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Figure 3: Global analysis of oscillation data from long-baseline accelerator, solar and Kam-
LAND, short-baseline reactor, and atmospheric neutrino experiments. Line styles and colors
are as in Fig. 1.

Adding atmospheric neutrinos: Global analysis of all oscillation data. Figure 3 is
analogous to Fig. 2, but includes atmospheric neutrino constraints as described in Section 2. With
respect to Fig. 2, the main di↵erences concern the unknown oscillation parameters. There is a more
pronounced preference for ✓23 > ⇡/4, although both octants are allowed at < 2�. The preference for
CP violation with sin � < 0 is confirmed, while CP conservation is disfavored at > 1.9� for NO and
> 3.5� for IO. Remarkably, the sensitivity of atmospheric data to the mass ordering is also consistent
with the hints from previous data sets and leads to

�
2
min(IO)� �

2
min(NO) = 9.5 (all oscillation data) , (18)

corresponding to a statistically significant confidence level N� ' 3.1. The increase from Eq. (17) to
Eq. (18) is mainly due to SK atmospheric data [80], but there is also a synergic contribution (by about
one unit of ��

2) from IC-DC data, that will be discussed in Sec. 4.

3.2 Summary and discussion of results

The preference for NO at the level of ��
2 ⇠ 9 in Eq. (18) represents an interesting result of our work.

This indication emerges consistently for increasingly rich data sets, as shown by the progression in
Eqs. (16)–(18), and thus deserves attention. Taken at face value, a 3� rejection of IO would imply that
the only relevant scenario is NO, together with its parameter ranges (see Fig. 3).

However, caution should be exercised at this stage, since the value ��
2 ⇠ 9 derives from two main

contributions of comparable size ��
2 ' 4–5 (corresponding to ⇠ 2�) but with rather di↵erent origin.

One contribution [Eq. (17)] comes basically from long-baseline accelerator data and their interplay
with short-baseline reactor data, where mass-ordering e↵ects can be understood with relatively simple
arguments in terms of ✓13 (see next Section). The other incremental contribution [from Eq.(17) to (18)]
comes basically from atmospheric data, where mass-ordering e↵ects are not apparent “at a glance”,
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Figure 6. Value of the e↵ective Majorana mass |m�� | as a function of the lightest
neutrino mass in the cases of 3⌫ and 3+1 mixing with Normal and Inverted Ordering
of the three lightest neutrinos [210]. The signs in the legends indicate the signs of
e
i↵2 , e

i↵3 , e
i↵4 = ±1 for the cases in which CP is conserved. The intermediate yellow

regions are allowed only in the case of CP violation.

produced by Big Bang Nucleosynthesis (BBN). In Subsection 6.3 we discuss the e↵ects of

light sterile neutrinos on the formation of Large Scale Structures (LSS), which occurred

after the sterile neutrinos became non-relativistic. Finally, in Subsection 6.4 we review

the current cosmological bounds on light sterile neutrinos.

6.1. Neutrino parameterization

It is convenient to parametrize the neutrino contribution to the radiation content in the

early Universe in terms of an e↵ective number of degrees of freedom Ne↵ , such that the
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FIG. 7. E↵ective Majorana mass as a function of the lightest neutrino mass in the three neutrino (left panel) and 3+1 neutrino
(right panel) scenarios, at 99.7% CL, comparing normal (red) and inverted (blue) ordering of the three active neutrinos. Adapted
from Ref. [90]. The green band represents the 90% CL bounds from KamLAND-Zen [39], given the uncertainty on the NME.

IV. RESULTS FROM COSMOLOGY

Massive neutrinos a↵ect the cosmological observables in di↵erent ways, that we shall summarize in what follows.
For a comprehensive review of the e↵ects of neutrino masses in cosmology, we refer the reader to the recent work
presented in [23].
A very important epoch when discussing the impact of massive neutrinos in the cosmological expansion history and

in the perturbation evolution is the redshift at which neutrinos become non-relativistic. This redshift is given by

1 + znr,i ' 1890
⇣ mi

1 eV

⌘
, (9)

with mi referring to the mass of each massive neutrino eigenstate. Current bounds on neutrino masses imply that at
least two out of the three massive eigenstates became non-relativistic in the matter dominated period of the universe.
As stated in the introductory section, and as we shall further illustrate along this section, cosmological measurements
are currently unable to extract individually the masses of the neutrino eigenstates and the ordering of their mass
spectrum and, therefore, concerning current cosmological data, all the limits on the neutrino mass ordering will come
from the sensitivity to the total neutrino mass

P
m⌫ . Consequently, in what follows, we shall mainly concentrate on

the e↵ects on the cosmological observables of
P

m⌫ , providing additional insights on the sensitivity to the ordering
of the individual mass eigenstates whenever relevant.

A. CMB

There are several imprints of neutrino masses on the CMB temperature fluctuations pattern once neutrinos become
non-relativistic: a shift in the matter-radiation equality redshift or a change in the amount of non-relativistic energy
density at late times, both induced by the evolution of the neutrino background, that will, respectively, a↵ect the
angular location of the acoustic peaks and the slope of the CMB tail, through the Late Integrated Sachs Wolfe (ISW)
e↵ect. The former will mostly modify ⇥s, i.e. the angular position of the CMB peaks, which is given by the ratio of
the sound horizon and the angular diameter distance, both evaluated at the recombination epoch. Massive neutrinos
enhance the Hubble expansion rate, with a consequent reduction of the angular diameter distance and an increase of
⇥s, which would correspond to a shift of the peaks towards larger (smaller) angular scales (multipoles). The latter, the
Late ISW e↵ect, is related to the fact that the gravitational potentials are constant in a matter-dominated universe.

13

mlightest    [eV]

|m
β

β
| 
  

 [
e

V
]

NO

IO

90% C.L. UPPER LIMIT

10−4 10−3 10−2 10−1
1

10−4

10−3

10−2

10−1

1

mlightest    [eV]

|m
β

β
| 
  

 [
e

V
]

NO

IO

90% C.L. UPPER LIMIT

10−4 10−3 10−2 10−1
1

10−4

10−3

10−2

10−1

1

FIG. 7. E↵ective Majorana mass as a function of the lightest neutrino mass in the three neutrino (left panel) and 3+1 neutrino
(right panel) scenarios, at 99.7% CL, comparing normal (red) and inverted (blue) ordering of the three active neutrinos. Adapted
from Ref. [90]. The green band represents the 90% CL bounds from KamLAND-Zen [39], given the uncertainty on the NME.
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Massive neutrinos a↵ect the cosmological observables in di↵erent ways, that we shall summarize in what follows.
For a comprehensive review of the e↵ects of neutrino masses in cosmology, we refer the reader to the recent work
presented in [23].

A very important epoch when discussing the impact of massive neutrinos in the cosmological expansion history and
in the perturbation evolution is the redshift at which neutrinos become non-relativistic. This redshift is given by

1 + znr,i ' 1890
⇣

mi

1 eV
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, (9)

with mi referring to the mass of each massive neutrino eigenstate. Current bounds on neutrino masses imply that at
least two out of the three massive eigenstates became non-relativistic in the matter dominated period of the universe.
As stated in the introductory section, and as we shall further illustrate along this section, cosmological measurements
are currently unable to extract individually the masses of the neutrino eigenstates and the ordering of their mass
spectrum and, therefore, concerning current cosmological data, all the limits on the neutrino mass ordering will come
from the sensitivity to the total neutrino mass

P
m⌫ . Consequently, in what follows, we shall mainly concentrate on

the e↵ects on the cosmological observables of
P

m⌫ , providing additional insights on the sensitivity to the ordering
of the individual mass eigenstates whenever relevant.

A. CMB

There are several imprints of neutrino masses on the CMB temperature fluctuations pattern once neutrinos become
non-relativistic: a shift in the matter-radiation equality redshift or a change in the amount of non-relativistic energy
density at late times, both induced by the evolution of the neutrino background, that will, respectively, a↵ect the
angular location of the acoustic peaks and the slope of the CMB tail, through the Late Integrated Sachs Wolfe (ISW)
e↵ect. The former will mostly modify ⇥s, i.e. the angular position of the CMB peaks, which is given by the ratio of
the sound horizon and the angular diameter distance, both evaluated at the recombination epoch. Massive neutrinos
enhance the Hubble expansion rate, with a consequent reduction of the angular diameter distance and an increase of
⇥s, which would correspond to a shift of the peaks towards larger (smaller) angular scales (multipoles). The latter, the
Late ISW e↵ect, is related to the fact that the gravitational potentials are constant in a matter-dominated universe.
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FIG. 1: (Color) Marginalised 1-D ��2
for each of the magnitudes of the 3x3 neutrino mixing matrix elements, without (red

solid) and with (black dashed) the assumption of unitarity. In order to highlight the importance of normalisation and sterile

search data on these non-unitarity studies, also shown is the results of the fit when no normalisation data is used (blue dotted).

