. Phys. 
A818, 130 (2009)  
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FIG. 5. The GT-⌫, F-⌫, GT-⇡⇡, and GT-⇡N distributions
in momentum space for the 10He!10Be and 12Be!12C de-
cays. Solid and dashed lines are obtained, respectively, with
and without the inclusion of the momentum dependence in
nucleonic form factors. See text for explanation.
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FIG. 6. The left (right) panel shows the GT-AA distribution
in r-space (q-space) for the 10He!10Be transition, with and
without “one-pion-exchange-like” correlations in the nuclear
wave functions. See text for explanation.

of turning o↵ the momentum dependence of gV,A(q2) is
less than 5%.

For the weak-magnetic contributions GT-MM, some
care has to be taken when removing the form factors.
As evident from Eqs. (A5) and (A6), in the absence of
gV (q2), both VGT,MM and VT,MM are singular at r ! 0.
To compute the GT-MM matrix element in the second
line of Table IV we used the regularization of the delta
function in Eq. (27), with R = 0.6 fm. Varying R be-
tween 0.6 and 0.8 fm does not have an appreciable e↵ect
on the result. The good agreement for the values of GT-
MM in the first and second line of Table IV indicates that
the result does not strongly depend on the way the region
of large q2 is regulated. For the T-MM matrix element,

the second line of Table IV is obtained by naively using
the potential VT,MM (r) in Eq. (A6). Here the divergence
at r = 0 does not spoil the evaluation of the associated
matrix element. Again this is due to the fact that the
tensor operator T (Sab) gives zero on pairs in relative
S-wave. In fact, the ⌧+a ⌧+b is selecting out valence (nn)
pairs in the initial state. These are largely in a 1S0 rela-
tive state, with some 3P0 components which are however
zero at short-range due to an angular momentum barrier.
While in Table IV we only report results for the impact

of form factors on the light neutrino-exchange potentials,
the same features are shared by matrix elements of the
V⇡⇡ and V⇡N potentials, as they are proportional to to
the AP and PP components in IV. The same holds for
the VNN potential, which is analogous to GT-MM. In
particular, changing the regularization of the delta func-
tion potential from Eq. (27) to a dipole form factor, ei-
ther gV (q2) or gA(q2) has little e↵ect on the F-NN and
GT-NN matrix elements.
The impact of the axial and vector form factors on

the 10He!10Be and 12Be!10C transitions is illustrated
in Fig. 5. The solid and dashed lines denote the distri-
butions C̄(q) defined in Eq. (26), with and without the
dipole form factors for gV,A(q2). We see that the dipole
form factors start to have an e↵ect at around q ⇠ 200
MeV, and cut o↵ the distributions for q & 500 MeV. The
e↵ect is similar for the F-⌫ and GT-⌫, which are mostly
long-distance, and the pion-range GT-⇡⇡ and GT-⇡N
matrix elements, which are induced by heavy LNV new
physics.

In the third row of Table IV, we report results ob-
tained by regulating the matrix elements with the F (r)
function defined in Eq. (28) with RL = 0.7 fm. We stud-
ied the sensitivity of our results with respect to variation
of RL 2 {0.6, 0.8} fm and found that the most a↵ected
matrix elements are those characterized by the presence
of the node. For example, by comparing the second and
the third rows in the table we can see that GT-⌫ and
F-⌫ undergo a ⇠ 18% and ⇠ 13% variation, respectively,
whereas T-⌫ is essentially una↵ected by the regulator
function. This is because the T-like operators are already
zero at short-distances.

Finally, in the forth row of Table IV we report re-
sults obtained by artificially turning o↵ the “one-pion-
exchange-like” correlation operators in the nuclear wave
functions as discussed in Sec. III. Turning the correlations
o↵ has a dramatic e↵ect on the tensor matrix elements,
which become statistically equal to zero. The GT-⌫ and
F-⌫ magnitudes increase by ⇠ 10% with respect to the
correlated results given in the first row of the table. The
e↵ect of the “one-pion-exchange-like” correlations is rep-
resented in Fig. 6, where the blue triangles (solid line)
in the left (right) panel represent the r-space (q-space)
GT-AA transition distribution obtained by turning o↵
the correlations to be compared with the red dots (solid
line) obtained with the correlated wave function.

In closing this section, we reiterate that 0⌫�� matrix
elements involve on average values of momentum transfer

C(r) for the hypothetical 0νββ decay of 10He.  