Note in this scenario while the ⌫e row worsens slightly, the ⌫µ and ⌫⌧ sectors lose almost all sensitivity. The x-axis is the

magnitude of each individual matrix element, and the y-axis is the associated ��2
after marginalisation over all parameters

other than the one in question.

Unitarity and the three flavor neutrino mixing matrix
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Unitarity is a fundamental property of any theory required to ensure we work in a theoretically consistent
framework. In comparison with the quark sector, experimental tests of unitarity for the 3 × 3 neutrino
mixing matrix are considerably weaker. We perform a reanalysis to see how global knowledge is altered
when one refits oscillation results without assuming unitarity, and present 3 σ ranges for allowed UPMNS

elements consistent with all observed phenomena. We calculate, for the first time, bounds on the closure of
the six neutrino unitarity triangles, with the closure of the νeνμ triangle being constrained to be≤0.03 , while
the remaining triangles are significantly less constrained to be ≤0.1–0.2. Similarly for the row and column
normalization, we find their deviation from unity is constrained to be ≤0.2–0.4, for four out of six such
normalizations, while for the νμ and νe row normalization the deviations are constrained to be ≤0.07 , all at
the 3 σ CL. We emphasize that there is significant room for new low energy physics, especially in the ντ
sector which very few current experiments constrain directly.

DOI: 10.1103/PhysRevD.93.113009

With the knowledge of sin2 2θ13 now almost at the 5%
level, and interplay between the long baseline accelerator
νμ → νe appearance data [1,2] and short baseline reactor
ν̄e → ν̄e disappearance [3–5] data, combined with prior
knowledge of θ23 from νμ → νμ disappearance data [6–8],
suggesting tentative global hints at δCP ≈ 3 π=2, there is
much merit to statements that we are now in the precision
measurement era of neutrino physics.
Our knowledge of the distinct Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) neutrino mixing matrix ele-
ments comes from the plethora of successful experiments
that have run since the first strong evidence for neutrino
oscillations, interpreted as νμ → ντ oscillations, was dis-
covered by Super-Kamiokande in 1998 [9]. However,
one must always remember that our knowledge of the
matrix elements comes predominantly from high statistics
ν̄e disappearance and νμ disappearance experiments, with
the concept of unitarity being invoked to disseminate this
information onto the remaining elements.
Unitarity of a mixing matrix is a necessary condition

for a theoretically consistent description of the underlying
physics, as nonunitarity directly corresponds to a violation
of probability in the calculated amplitudes. In the neutrino
sector unitarity can be directly verified by precise meas-
urement of each of the mixing elements to confirm the
unitarity condition: U†U ¼ 1 ¼ UU†. In this there
are 12 conditions, six of which we will refer to as
normalizations (sum of the squares of each row or column,
e.g. the νe normalization jUe1j2 þ jUe2j2 þ jUe3 j2 ¼ 1)
and six conditions that measure the degree to which
each unitarity triangle closes (e.g. the νeνμ triangle:
Ue1U#

μ1 þUe2U#
μ2 þUe3 U#

μ3 ¼ 0). See Qian et al. [10]

for a detailed discussion of the current and future state of
measurements of the νe normalization.
In the quark sector, the analogous situation involving

the Cabibbo-Kobayashi-Maskawa (CKM) matrix has been
subject to intense verification as many experiments have
access to all of the VCKM elements individually. Current
data show that the assumption of unitarity for the 3 × 3
CKM matrix is valid in the quark sector to a high
precision, with the strongest normalization constraint
being jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9999 $ 0.0006 and the
weakest still being significant at jVubj2 þ jVcbj2 þ jVtbj2 ¼
1.044 $ 0.06 [11]. Unlike the quark sector, however,
experimental tests of unitarity are considerably weaker
in the 3 × 3 UPMNS neutrino mixing matrix. It remains an
initial theoretical assumption inherent in many analyses
[12–14], but is the basis for the validity of the 3 ν paradigm.
This nonunitarity can arise naturally in a large variety of

theories. A generic feature of many beyond the Standard
Model scenarios is the inclusion of one or more newmassive
fermionic singlets, uncharged under the Standard Model
(SM)gaugegroup,SUð3 ÞC × SUð2ÞL ×Uð1ÞY . If these new
states mix with the SM neutrinos then the true mixing matrix
is enlarged from the 3 × 3 UPMNS matrix to an n× nmatrix,
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respectively), with jUe1j taking the majority of the dis-
crepancy in the νe sector, with an increase of allowed range
of 68%, primarily due to the weaker bounds from
KamLAND compared to the SBL reactors. The entire ντ
sector, however, may contain substantial discrepancies
from unitarity with shifts in allowed regions of 37%,
46% and 104% respectively.
We must stress that even if the 3σ ranges of the UPMNS

elements agree closely with the unitarity case, this does
not equate to the neutrino mixing matrix being unitary. In
the unitary case the correlations are much stronger and
choosing an exact value for any one the mixing elements
drastically reduces the uncertainty on the remaining ele-
ments. One can address this issue by looking at the row and
column unitarity triangle closures and the row and column
normalizations to better understand the level at which we
know unitarity is violated or not.
For the case of the six neutrino unitarity triangles, we

present, for the first time, the allowed ranges for their
closures in Fig. 2. For the three row unitarity triangles the
bounds originate from a combination of the corresponding
Cauchy-Schwartz inequalities along with appearance data
in the respective channel. The column unitarity triangles,
being bound primarily by the geometric constraints and not
direct measurement, are less known. Only one unitarity
triangle does not contain a ντ element, the νeνμ unitarity
triangle, and hence it is the only unitarity triangle in which
it is constrained to be closed by ≤0.03 at the 3σ CL,
compared to ≤0.1–0.2 at the 3σ CL for the remaining
unitarity triangles. This hierarchical situation will not
improve unless precise measurements can be made in

the ντ sector. We also plot the resultant ranges for the
normalizations in Fig 3. We see that the νe and νμ normali-
zation deviations from unity are relatively well constrained
(≤0.06and 0.07 at3σ CL respectively), primarily by reactor
fluxes and a combination of precision measurements of the
rate and spectra of upward-going muonlike events observed
at Super-Kamiokande [27]. We note the νμ normalization
deviation from unity is constrained slightly (≈1%) better
than the νe normalization. This is due to the large theoretical
error, 5%, on total flux from reactors assumed [28]. The
remaining normalization deviations from unity are all con-
strained to be ≲0.2–0.4at 3σ CL.
If one wishes to proceed with measurements of unitarity,

without the assumption of an extended UPMNS matrix and
its subsequent Cauchy-Schwartz constraints, then prospects
for improvement are essentially limited to measuring the νe
normalization. Improvement of all νe elements is possible,
especially if the new generation reactor experiments, JUNO
[29] and RENO50 [30], proceed as planned; see [10].
Improvements due to indirect sterile neutrino searches

are promising; the Fermilab Short Baseline Neutrino [31]
program, consisting of the SBND, MicroBooNE and
ICARUS experiments on the Booster beam, will be capable
of probing a wide range of parameter space for 3þ N
models, increasing both the appearance and disappearance
bounds. Subsequently, the long baseline program DUNE
[32] will also be able to significantly extend the constrained
region of νμ → νe appearance to lower mass differences,
leading to increased constraints on the νeνμ unitarity
triangle in this regime. An understanding of the neutrino
flux and cross-sectional uncertainties are crucial for
unitarity measurements. However, no one experiment
can probe all scales and complementarity is vital to
definitively make a statement about unitarity from new low-
energy physics. Perhaps crucially for ντ measurements,

FIG. 2. 1-DΔχ2for the absolute value of the closure of the three
row (solid) and three column (dashed) unitarity triangles when
considering new physics that enters above jΔm2j ≥ 10−2 eV2.
There is one unique unitarity triangle, the νeνμ row unitarity
triangle, in that it does not contain any ντ elements and hence is
constrained to be unitary at a level half an order of magnitude better
than the others. By comparison to Fig. 3 one can clearly see that the
Cauchy-Schwartz constraints are satisfied.

FIG. 3. 1-D Δχ2 for deviation of both UPMNS row (solid) and
column (dashed) normalizations, when considering new physics
that enters above jΔm2j ≥ 10−2 eV2.
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the concept of unitarity being invoked to disseminate this
information onto the remaining elements.
Unitarity of a mixing matrix is a necessary condition

for a theoretically consistent description of the underlying
physics, as nonunitarity directly corresponds to a violation
of probability in the calculated amplitudes. In the neutrino
sector unitarity can be directly verified by precise meas-
urement of each of the mixing elements to confirm the
unitarity condition: U†U ¼ 1 ¼ UU†. In this there
are 12 conditions, six of which we will refer to as
normalizations (sum of the squares of each row or column,
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and six conditions that measure the degree to which
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for a detailed discussion of the current and future state of
measurements of the νe normalization.
In the quark sector, the analogous situation involving

the Cabibbo-Kobayashi-Maskawa (CKM) matrix has been
subject to intense verification as many experiments have
access to all of the VCKM elements individually. Current
data show that the assumption of unitarity for the 3 × 3
CKM matrix is valid in the quark sector to a high
precision, with the strongest normalization constraint
being jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9999 $ 0.0006 and the
weakest still being significant at jVubj2 þ jVcbj2 þ jVtbj2 ¼
1.044 $ 0.06 [11]. Unlike the quark sector, however,
experimental tests of unitarity are considerably weaker
in the 3 × 3 UPMNS neutrino mixing matrix. It remains an
initial theoretical assumption inherent in many analyses
[12–14], but is the basis for the validity of the 3 ν paradigm.
This nonunitarity can arise naturally in a large variety of

theories. A generic feature of many beyond the Standard
Model scenarios is the inclusion of one or more newmassive
fermionic singlets, uncharged under the Standard Model
(SM)gaugegroup,SUð3 ÞC × SUð2ÞL ×Uð1ÞY . If these new
states mix with the SM neutrinos then the true mixing matrix
is enlarged from the 3 × 3 UPMNS matrix to an n× nmatrix,
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inelastic scattering interaction and are thus subject to
different sources of neutrino interaction uncertainties
[70]. Additionally, the event samples used here are con-
siderably larger than both OPERA and SK, with an
estimated 1804 CC and 556 NC ντ events for the final
sample in analysis A and 934 CC and 445 NC ντ events in
the final sample in analysis B.
Determining the impact on tests of PMNS matrix unitarity

requires global fits incorporating results from other experi-
ments, as our result is only sensitive to the two elementsUμ3

and Uτ3 of the matrix, while unitarity tests involve elements
from a full row or column of the matrix. Also, as noted
earlier, one could also use the measured ντ normalization
reported here along with the previously reported results from
OPERA and SK to better constrain the CC ντ cross section.
The measurement is limited by systematic uncertainties,

in particular uncertainties in the initial flux of atmospheric
neutrinos and uncertainties in our detector model.
Nevertheless, our result will improve with more statistics,
as the aforementioned uncertainties are constrained by the
data in the measurement itself—the increased sample size
from more data allows us to control various detector effects
and other sources of systematic uncertainties at a higher
precision.
This defines a clear path forward towards a higher

precision tau neutrino appearance measurement: more data,
extended event selection and better control of detector
uncertainties. With ten years of DeepCore data we expect
an analysis similar to the one presented here to attain a
precision of 15%. Better reconstruction algorithms–
currently under development–promise to improve the
precision, as do approved detector upgrades [71]. The
upgrades will include advanced calibration devices to

improve our understanding of detector-related uncertain-
ties, and the additional optical modules will be better and
more efficient at identifying and reconstructing low energy
neutrinos. These improvements will yield an anticipated
precision of the tau neutrino normalization of better than
10% with a single year of operation.
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APPENDIX A: COMMON EVENT
SELECTION VARIABLES

This section describes the technical details of the
selection variables used in both analyses A and B.

1. Interaction vertex

In IceCube coordinates (x, y, z), the DeepCore fiducial
volume is centered on String 36 at ðx;yÞ ¼ ðx36; y36Þ in
the middle of the detector 1950 m below the surface

FIG. 18. The measured values for CC þ NC and CC-only
results in both analyses. Also shown are previous best-fit values
of the CC-only ντ normalization from OPERA and SK, which
were performed with different energy ranges and fluxes and a
different definition of the ντ normalization from those used in
IceCube. All measurements of tau neutrinos are consistent with
standard oscillations (ντ normalization of 1.0), with the two
analyses presented here showing excellent internal agreement.
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(i) Lepton number conservation is 
violated by 2 units. 

(ii) Electron neutrinos are Majorana
fermions (with m > 0).
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Other models: Left-Right symmetric model and 
SUSY R-parity violation

€ 

η

€ 

λ

2

TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF in years�1 for all five isotopes
currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� 4.2723 2.0390 2.9951 2.8135 2.2870

T 0⌫
1/2 > 2.0⇥ 1022[30] 5.3⇥ 1025[31] 2.5⇥ 1023[32] 4.0⇥ 1024[33] 1.1⇥ 1026[34]

G01 ⇥ 1014 2.45 0.22 1.00 1.41 1.45

G02 ⇥ 1014 15.4 0.35 3.21 3.24 3.15

G03 ⇥ 1015 18.2 1.20 6.50 8.46 8.55

G04 ⇥ 1015 5.04 0.42 1.92 2.53 2.58

G05 ⇥ 1013 3.28 0.60 2.16 4.12 4.36

G06 ⇥ 1012 3.87 0.50 1.65 2.16 2.21

G07 ⇥ 1010 2.85 0.28 1.20 1.75 1.80

G08 ⇥ 1011 1.31 0.17 0.82 1.72 1.83

G09 ⇥ 1010 15.5 1.12 4.42 4.47 4.44

II. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

The possibility that right-handed currents could con-
tribute neutrinoless double-beta decay (0⌫��) has been
already considered for some time [29, 35]. Recently, 0⌫��
studies [9, 36] have adopted the left-right symmetric
model [7, 37] for the inclusion of right-handed currents.
In the framework of the left-right symmetric model and
R-parity violating (��Rp) supersymmetric (SUSY) model
[38–40], the half-life expression can be written as a sum
of products of PSF, BSM LNV parametes, and their cor-
responding NME [11]:

h
T

0⌫
1/2

i�1
= G01g

4
A

��⌘0⌫M0⌫ +
�
⌘
L
NR

+ ⌘
R
NR

�
M0N

+ ⌘q̃Mq̃ + ⌘�0M�0 + ⌘�X� + ⌘⌘X⌘|
2
. (1)

Here, G01 is a phase space factor that can be calculated
with good precision for most cases [41–44], gA is the ax-

ial vector coupling constant, ⌘0⌫ = hm��i
me

, with hm��i

representing the e↵ective Majorana neutrino mass and
me the electron mass. ⌘

L
NR

, ⌘RNR
are the heavy neutrino

parameters with left-handed and right-handed currents,
respectively [9, 21], ⌘q̃, ⌘�0 are ��Rp SUSY LNV parame-
ters [45], ⌘�, and ⌘⌘ are parameters for the so-called ”��”
and ”⌘�mechanism”, respectively [9]. M0⌫ , M0N , are the
light and the heavy neutrino exchange NME,Mq̃,M�0 are
the��Rp SUSY NME, andX� andX⌘ denote combinations
of NME and other PSF (G02�G09) corresponding to the
the ��mechanism involving right-handed leptonic and
right-handed hadronic currents, and the ⌘�mechanism
with right-handed leptonic and left-handed hadronic cur-
rents, respectively [11].

In Table I we present the Q
0⌫
�� values, the most re-

cent experimental half-life limits from the indicated ref-
erences, and the nine PSF for 0⌫�� transitions to ground
states of the daughter nucleus for five isotopes currently
under investigation. The PSF were calculated using a
new e↵ective method described in great detail in Ref.