The calculation was performed 
using the ab initio variational 
Monte-Carlo method. So most 
of the approximations inherent 
in NSM or QRPA are avoided. 
Yet the C(r) function looks, 
at least qualitatively, very 
similar to the results shown 
before. 
 
We can conclude, therefore, 
that the shape of C(r) is 
``universal”, independent 
of the way the nuclear wave 
functions are evaluated, thus 
it is very likely ``correct”.  

Figure from Pastore et al.Phys. Rev. C97,014606(2018)  
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν
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+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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FIG. 1. (Color online) Multipole decomposition of C2ν
cl (r) as

function of relative distance of two β-decaying neutrons in the 76Ge
nucleus. Calculation performed for 76Ge with 23 single-particle levels
model space. Positive-parity multipoles are shown in the upper panel
and the negative-parity ones are in the lower panel.

given by

C2ν
cl (r, J π ) =

∑

ki ,kf ,J

∑

pnp′n′

(− 1)jn+jp′+J π +J

×
√

2J + 1

{
jp jn J π

jn′ jp′ J

}

× f J
n,n′,p,p′ (r)

×⟨0+
f ||[ ˜c+

p′ c̃n′]J ||J πkf ⟩⟨J πkf |J πki⟩
× ⟨J πki ||[c+

p c̃n]J ||0+
i ⟩. (10)

Here ki and kf are the labels of the excited states with the
multipolarity J π in the intermediate nucleus built on the initial
and final nuclear ground states, and ⟨0+

f ||[c+
p′ c̃n′ ]J ||J πkf ⟩ and

⟨J πki ||[c+
p c̃n]J ||0+

i ⟩ are the corresponding QRPA amplitudes.
It is now clear that, by construction,

C0ν
GT(r) = H (r, Ē) × C2ν

cl (r), (11)

which is valid for any shape of the neutrino potential H (r, Ē).
Thus, if C2ν

cl (r) is known, C0ν
GT(r) and therefore also M0ν

GT can
be easily determined. The Eq. (11) represents the basic relation
between the 0ν and 2ν ββ-decay modes that we will explore
further.

Note that while the function C2ν
cl (r) has a substantial

negative tail past r ∼ 2–3 fm, these distances contribute very
little to C0ν

GT(r). This is a consequence of the shape of the
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FIG. 2. (Color online) C2ν
cl (r) as a function of the relative distance

of the decaying neutron pair for different nuclei.

neutrino potential H (r, Ē) that decreases fast with increasing
values of the distance r .

A. Neutrino potential

The neutrino potential HGT(r, Ē) governing the Gamow-
Teller part of the matrix element M0ν is defined as

HGT(r, E0ν)

= 2R

π

∫ ∞

0
j0(qr)

q

q + E0ν

f 2
FNS(q2)gHOT(q2) dq, (12)

where

fFNS = 1
(
1 + q2

M2
A

)2 (13)

takes into account the finite size of the nucleon and is usually
approximated using the above dipole type form factor with
MA = 1.09 GeV [13] (varying MA between 1.0 and 1.2 GeV
makes little difference). The function gHOT(q2) includes the
terms from higher-order hadron currents, namely induced
pseudoscalar and weak magnetism [14]. The short-range
correlations are included using the method of Ref. [15]. The
Jastrow-like two-body function derived there is applied when
the radial integrals in both functions C0ν and C2ν

cl are evaluated;
they do not appear explicitly in Eq. (12).

We show in Fig. 3 the shape of the potential. When the finite
nucleon size, higher-order terms are neglected, and Ē0ν = 0
is assumed, the potential has Coulomb-like shape R/r . The
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given by

C2ν
cl (r, J π ) =

∑

ki ,kf ,J

∑

pnp′n′

(− 1)jn+jp′+J π +J

×
√

2J + 1

{
jp jn J π

jn′ jp′ J

}

× f J
n,n′,p,p′ (r)

×⟨0+
f ||[ ˜c+

p′ c̃n′]J ||J πkf ⟩⟨J πkf |J πki⟩
× ⟨J πki ||[c+

p c̃n]J ||0+
i ⟩. (10)

Here ki and kf are the labels of the excited states with the
multipolarity J π in the intermediate nucleus built on the initial
and final nuclear ground states, and ⟨0+

f ||[c+
p′ c̃n′ ]J ||J πkf ⟩ and

⟨J πki ||[c+
p c̃n]J ||0+

i ⟩ are the corresponding QRPA amplitudes.
It is now clear that, by construction,

C0ν
GT(r) = H (r, Ē) × C2ν

cl (r), (11)

which is valid for any shape of the neutrino potential H (r, Ē).
Thus, if C2ν

cl (r) is known, C0ν
GT(r) and therefore also M0ν

GT can
be easily determined. The Eq. (11) represents the basic relation
between the 0ν and 2ν ββ-decay modes that we will explore
further.