TABLE II. The NME that appear in Eq. (1) and their cor-
responding LNV parameters for the five nuclei of current ex-
perimental interest.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N [25] 75.5 202 187 136 143

Mq̄ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̄| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[44]. G01 were calculated with a screening factor (sf ) of
94.5, while G02 � G09 used sf = 92.0 that is shown to
provide good accuracy within 18% of those in Ref. [46].
Table II shows the shell model values the the NME

that enter Eq. (1). The heavy right-handed neutrino-
exchange NME M0N are taken from Ref. [25] that de-
scribes their formalism and calculation. Mq̄ and M�0 are
calculated using the description in Eq. (150) and Eq.
(155), respectively, of Ref. [45]. X� and X⌘ are adapted
from C4 and C5 of Eq. (3.5.15d) and Eq. (3.5.15e), re-
spectively, in Ref. [29] multiplied by MGT /G01 to fit the
factorization of Eq. (1).
..........................

A more general approach is based on the e↵ective field
theory extension of the Standard Model. The analysis
based on the beyond standard model (BSM) e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by

Gluino exchange

Squark 
exchange

M. Horoi, A. Neacsu, PRD 93, 113014 (2016)



Trento July 17, 2019 M. Horoi CMU

Effective Hamiltonians for Large N 
!w Excitation Model Spaces 

“Bare” Nucleon-Nucleon Potentials:

- Argonne V18: PRC 56,  1720 (1997)

- CD-Bonn 2000: PRC 63, 024001 (2000)

- N3LO: PRC 68, 041001 (2003)

- INOY: PRC 69, 054001 (2004)

  

€ 

H = T + Vi j
i< j
∑ + Vi j k

i< j<k
∑ +!

YH ->YP=PYH

H = U HU+ = H2 + H3 + H4 +…

O -> U O U+

€ 

PP

€ 

QQ

€ 

QP = 0
€ 

PQ = 0

H

H

Renormalization methods:

- G-matrix: Physics Reports 261, 125 (1995)

- Lee-Suzuki (NCSM): PRC 61, 044001 (2000)

- Vlow k : PRC 65, 051301(R) (2002)

- Unitary Correlation Operator: PRC 72, 034002 
(2004)

- Similarity Renormalization Group (SRG): PRL 103, 
082501 (2009)

9



M. Horoi CMU

Shell Model Effective Hamiltonians

core polarization: 
Phys.Rep. 261, 125 
(1995)

PRC 74, 34315 (2006), 78, 064302 (2008)

€ 

USDA

€ 

USDB

€ 

ME

Trento July 17, 2019

€ 

Hvalence = H2−body

can describe most correlations
around the Fermi surface!

empty

valence

frozen core

€ 

HvalenceΨ = EnΨ

€ 

QQ

€ 

QP = 0
€ 

PQ = 0

H

H

€ 

pf
sd − pf

531 excited states RMS: sd, N3LO

0

0.5

1

1.5

2

2.5

3

1st order 2nd order 2nd + A-dep 2nd + d3s1

R
M

S

gAσ τ
quenched⎯ →⎯⎯⎯ gA 0.77σ τ

10



IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).

QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).

QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207–232 (2010).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139–151 (2009).
SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC 
91, 024309 (2015), PRL 110, 222502 (2013), PRL 113, 262501(2014).

Trento July 17, 2019 M. Horoi CMU

IBM-2 PRC 91, 034304 (2015)

11



IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077.

QRPA-Jy J. Hivarynen and J. Suhonen, PRC 91, 024613 (2015),   ISM-StMa J. Menendez, private communication.

ISM-CMU M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), PRC 91, 024309 (2015), PRL 110, 222502 (2013).

Trento July 17, 2019 M. Horoi CMU

0

100

200

300

400

500
IBM-2
QRPA-Jy
QRPA-Tu
ISM-StMa
ISM-CMU

48Ca 76Ge 82Se 124Sn 130Te 136Xe

€ 

CD − Bonn SRC→

€ 

AV18 SRC→

Heavy neutrino-exchange NME

12

M0N



Trento July 17, 2019 M. Horoi CMU

M 0N

Towards an effective 0vDBD operator: 
heavy neutrino-exchange NME

Oλ =UλOλ=∞Uλ
+

76Ge

13



Towards an effective 0vDBD operator: 
light neutrino-exchange NME

Trento July 17, 2019 M. Horoi CMU

M 0ν

Oλ =UλOλ=∞Uλ
+

76Ge

14



Trento July 17, 2019 M. Horoi CMU 15

3

0νββ
eL R

−

u

u

d

d

eL R
−

(a) The generic 0⌫�� decay
diagram at the quark-level.

=

d

d

u

u

eL
−

ν

W L

W L
eL

−

(b) Light left-handed neutrino
exchange diagram.

+

d

d

u

u

ν

W L

ϵ

eL R
−

eL
−

(c) The long-range part of the
0⌫�� diagram.

+

eL/ R
−

u

u

d

d

eL/ R
−

ε

(d) The short-range part of
the 0⌫�� diagram.

FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
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(2)
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2
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h
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i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
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i�1
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4
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X

i

|Ei|
2
M

2
i +Re

2

4
X

i 6=j

EiEjMij

3

5

3

5 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L

(2)
6 ) =

G
2
F

2
T

h
jV�AJ

†
V�AjV�AJ

†
V�A

+ ✏
�
↵j�J

†
↵jV�AJ

†
V�A + ✏

�
↵✏

�
�j�J

†
↵j�J

†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.

Effective field theory approach
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TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF (G01 � G09) in years�1 for
all five isotopes currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� [53] 4.272 2.039 2.995 2.813 2.287

T 0⌫
1/2 > 2.0 · 1022[54] 5.3 · 1025[55] 2.5 · 1023[56] 4.0 · 1024[57] 1.1 · 1026[58]

G01 · 10
14 2.45 0.22 1.00 1.41 1.45

G02 · 10
14 15.4 0.35 3.21 3.24 3.15

G03 · 10
15 18.2 1.20 6.50 8.46 8.55

G04 · 10
15 5.04 0.42 1.92 2.53 2.58

G05 · 10
13 3.28 0.60 2.16 4.12 4.36

G06 · 10
12 3.87 0.50 1.65 2.16 2.21

G07 · 10
10 2.85 0.28 1.20 1.75 1.80

G08 · 10
11 1.31 0.17 0.82 1.72 1.83

G09 · 10
10 15.5 1.12 4.42 4.47 4.44

TABLE II. The NME that appear in Eq. (1) for the five
nuclei of current experimental interest, and the corresponding
LNV parameters extracted under the assumption that only
one dominates.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N 75.5 202 187 136 143

Mq̃ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̃| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[52]multiplied by MGT /G01 to fit the factorization of Eq.
(1). All NME used in this paper were calculated using the
interacting shell model (ISM) approach[27–30, 33, 48, 70]
(see Ref. [33] for a review), and include short-range-
correlation e↵ects based on the CD-Bonn parametriza-
tion [26], finite-size e↵ects [68] and, when appropriate,
optimal closure energies [50] (see Appendix for more de-
tails).
The upper limits for corresponding LNV parameters

extracted from lower limits of the half-lives under the as-
sumption that only one term in the amplitude dominates,
are also presented in Table II.

III. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

A more general approach is based on the e↵ective
field theory extension of the Standard Model. The anal-

0νββ
eL R

−

u

u

d

d

eL R
−

(a) The generic 0⌫�� decay
diagram at the quark-level.

=

d

d

u

u

eL
−

ν

W L

W L
eL

−

(b) Light left-handed neutrino
exchange diagram.

+

(c) The long-range part of the
0⌫�� diagram.

+

eL/ R
−

u

u

d

d

eL/ R
−

ε

(d) The short-range part of
the 0⌫�� diagram.

FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

ysis based on the BSM contributions to the e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by
data from LHC and other experiments. In fact, the mod-
els considered in section II always lead to a subset of
terms in the low-energy (⇠ 200 MeV) e↵ective field the-
ory Lagrangian. Here we consider all the terms in the
Lagrangian allowed by the symmetries. Some of the cou-
plings will correspond to the model couplings in Eq. (1),
but they might have a wider meaning. Others are new,
not corresponding to specific models.
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generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +
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3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
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V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏
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TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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2
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and
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LLz(RRz)
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LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them
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3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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where J
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and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
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dicates that the term with ↵ = � = (V �A) is explicitly
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denotes the Fermi coupling constant.
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 2. Similar to Fig.1, we present the nucleon-level diagrams of 0⌫�� decay process : (2a) presents the generic description
of the process, (2b) shows the light left-handed neutrino exchange, (2c) is the long-range component, Subfigure 2d shows the
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The e↵ective couplings ⌘1⇡ and ⌘2⇡ are related to Eq. (16) as ⌘1⇡ = c1⇡⌘⇡N and ⌘2⇡ = c2⇡⌘⇡N .

In that restrictive case we showed that one can disen-
tangle di↵erent contributions to the 0⌫�� decay process
using two-electron angular and energy distributions as
well as half-lives of two selected isotopes. Obviously, this
number of observables is not enough to extract all cou-
pling appearing in the e↵ective field theory Lagrangian.
However, they can be used to constrain these couplings,
thus adding to the information extracted from the Large
Hadron Collider and other related experiments. Here we
attempt to extract these couplings assuming that only
one of them can have a dominant contribution to the
half-life, Eq. (5). We call this approach “on-axis“. Con-
sidering the “on-axis“ approach to extracting limits of the
LNV parameters, the interference terms are neglected in
our analysis. In the following, we extract the “on-axis“
upper limits of these parameters using the most recent
experimental the half-lives lower limits, as presented in
Table I.

IV. EXPERIMENTAL LIMITS ON THE BSM
LNV COUPLINGS

To obtain experimentally constrained upper limits of
the e↵ective LNV couplings one needs experimental half-

life lower limits, accurate calculations of the PSF, to-
gether with reliable NME results calculated using nu-
clear structure methods tested to correctly describe the
experimental nuclear structure data available for the nu-
clei involved. We split our analysis of the LNV parame-
ters into three subsections corresponding the exchange of
light left-handed Majorana neutrinos, the LNV couplings
entering the remaining quark-level long-range diagrams,
and the LNV couplings entering the quark-level short-
range diagrams.

A. The exchange of light left-handed neutrinos

Most studies in the literature have only considered the
case where only the exchange of light left-handed Ma-
jorana neutrinos contribute to the 0⌫�� decay process,
presented in Figs. 1b and 2b. Therefore, one can easily
find calculations of NME and PSF for this scenario. Con-
sidering only this case, we reduce the half-life equation
to:
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generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏
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dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
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xyz
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3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
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data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).
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the Lagrangian require the knowledge of 23 individual
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factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T

0⌫
1/2

i�1
=g

4
A

2

4
X

i

|Ei|
2
M

2
i +Re

2

4
X

i 6=j

EiEjMij

3

5

3

5 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
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PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
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not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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Small interference effects
F. Ahmed et al. / Physics Letters B 769 (2017) 299–304 303

Fig. 2. Variation of the factor for maximum interference ϵ with Q ββ . Plot is obtained 
by varying the Q -value, while keeping the mass fixed to 76Ge and the charge of the 
final nucleus Z f = 34 of 76Se. Different nuclei are added in the plot for the g.s. and 
first 0+ excited states Q ββ values.

calculated (numerically) taking this into account by introducing the 
Fermi factor [40]. In [41] this was done by using a non-relativistic 
Fermi factor, which is independent of the Q -value of the process. 
Moreover the electrons were assumed to be ultra-relativistic in the 
analysis in order to arrive at the numerical values of the small 
suppression factors of the interference term. This is in contrast to 
the consideration of the non-relativistic Fermi factor for electron 
wave function used in Ref. [41]. For our analysis we have correctly 
considered the relativistic Fermi factor. In addition we have also 
considered the effect of finite nuclear size. Although the numerical 
results obtained in our current study are very close to the values 
in references [41] and [14], our results are more general since the 
assumption of ultra-relativistic electrons can be relaxed. Consid-
eration for relativistic Fermi factor and finite nuclear size extend 
the analysis and allows us to predict the Q ββ values for which the 
effect of interference can be observable.

4. Conclusions

In summary, we studied the interference effects to the 0νββ
decay rate when contributions from the light left-handed and 
heavy right-handed neutrino exchange mechanisms are considered. 
These effects were first analyzed long time ago in Ref. [41] under 
some simplifying assumptions, a simple relation for the relative 
interference amplitude was presented and numerical values for 
few isotopes were provided (see also [14]). The general conclusion 
was that these effects are small and can be neglected. Unfortu-
nately, the analytical expression seem to be marred by typos and 
one needed to redo the analysis to extend it to other isotopes of 
recent experimental interest. In addition, for a long time the stan-
dard mass mechanism was the only one mainly considered, and 
the results of Ref. [41] were almost forgotten.

In recent years, however, the contributions from other mecha-
nisms, especially those related to the LRSM, became relevant and 
competitive to BSM studies at LHC and elsewhere. In this letter we 
extended the analysis of Ref. [41] by considering the relativistic 
distortion of the outgoing electrons wave functions, the finite size 
effects of the daughter nucleus, and by applying the new formal-
ism to all isotopes of recent experimental interest. In addition, we 
provide an analysis of the relative interference factor as a function 
of Q ββ , mass number A, and charge of the daughter Z f , and we 
find that only its decrease with larger Q ββ is relevant. This feature 
indicates that the relative interference factor might not be negli-
gible for cases where Q ββ is small, such as that of 128Te and for 
the transitions to the first excited 0+ states (e.g. it reaches 44% for 

110Pa). Therefore, we provide numerical results for all these new 
transitions that could be of experimental interest.

Finally, the analysis presented can be extended to other pairs 
of 0νββ mechanisms where both outgoing electrons have different 
helicities. Examples of such mechanisms described in within the 
effective field theory approach can be found in Ref. [47].
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from the LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 
151801, http://dx.doi.org/10.1103/PhysRevLett.106.151801.

[14] A. Faessler, A. Meroni, S.T. Petcov, F. Šimkovic, J. Vergados, Uncovering multiple 
cp-nonconserving mechanisms of (ββ)0ν decay, Phys. Rev. D 83 (2011) 113003, 
http://dx.doi.org/10.1103/PhysRevD.83.113003.

[15] J. Barry, W. Rodejohann, Lepton number and flavour violation in TeV-scale left–
right symmetric theories with large left–right mixing, J. High Energy Phys. 09 
(2013) 153, http://dx.doi.org/10.1007/JHEP09(2013)153, arXiv:1303.6324.

[16] J. Suhonen, O. Civitarese, Weak-interaction and nuclear-structure aspects of nu-
clear double beta decay, Phys. Rep. 300 (3–4) (1998) 123, http://dx.doi.org/
10.1016/S0370-1573(97)00087-2.

[17] J. Kotila, F. Iachello, Phase-space factors for double-β decay, Phys. Rev. C 85 
(2012) 034316, http://dx.doi.org/10.1103/PhysRevC.85.034316.

[18] S. Stoica, M. Mirea, New calculations for phase space factors involved in 
double-beta decay, Phys. Rev. C 88 (3) (2013) 037303, http://dx.doi.org/
10.1103/PhysRevC.88.037303.

[19] M. Mirea, T. Pahomi, S. Stoica, Values of the phase space factors involved in 
double beta decay, Rom. Rep. Phys. 67 (2015) 035503.

[20] D. Štefánik, R. Dvornický, F. Šimkovic, P. Vogel, Reexamining the light neu-
trino exchange mechanism of the 0νββ decay with left- and right-handed lep-
tonic and hadronic currents, Phys. Rev. C 92 (2015) 055502, http://dx.doi.org/
10.1103/PhysRevC.92.055502.

[21] A. Neacsu, M. Horoi, An effective method to accurately calculate the phase 
space factors for β−β− decay, Adv. High Energy Phys. 2016 (2016) 7486712, 
http://dx.doi.org/10.1155/2016/7486712, arXiv:1510.00882.

Interference between mass 
mechanism and heavy neutrino 
mechanism: F. Ahmed, A. Neacsu, 
and M. Horoi, Phys. Lett. B 769, 
299 (2017).

Interference between 
mass mechanism and 
lambda mechanism: F. 
Ahmed, and M. Horoi, 
in preparation.

exchange in the presence of purely RH currents. Both of these are mass-dependent mechanisms.
The two momentum-dependent mechanisms are shown in fig.1c and 1d. Fig.1c is the so-called
l -mechanism where LH and RH currents are combined. The so-called h-diagram of fig.1d arises
due to the WL�WR mixing. The other possible diagrams are not considered due to the suppression
of neutrino mixing and W-boson parameters [10].

Considering the four diagrams we arrive at the following inverse half-life formula for 0nbb ,
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The NME are taken to be real and the complex NPP along with the phases are defined as follows,
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The NME include Fermi and Gamow-Teller contributions [16].