Note that while the function C2ν
cl (r) has a substantial

negative tail past r ∼ 2–3 fm, these distances contribute very
little to C0ν

GT(r). This is a consequence of the shape of the
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cl (r) as a function of the relative distance

of the decaying neutron pair for different nuclei.

neutrino potential H (r, Ē) that decreases fast with increasing
values of the distance r .

A. Neutrino potential

The neutrino potential HGT(r, Ē) governing the Gamow-
Teller part of the matrix element M0ν is defined as

HGT(r, E0ν)

= 2R

π

∫ ∞

0
j0(qr)

q

q + E0ν

f 2
FNS(q2)gHOT(q2) dq, (12)

where

fFNS = 1
(
1 + q2

M2
A

)2 (13)

takes into account the finite size of the nucleon and is usually
approximated using the above dipole type form factor with
MA = 1.09 GeV [13] (varying MA between 1.0 and 1.2 GeV
makes little difference). The function gHOT(q2) includes the
terms from higher-order hadron currents, namely induced
pseudoscalar and weak magnetism [14]. The short-range
correlations are included using the method of Ref. [15]. The
Jastrow-like two-body function derived there is applied when
the radial integrals in both functions C0ν and C2ν

cl are evaluated;
they do not appear explicitly in Eq. (12).

We show in Fig. 3 the shape of the potential. When the finite
nucleon size, higher-order terms are neglected, and Ē0ν = 0
is assumed, the potential has Coulomb-like shape R/r . The
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Here are the functions C2ν
cl(r) evaluated with QRPA for several  

nuclei. The peak at small r is essentially compensated by the  
substantial tail at larger r, thus M2ν

GTcl is very small. Besides, 
the C2ν

cl(r) depends strongly on the nuclear parameters used,  
thus it is rather uncertain, particularly its tail at r > 2fm.  



For comparison, the C(r)  
function for 136Xe evaluated 
in the NSM by Shimizu et al. 
The yellow line corresponds 
to the C2ν

cl(r) . It is somewhat 
similar to the corresponding 
QRPA curve. However, differences 
are be expected due to the 
absence of the giant GT 
state in the NSM in this case.  
 
In particular, the area under 
the tail at r > 2 fm is less and 
does not compensate for the 
peak area. 

Shimizu et al, Phys. Rev. Lett. 120, 142502(2018) 



There is a fundamental difference between the M2ν
cl evaluated in the 

NSM and QRPA. The NSM results are substantially larger then the QRPA 
ones. The figure is  from Shimizu et al, Phys. Rev. Lett. 120, 142502(2018), 
we believe now, see Simkovic et al., Phys. Rev. C98, 064325 (2018), that 
the ``natural “ value of  M2ν

cl should be M2ν
cl = 0. 

So, who is right? 
    



	Cross sections of (t,3He) and (d,2He) reactions 
 give B(GT±) for β+ and β-; products of the amplitudes  
(B(GT)1/2) entering the numerator of  M2ν

GT  

Closure	2νββ-decay	
	NME	

Grewe,	…Frekers	at	al,	PRC	78,	044301	(2008)		

The β- strength is dominated 
by the giant GT resonance. 
However, the β+ strength is 
concentrated at low energy, 
little (but unknown) strength  
to the giant. 

 M2ν
GT and M2ν

GT-cl can be, in principle, experimentally determined  
 



 
The β- and β+ strength function  
calculated in SRQRPA. Note  
the different scales in the two  
Panels. In the β- case one can  
Clearly see the giant GT state.  
Also,the strength saturates at  
~15 MeV. 
On the other hand, the much  
smaller β+ strength, unlike the 
usual claims, gets also a substantial 
contribution from relatively 
high excitation energies. 
 
Whether this high-lying β+ 
strength exists or not is the 
crucial question. 
 