4 Analysis of interference terms

In this section we analyze the contribution of the interference terms to the total half-life arising
from the four terms. Due to the modulus squares in the expression of the half-life in eq.9 we get
six interference terms between all possible pairs of mechanisms,
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The coefficients Cs are combinations of NME and integrated PSF,
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

m eϵ5 ¼
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;
GFϵ7ffiffiffi

2
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11
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: ð3Þ

In terms of the effective 0νββ mass m ee, one simply has
ϵ5 ¼ m ee=m e with the electron mass m e, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass m p. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

m ν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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TABLE VIII. The ⇤D scale limits and the minimal washout
scales �D and �̂D for the 0⌫�� decay of 136Xe with a half-life
limit T1/2 > 1.1⇥ 1026 years.

OD ✏̄D ⇤D �D �̂D

O5 2.8⇥ 10�7 2.12⇥ 1014 4.94⇥ 1011 8.20⇥ 1012

O7 2.0⇥ 10�7 3.75⇥ 104 1.78⇥ 102 4.32⇥ 102

O9 1.5⇥ 10�7 2.48⇥ 103 5.10⇥ 101 1.74⇥ 102

O11 1.5⇥ 10�7 1.16⇥ 103 8.73⇥ 101 1.74⇥ 102

and 2g, "̃1 provides significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
...........

Ld =
g

⇤d�4
d

Od (17)

me✏̄5 =
g
2
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2

⇤5
,
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p
2
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g
3
v

2⇤3
7

,

GF ✏̄9

2mp
=

g
4

⇤5
9

,
GF ✏̄11

2mp
=

g
6
v
2

⇤7
11

. (18)

Here, me = 0.511⇥10�3 GeV is the electron mass, g = 1
is a generic coupling constant, v = 174 GeV is the Higgs
vaccum expectation value, GF = 1.166 ⇥ 10�5 GeV�2

is the Fermi coupling constant, and mp = 0.938 GeV is

the proton mass. ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏
V+A
V�A|, |✏

V+A
V+A|,

|✏
S+P
S±P |, |✏

TR
TL |, |✏

TR
TR|

i
, ✏̄9 = Max

h
|"1|, |"2|, |"

LLz(RRz)
3 |,

|"
LRz(RLz)
3 |, |"4|, |"5|

i
, and ✏̄11 = ✏̄9.

To extract the operator scale limits ⇤5,7,9,11 we need
the most stringent limits for the LNV parameters, which
are found in the case of 136Xe. Because of this, we focus
our analysis on using the ✏̄D (with D = {5, 7, 9, 11})
values from this nucleus. ✏̄5 corresponds to the ⌘0⌫ pa-
rameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏

V+A
V�A, that is the

largest long-range ✏
�
↵ parameter. In the case of ✏̄9 = ✏̄11

we select "1, being the largest short-range "
�
↵ parameter.

V. CONCLUSIONS

This work advances and extends the analysis of beyond
standard model physics parameters involved in the neu-
trinoless double-beta decay. We calculate 23 nuclear ma-
trix elements and 9 phase-space factors. Using a general
e↵ective field theory, we extract limits for the e↵ective
Majorana mass and 11 e↵ective couplings in the case of
five nuclei of immediate experimental interest. Due to

the better half-life limits, the most stringent limits found
are for 136Xe, closely followed by 76Ge. An upper-limit
for the Majorana neutrino mass hm��i of 140 meV was
calculated in the case of 136Xe.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons (presented in Ref. [11]) and precise calculations of
the matrix elements are needed to investigate the pres-
ence of right-handed currents and the dominant mechan-
sim.

VI. APPENDIX

In this Appendix, we present the detailed expressions
for the M2

i NME that are needed to analyze the outcome
of Eq.(5).

The NME that enter the equations (8, 10, 12, 14, and
16) are written as a product of two-body transition den-
sities (TBTD) and two-body matrix elements (TBME),
where the summation is over all the nucleon states. Their
numerical values when calculated within the shell model
approach are presented in Table IX for the light lef-
handed Majorana neutrino exchange, in Table X for the
long-range part in Fig. 2, and in Table XI for the short-
range component of Fig. 2. The general expressions for
the NME are (see Refs. [11, 21, 29]):

M↵ =
X

jpjp0 jnjn0J⇡

TBTD (jpjp0 , jnjn0 ; J⇡)

⇥

D
jpjp0 ; J⇡

���⌧�1⌧�2O
�,�,✓,P,R
12

��� jnjn0 ; J⇡
E
. (19)

We group the operators that share similar structure into
five families.

Gamow-Teller operator : O�
12 = ~�1 · ~�2H�(r),

Fermi operator : O�
12 = H�(r),

Tensor operator : O✓
12 = [3(~�1 · r̂)(~�2 · r̂)� ~�1 · ~�2]H✓(r),

P operator : OP
12 = (~�1 � ~�2)HP (r),

R operator : OR
12 = ~�1 · ~�2HR(r).

Here, � = GT , GT!, GTq, GTN , GT
0, GT

00, GT⇡⌫,
GT1⇡, GT2⇡, � = F, F!, F q, FN, F

0, and ✓ =
T, Tq, T

0
, T

00
, T⇡⌫, T1⇡, T2⇡. Equations (21) present

the radial part of the NME and their expressions are
adapted for consistency from Refs. [29],[15], and [45].
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2
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2 dq , (21a)
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Z
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2
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2
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2
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

m eϵ5 ¼
g2v2

Λ5

;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2m p

¼
"
g4

Λ5
9

;
g6v2

Λ7
11

#
: ð3Þ

In terms of the effective 0νββ mass m ee, one simply has
ϵ5 ¼ m ee=m e with the electron mass m e, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass m p. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

m ν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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TABLE VIII. The ⇤D scale limits and the minimal washout
scales �D and �̂D for the 0⌫�� decay of 136Xe with a half-life
limit T1/2 > 1.1⇥ 1026 years.

OD ✏̄D ⇤D �D �̂D

O5 2.8⇥ 10�7 2.12⇥ 1014 4.94⇥ 1011 8.20⇥ 1012

O7 2.0⇥ 10�7 3.75⇥ 104 1.78⇥ 102 4.32⇥ 102

O9 1.5⇥ 10�7 2.48⇥ 103 5.10⇥ 101 1.74⇥ 102

O11 1.5⇥ 10�7 1.16⇥ 103 8.73⇥ 101 1.74⇥ 102

and 2g, "̃1 provides significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
...........
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2
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Here, me = 0.511⇥10�3 GeV is the electron mass, g = 1
is a generic coupling constant, v = 174 GeV is the Higgs
vaccum expectation value, GF = 1.166 ⇥ 10�5 GeV�2

is the Fermi coupling constant, and mp = 0.938 GeV is

the proton mass. ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏
V+A
V�A|, |✏

V+A
V+A|,

|✏
S+P
S±P |, |✏

TR
TL |, |✏

TR
TR|

i
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h
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3 |,
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3 |, |"4|, |"5|

i
, and ✏̄11 = ✏̄9.

To extract the operator scale limits ⇤5,7,9,11 we need
the most stringent limits for the LNV parameters, which
are found in the case of 136Xe. Because of this, we focus
our analysis on using the ✏̄D (with D = {5, 7, 9, 11})
values from this nucleus. ✏̄5 corresponds to the ⌘0⌫ pa-
rameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏

V+A
V�A, that is the

largest long-range ✏
�
↵ parameter. In the case of ✏̄9 = ✏̄11

we select "1, being the largest short-range "
�
↵ parameter.

V. CONCLUSIONS

This work advances and extends the analysis of beyond
standard model physics parameters involved in the neu-
trinoless double-beta decay. We calculate 23 nuclear ma-
trix elements and 9 phase-space factors. Using a general
e↵ective field theory, we extract limits for the e↵ective
Majorana mass and 11 e↵ective couplings in the case of
five nuclei of immediate experimental interest. Due to

the better half-life limits, the most stringent limits found
are for 136Xe, closely followed by 76Ge. An upper-limit
for the Majorana neutrino mass hm��i of 140 meV was
calculated in the case of 136Xe.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons (presented in Ref. [11]) and precise calculations of
the matrix elements are needed to investigate the pres-
ence of right-handed currents and the dominant mechan-
sim.

VI. APPENDIX

In this Appendix, we present the detailed expressions
for the M2

i NME that are needed to analyze the outcome
of Eq.(5).

The NME that enter the equations (8, 10, 12, 14, and
16) are written as a product of two-body transition den-
sities (TBTD) and two-body matrix elements (TBME),
where the summation is over all the nucleon states. Their
numerical values when calculated within the shell model
approach are presented in Table IX for the light lef-
handed Majorana neutrino exchange, in Table X for the
long-range part in Fig. 2, and in Table XI for the short-
range component of Fig. 2. The general expressions for
the NME are (see Refs. [11, 21, 29]):

M↵ =
X

jpjp0 jnjn0J⇡

TBTD (jpjp0 , jnjn0 ; J⇡)

⇥

D
jpjp0 ; J⇡

���⌧�1⌧�2O
�,�,✓,P,R
12

��� jnjn0 ; J⇡
E
. (19)

We group the operators that share similar structure into
five families.

Gamow-Teller operator : O�
12 = ~�1 · ~�2H�(r),

Fermi operator : O�
12 = H�(r),

Tensor operator : O✓
12 = [3(~�1 · r̂)(~�2 · r̂)� ~�1 · ~�2]H✓(r),

P operator : OP
12 = (~�1 � ~�2)HP (r),

R operator : OR
12 = ~�1 · ~�2HR(r).

Here, � = GT , GT!, GTq, GTN , GT
0, GT

00, GT⇡⌫,
GT1⇡, GT2⇡, � = F, F!, F q, FN, F

0, and ✓ =
T, Tq, T

0
, T

00
, T⇡⌫, T1⇡, T2⇡. Equations (21) present

the radial part of the NME and their expressions are
adapted for consistency from Refs. [29],[15], and [45].
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

m eϵ5 ¼
g2v2

Λ5

;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2m p

¼
"
g4

Λ5
9

;
g6v2

Λ7
11

#
: ð3Þ

In terms of the effective 0νββ mass m ee, one simply has
ϵ5 ¼ m ee=m e with the electron mass m e, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass m p. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

m ν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

m eϵ5 ¼
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;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2m p

¼
"
g4

Λ5
9

;
g6v2

Λ7
11

#
: ð3Þ

In terms of the effective 0νββ mass m ee, one simply has
ϵ5 ¼ m ee=m e with the electron mass m e, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass m p. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

m ν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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TABLE VI. The M
2
↵ values for the short-range physics.

48Ca 76Ge 82Se 130Te 136Xe

1013·M2
1 1.08 0.75 2.81 1.98 1.63

108· M2
2 0.77 0.55 2.07 1.51 1.25

1010·M2
3LLz(RRz) 1.12 0.80 2.99 2.17 1.79

1011·M2
3LRz(RLz) 6.00 4.31 16.1 11.8 9.73

1010·M2
4 1.02 0.76 2.72 1.93 1.59

1013·M2
5 4.71 3.44 12.3 8.44 7.02

109· M2
⇡N 3.26 0.87 3.24 2.47 1.94

M
2
4 = G09

(meR)2

8

"
T

(3)
1

gA
MGTN

#2

, (14e)

M
2
5 = G09

(meR)2

8

"
F

(3)
S gV

g
2
A

MFN

#2

. (14f)

The parameters F
(3)
S = 0.48 and T

(3)
1 = 1.38 are taken

form Ref. [75]. The values of these M2
↵� are presented in

Table VI. Detailed expressions for MGTN and MFN are
presented in the Appendix, and their shell model values
are shown in Table XI.

Considering the 0⌫�� amplitudes displayed in Figs. 2f
and 2g in the one-pion and two-pion exchange modes it
is possible to get alternative limits for "1 and "2 consid-
ering a di↵erent NME, M⇡N . The analysis of Ref. [68]
suggests these alternative values, here denoted by "̃1 and
"̃2, can be obtained as "̃1 = 64

16⌘⇡N , and "̃2 = 2
3⌘⇡N , using

h
T

0⌫
1/2

i�1
= g

4
A

h
|⌘⇡N |

2
M

2
⇡N

i
, (15)

where

M
2
⇡N = G01

⇥
c
1⇡ (MGT1⇡ +MT1⇡)

+ c
2⇡ (MGT2⇡ +MT2⇡)

⇤2
. (16)

The expressions for the factors c1⇡ and c
2⇡ are found in

Eq. (151) of Ref. [65]. These factors depend on the
masses of the up and down quark, and choosing (mu +
md) = 11.6 MeV [26, 76], one gets c1⇡ = �83.598, c2⇡ =
359.436 that we use in these calculations. The description
of M↵ (with ↵ = GT1⇡, T1⇡, GT2⇡, T2⇡) is presented
in the Appendix.

Shown in Table VII are the values of the short-range
LNV parameters. Using the di↵erent hadronization pre-
sented in Figs. 2f and 2g, "̃1 provides significantly more
stringent upper-limits than "1. With the exception of
48Ca, where the "̃2 limit is identical to "2, the other "̃2

upper-limits are almost double those of "2.

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm��i ⇠ 140 meV. A wider range of

TABLE VII. The “on-axis“ values of the long-range param-
eters "i. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[55].
Considering the diagram in Fig. 2e, it is possible to

get lower limits for ✏TR
TR, denoted as ✏̃TR

TR in Table V, than
those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
As suggested in Ref. [71] (see the diagrams of

their Fig.1), at the electroweak scale the low-energy
dimension-6 Lagrangian L6 corresponds to dimension-5
and dimension-7 BSM operators, O5 and O7, when the
appropriate Higgs fields are included. Similarly the low
energy dimension-9 Lagrangian L9 can be rearranged as
dimension-9 and dimension-11 operators, O9 and O11,.
Using the e↵ective field theory one can infer the energy
scale ⇤D up to which this e↵ective field operators are not
broken:

LD =
g

(⇤D)D�4OD (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [71] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangian
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359.436 that we use in these calculations. The description
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in the Appendix.
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values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[55].
Considering the diagram in Fig. 2e, it is possible to

get lower limits for ✏TR
TR, denoted as ✏̃TR

TR in Table V, than
those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
As suggested in Ref. [71] (see the diagrams of

their Fig.1), at the electroweak scale the low-energy
dimension-6 Lagrangian L6 corresponds to dimension-5
and dimension-7 BSM operators, O5 and O7, when the
appropriate Higgs fields are included. Similarly the low
energy dimension-9 Lagrangian L9 can be rearranged as
dimension-9 and dimension-11 operators, O9 and O11,.
Using the e↵ective field theory one can infer the energy
scale ⇤D up to which this e↵ective field operators are not
broken:

LD =
g

(⇤D)D�4OD (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [71] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangian
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TABLE VII. The “on-axis“ values of the long-range param-
eters "�↵. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm��i ⇠ 140 meV. A wider range of
values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[58].

Considering the diagram in Fig. 2e, it is possible to
get lower limits for ✏TR

TR, denoted as ✏̃TR
TR in Table V, than

those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

As suggested in Ref. [74] (see the diagrams of their
Fig.1), at the electroweak scale when the appropriate
Higgs fields are included, the diagram 1.b originates
from a dimension-5 BSM Lagrangian, O5, responsible for
the Majorana neutrino mass. Similarly the low-energy
dimension-6 Lagrangian L6 corresponds to a dimension-
7 BSM operator, O7, and the low energy dimension-9
Lagrangian L9 can be rearranged as dimension-9 and
dimension-11 operators, O9 and O11. Using the e↵ec-
tive field theory one can infer the energy scale ⇤D up to
which these e↵ective field operators are not broken:

LD =
g

(⇤D)D�4OD, (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [74] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangians
above the electroweak scale, Eq. (17).

me✏̄5 =
g
2(yv)2

⇤5
,

GF ✏̄7
p
2

=
g
3(yv)

2(⇤7)3
,

G
2
F ✏̄9

2mp
=

g
4

(⇤9)5
,

G
2
F ✏̄11

2mp
=

g
6(yv)2

(⇤11)7
. (18)

Here, me = 0.511 ⇥ 10�3 GeV is the electron mass,
g = 1 is a generic coupling constant, v = 174 GeV is
the Higgs vacuum expectation value, y is a Yukawa cou-
pling associated to the interaction with the Higgs bosons,
GF = 1.166⇥10�5 GeV�2 is the Fermi coupling constant,
and mp = 0.938 GeV is the proton mass. The ✏̄D (with
D = {5, 7, 9, 11}) can be extracted from the LNV pa-
rameters in Eqs. (2) and (3). Considering that values of
these LNV parameters may be a↵ected by mixing angles
that might distort the scales in Eq. (17), we choose their

maximum values: ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏
V+A
V�A|, |✏

V+A
V+A|,

|✏
S+P
S±P |, |✏

TR
TL |, |✏

TR
TR|

i
, ✏̄9 = Max

h
|"1|, |"2|, |"

LLz(RRz)
3 |,

|"
LRz(RLz)
3 |, |"4|, |"5|

i
, and ✏̄11 = ✏̄9.