76Se 



Illustration of the difficulties. 
In the upper panel are the  
contributions to the M2ν from 
states up to E. Even though 
the correct value is reached 
(by design), it is also crossed at 
lower energies, followed by 
a drop at ~ 10 MeV. 
 
 
In the lower panel the same 
calculation is done for M2ν

cl. 
In this case the high energy 
drop is much larger because 
it is not reduced by the energy 
denominator present in the 
true M2ν.
 
While the states up to ~5 MeV 
can be studied experimentally, 
the ~ 10 MeV can not. It is not 
clear whether they exist or not.

M2ν
GT and M2ν

GT-cl evaluated in QRPA as functions of the excitation energy 	



This feature, i.e. first an increase of M2ν

 followed by decrease at higher energies 
appears to be present in other nuclear  
models as well. Here are the shell model 
results for M2ν in 48Ca (upper panel, Horoi 
et al, Phys. Rev.C75,034303(2007))  
and in the model case of 36Ar (lower 
panel, Kortelainen and Suhonen,  
J. Phys. G 30, 2003 (2004)). 
 
The drop at ~ 10 MeV is again visible, 
perhaps it is less apparent that in the 
heavier nuclei treated by QRPA. 
 
Nevertheless, the inherent uncertainty 
in M2ν

cl is substantial.   



Distribution of the numerators, 
<f|| σ τ+||n><n|| σ τ+ ||i> 
evaluated in QRPA, for the indicated 
2νββ decays. 
In 100Mo the ground 1+ state of 100Tc 
dominates, but there are significant 
positive and negative contributions 
at 5-15 MeV. For 136Xe and 76Ge  
there are significant, although mutually 
cancelling, contributions at ~ 10 MeV, 
at energy of the giant GT state.   

Energy denominators (MeV) 

136Xe 

76Ge 

Energy denominators (MeV) 

100Mo 



Is there a way to test whether the sum in M2ν 
is saturated at Em ~5 MeV, where is experimental 
value of M2ν is usually first reached, or whether it 
contains significant positive and negative 
contributions at ~ 10 MeV? 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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Lets consider once more the GT m.e. for 0νββ 

If we remove from the operator the neutrino potential 
H(r,E) we obtain the matrix element of the double GT 
operator connecting the ground states of the initial and 
final nuclei. The same operator would be responsible for 
the 2νββ decay if it would be OK to treat it in the closure 
approximation. It is also a component of the ``double GT” 
strength function for the initial nucleus |i>. 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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In reality, the closure approximation is not good for the 2νββ  
decay, but we can still consider the corresponding value if we  
somehow can guess the correct average energy denominator. 

The correct expression  
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This can be, perhaps, achieved by considering in  
detail the two and single electron spectra of the  
2νββ decay. 



Testing the convergence with respect of the intermediate nucleus 
1+ spectrum of the 2νββ matrix elements : 
(see Simkovic et al, Phys. Rev. C97, 034315 (2018)) 
 
The M2ν in fact depends on the electron and neutrino energies 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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If we remove from the operator the neutrino potential 
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strength function for the initial nucleus |i>. 
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is
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masses. Hence, the allowed approximation is valid, qR ≪ 1,
and only the Gamow-Teller operator στ+ and only the 1+

virtual intermediate states, contribute. On the other hand, in
the 0νββ decay the momentum transfer is of the order of the
nucleon Fermi momentum q ∼200 MeV, qR ! 1, and all
J π virtual intermediate states can contribute significantly. Our
discussion here sheds more light on the different behavior of
the 0νββ and 2νββ matrix elements.

It is worthwhile to remember another type of relation,
explored in the classic article by Pontecorvo [11]. At that
time the available information on ββ decay was based on the
geochemical determination of the total decay rate, 1/τtot =
1/τ0ν + 1/τ2ν . Since these two modes scale very differently
with Q (∼Q5 for 0ν and ∼Q11 for 2ν) Pontecorvo suggested
that comparing the total lifetimes of two isotopes, 130Te and
128Te, which have very different Q values, might reveal the
presence of the lepton number violating 0ν decay, provided
the nuclear matrix elements of these two isotopes are identical.
While the matrix elements of these two isotopes are indeed
rather close, they are not quite the same. Moreover, we know
today that the 0ν decay rate is very much smaller, if it is indeed
nonvanishing, than the 2ν decay rate.

The present article is structured as follows. In the next
section we describe the formalism that leads to the relation
between the Gamow-Teller part of the 0νββ matrix ele-
ment and the 2νββ matrix element evaluated in the closure
approximation. We also discuss the validity of the closure
approximation in the 0νββ case. In the following section we
discuss this novel relation in more detail and show numerous
examples. In Sec. IV we briefly discuss the issue of quenching
of the axial current matrix elements. While closure is a rather
poor approximation in the 2νββ case, we argue in Sec. V
that combining the known lifetimes with the often measured
distribution of the β− and β+ strengths constrains the M2ν

cl
values substantially. We believe that the relation found here
allows one to better understand the different behavior of these
matrix elements. We conclude in the last section.

II. FORMALISM

Assuming that the 0νββ decay is caused by the exchange
of the light Majorana neutrinos, the half-life and the nuclear
matrix element are related through

1
T1/2

= G0ν(Q,Z)|M0ν |2|⟨mββ⟩|2, (1)

where G0ν(Q,Z) is the easily calculable phase-space factor,
⟨mββ⟩ is the effective neutrino Majorana mass whose determi-
nation is the ultimate goal of the experiments, and M0ν is the
nuclear matrix element consisting of Gamow-Teller, Fermi,
and tensor parts,

M0ν = M0ν
GT −M0ν

F

g2
A

+ M0ν
T ≡ M0ν

GT(1 + χF + χT ), (2)

where χF and χT are the matrix element ratios that are smaller
than unity and, presumably, less dependent on the details of
the applied nuclear model. In the following we concetrate
on the GT part, M0ν

GT, which can be somewhat symbolically

written as

M0ν
GT = ⟨f |'lkσl · σkτ

+
l τ+

k H (rlk, Ē)|i⟩, (3)

where H (rlk, Ē) is the neutrino potential described in detail
below and rlk is the relative distance between the two neutrons
that are trasformed in the decay into the two protons.

In Ref. [4], based on the QRPA, as well as in Ref. [7] based
on the nuclear shell model, the function C0ν(r) that describes
the dependence of the M0ν on the distance rlk was introduced.
Formally, this function can be defined as [12]

C0ν
GT(r) = ⟨f |'lkσl · σkτ

+
l τ+

k δ(r −rlk)H (rlk, Ē)|i⟩, (4)

where δ(x) is the Dirac delta function. Obviously, this function
is normalized by

M0ν
GT =

∫ ∞

0
C0ν

GT(r) dr, (5)

and has the dimension lenght−1. The shape of C0ν
GT(r) is very

similar in both QRPA and NSM and in all cases consists of a
peak with maximum at r ∼1 fm ending near r ∼2.5 fm and
of very little contributions for larger values of r .

Now lets turn to the case of the 2ν decay mode. The matrix
element M2ν governing the 2νββ decay mode is of the form

M2ν = 'm

⟨f ||στ+||m⟩⟨m||στ+||i⟩
Em −(Mi + Mf )/2

, (6)

where the sumation extends over all 1+ virtual intermediate
states. We can introduce also the closure analog of M2ν ,
denoted by M2ν

cl , by replacing the energies Em by a properly
defined average value Ē2ν . Thus,

M2ν
cl ≡ ⟨f |'lkσl · σkτ

+
l τ+

k |i⟩,
(7)

M2ν
cl = M2ν × (Ē2ν −(Mi + Mf )/2).

In analogy with Eq. (4) we can define the new function

C2ν
cl (r) = ⟨f |'lkσl · σkδ(r −rlk)τ+

l τ+
k |i⟩,

(8)
M2ν

cl =
∫ ∞

0
C2ν

cl (r) dr.

While the matrix elements M2ν and M2ν
cl get contributions

only from the 1+ intermediate states, the function C2ν
cl gets

contributions from all intermediate multipoles. This is the
consequence of the δ function in the definition of C2ν

cl (r). When
expanded, all multipoles contribute. Naturally, when integrated
over r only the contributions from the 1+ are nonvanishing. An
example of the multipole decomposition of C2ν

cl (r) is shown in
Fig. 1, and in Fig. 2 we show the functions C2ν

cl (r) for a variety
of ββ decaying nuclei.

For completeness we show here the QRPA formula used
for the evaluation of the function C2ν

cl (r) and its multipole
decomposition depicted in Fig. 1. First, the function

f J
n,n′,p,p′ (r)

= ⟨p(1), p′(2)(r);J ∥ σ1 · σ2 ∥ n(1), n′(2)(r);J ⟩ (9)

is introduced where r is the relative distance between the
neutrons in the states n and n′, respectively, protons in p
and p′. Then, the part of C2ν

cl (r) with the multipolarity J π is

015502-2

In reality, the closure approximation is not good for the 2νββ  
decay, but we can still consider the corresponding value if we  
somehow can guess the correct average energy denominator. 

The correct expression  
for M2ν includes energy 
denominators 



Lets, instead, expand in εK,L/(En – (Ei+Ef)/2) < 1, and keeping just 
the first order term. There are now two matrix elements M1,M3 and 
two phase space integrals. 
M1 has the standard energy denominator (En – (Ei+Ef)/2) while 
M3 has its third power (En – (Ei+Ef)/2)3, so it converges much 
faster as a function of En. 
 
The single and full electron spectra depend (slightly) on the 
dimensionless ratio ξ2ν

31 = 4me
2 M3/M1. If ξ2ν

31 could be determined 
experimentally it would tell us how fast the sum over ``n” converges. 
 
The halflife T1/2 is now 
 
1/T1./2

2ν  = gA
4 (M2ν)2 (G0 + ξ2ν

31 G2) 
 
Where the second term represents a small (a few %) correction. 



Illustration of the effects (tiny) of different ξ31 values on the single electron 
(upper panels) and two electron spectra (lower panels). The effect depends only 
on the ξ31 values, not on the individual matrix elements. 



Ξ2ν
31 is constrained from the 2νββ two-electron spectrum of 136Xe in the 

KamLAND-Zen experiment (Gando et al,1901.03871). The fit gives 
ξ2ν

31 = -0.26+0.31
-0.26 that agrees with both NSM and QRPA.

It appears that NEMO (100Mo) and CUORE (130Te) are also 
trying to determine ξ2ν

31 from their data. 
 
Note that if only one (or several close states adding 
with the same sign) contribute, than  |ξ2ν

31| = 4me
2/ΔE2. 

Deviation from that value would mean that high-lying 
states contribute to M1. 



Conclusions: 
 
1) Determination of the magnitude of M2ν

cl is important, 
    but challenging 
2) The issue is whether the virtual intermediate states at 
     5-10 MeV contribute (or not) to the M2ν

cl and M2ν. 
3) It is suggested that a detailed determination of the 
     shape of two and single electron spectra of 2νββ decay, 
     interesting by itself, might help in resolving the problem.  



When evaluating M2ν
cl, and the function C2ν

cl(r) it is crucial to include 
all intermediate states. The depth of the tail, and hence the magnitude 
of the M2ν

cl sensitively depends on the possible energy cutoff. 
(The figure is for the 76Ge decay, evaluated in QRPA) 



100Mo 

Calculated ξ31 values (in QRPA) 
as a function of the excitation 
energy. Clearly, the asymptotic 
values and the values at cut-off 
energy at, say 5 MeV, differ by 
more than 10%. Thus, 10% exp. 
determination of ξ31 would be 
able to decide who is right. 
 

100Mo 

136Xe 

ξ31

76Ge 

Excitation energy (MeV) Excitation energy (MeV) 

ξ31 ξ31
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However, the total GT strength (using the Ikeda sum rule and neglecting the β+) 
 is  76Ge (36), 82Se (42), 130Te (78), 136Xe (84). Thus, only a tiny fraction of the 
total GT strength is displayed. 
 



The assumption that the ``natural” value of M2ν
cl = 0 is based 

on expressing the matrix element in the LS coupling scheme. 
   
In that case the closure Fermi and GT matrix element are related,  
and so are the corresponding C(r) functions: 
 
M2ν

GT, S=0 = -3 M2ν
F, S=0 , and M2ν

GT, S=1 = M2ν
F, S=1 

 
Our numerical evaluation in QRPA suggests that  M2ν

GT, S=1 and M2ν
F, S=1 

are not only very small by themselves but, that the corresponding 
C(r)S=1  fimctions are negligibly small at all r values. 
 
Since M2ν

F must vanish if isospin is conserved, M2ν
F, S=0  must also 

vanish provided M2ν
F, S=1 is negligible. Hence M2ν

GT, cl should vanish 
as well. 
 
That requirement represents partial restoration of the SU(4) symmetry 
 just as M2ν

F,cl = 0 is following from the isospin symmetry restoration. 