To extract the limits of the BSM scales ⇤5,7,9,11 we
need the most stringent limits for the LNV parameters,
which are found for the case of 136Xe. Inspecting Ta-
bles V and VII we found that ✏̄5 corresponds to the ⌘0⌫

parameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏

V+A
V+A, that is the

largest long-range ✏
�
↵ parameter. In the case of ✏̄9 = ✏̄11

we select "1, being the largest short-range "
�
↵ parameter.

These values are listed in Table VIII.
As in Ref. [74] we take g = 1 in Eq. (17). However,

we introduce here the Yukawa coupling y between the
Higgs boson field and the fermion fields, and we consider
two cases: (i) y = 1 corresponding to the top quark mass
(choice made in Ref. [74]), and (ii) y = 3 ⇥ 10�6 corre-
sponding to the electron mass. Based on these values we
calculate the limits of the new BSM scales or di↵erent
dimension-D operators. The results are shown in Table
VIII. The ⇤0

D scales are calculated using the present
lower limit for the half-life of 136Xe, 1.1 ⇥ 1026. ⇤D is
estimated assuming a half-life of T1/2 ⇡ 1.1⇥ 1028 years,
which would correspond to a hm��i ⇡ 14 meV.
The ⇤9 scale does not depend on the unknown Yukawa

coupling, and from that point of view, if O9 amplitude
is dominant, that would indicate that the scale of new
physics should be found around 3 TeV. Unfortunately,
the ⇤9 scale, as well as all other high D scales, are not
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L

(2)
6 ) =

G
2
F

2
T

h
jV�AJ

†
V�AjV�AJ

†
V�A
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�
↵j�J

†
↵jV�AJ

†
V�A + ✏

�
↵✏

�
�j�J

†
↵j�J

†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2
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†
V�A,µ +

⇤X
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✏
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏
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V�A, ✏
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TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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2mp
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"1JJj + "2J
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
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4jµV�AJ
†
V�A,µ +
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✏
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏
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↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
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2mp
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"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
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V�A,µ +
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏
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↵ =
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TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
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xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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We discuss a novel effect in neutrinoless double-β (0 νββ) decay related with the fact that its underlying
mechanisms take place in the nuclear matter environment. We study the neutrino exchange mechanism and
demonstrate the possible impact of nuclear medium via lepton-number-violating (LNV) four-fermion
interactions of neutrinos with quarks from a decaying nucleus. The net effect of these interactions is the
generation of an effective in-medium Majorana neutrino mass matrix. The enhanced rate of the 0 νββ decay
can lead to the apparent incompatibility of observations of the 0 νββ decay with the value of the neutrino
mass determined or restricted by the β-decay and cosmological data. The effective neutrino masses and
mixing are calculated for the complete set of the relevant four-fermion neutrino-quark operators. Using
experimental data on the 0 νββ decay in combination with the β-decay and cosmological data, we evaluate
the characteristic scales of these operators: ΛLNV ≥ 2.4 TeV.
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Various mechanisms of neutrinoless double-β (0 νββ)
decayhavebeenconsidered in the literature (for recent reviews
see [1,2]). Themechanisms are conventionally constructed as
lepton-number-violating (LNV) quark-lepton processes pro-
ceeding inavacuum.Then, after anappropriatehadronization,
the presence of the initial and final nuclei is taken into account
as a smearing effect via convolution with the corresponding
nuclear wave function. On the other hand, the nuclear matter
may impact an underlying LNV process in a more direct way
via the standard model (SM) or beyond the SM interactions.
If this is relevant, an especially notable effect should be
expected from the LNV interactions with the nuclear matter.
In the present Letter, we consider the Majorana neutrino
exchange mechanism and examine the possible impact of
nuclear medium via LNV four-fermion neutral current inter-
actions of neutrinos with quarks from a decaying nucleus.
The nuclear matter effect on the 0 νββ-decay rate is calculated
in the mean field approach. The mean field associated with
the strong interaction is created in nuclei by the scalar and
vector quark currents and described effectively in terms of the
σ and ω mesons [3]. Here, we consider the scalar mean field
associated with the LNV interaction. Then, an effective four-
fermion neutrino-quark Lagrangian with the operators of the
lowest dimension can be written in the form

Leff ¼
1

Λ2
LNV

X

i;j;q

ðgqijνCLiνLj · q̄qþ H:c:Þ (1)

þ 1

Λ3

X

i;j;q

hqijνLiiγ
μ∂
↔

μνLj · q̄q; (2)

where the fields νLi are the active neutrino left-handed flavor
states, gqij and hqij are their dimensionless couplings to the
scalar quark currents with i, j ¼ e, μ, τ satisfying gqij ¼ gqji
and ðhqijÞ% ¼ hqji. The first property follows from the identity
νCLiνLj ¼ νCLjνLi, the second one from the Hermiticity of the
neutrino operator in the form of kinetic terms. Note that the
first term in Eq. (1) violates the lepton number by two units
ΔL ¼ 2 while the second one is lepton number conserving
ΔL ¼ 0 . We neglect all the surface terms, which could, in
principle, be nontrivial due to the presence of a nuclear
surface where the gradient of the nuclear matter density is
large. Thus, we consider a simplified case of the infinite
nuclear radius. The scales ΛLNV and Λ of the ΔL ¼ 2 and
ΔL ¼ 0 operators are, in general, different and are of the
order of the masses M of virtual particles inducing these
effective operators at tree level. These particles could be
either scalars or vectors (vector leptoquarks) with the masses
M ≫ pF ∼280 MeV, where pF is the Fermi momentum of
nucleons in nuclei, which sets the momentum scale of 0 νββ
decay. The gauge invariant structure of the operators in
Eq. (1) is briefly discussed later.
In the mean field approximation, we replace the

operator q̄q in Eq. (1) with its average value hq̄qi over
the nuclear medium. Relying on the MIT bag model,
we have for the light quarks q ¼ u, d an estimate
hq̄qi ≈ 1

2 hq
†qi [4], which is equivalent to hq̄qi≈

0 .25 fm−3 at the saturation. Thus, in the nuclear environ-
ment, the Lagrangian (1) is reduced to
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We discuss a novel effect in neutrinoless double-β (0 νββ) decay related with the fact that its underlying
mechanisms take place in the nuclear matter environment. We study the neutrino exchange mechanism and
demonstrate the possible impact of nuclear medium via lepton-number-violating (LNV) four-fermion
interactions of neutrinos with quarks from a decaying nucleus. The net effect of these interactions is the
generation of an effective in-medium Majorana neutrino mass matrix. The enhanced rate of the 0 νββ decay
can lead to the apparent incompatibility of observations of the 0 νββ decay with the value of the neutrino
mass determined or restricted by the β-decay and cosmological data. The effective neutrino masses and
mixing are calculated for the complete set of the relevant four-fermion neutrino-quark operators. Using
experimental data on the 0 νββ decay in combination with the β-decay and cosmological data, we evaluate
the characteristic scales of these operators: ΛLNV ≥ 2.4 TeV.
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Various mechanisms of neutrinoless double-β (0 νββ)
decayhavebeenconsidered in the literature (for recent reviews
see [1,2]). Themechanisms are conventionally constructed as
lepton-number-violating (LNV) quark-lepton processes pro-
ceeding inavacuum.Then, after anappropriatehadronization,
the presence of the initial and final nuclei is taken into account
as a smearing effect via convolution with the corresponding
nuclear wave function. On the other hand, the nuclear matter
may impact an underlying LNV process in a more direct way
via the standard model (SM) or beyond the SM interactions.
If this is relevant, an especially notable effect should be
expected from the LNV interactions with the nuclear matter.
In the present Letter, we consider the Majorana neutrino
exchange mechanism and examine the possible impact of
nuclear medium via LNV four-fermion neutral current inter-
actions of neutrinos with quarks from a decaying nucleus.
The nuclear matter effect on the 0 νββ-decay rate is calculated
in the mean field approach. The mean field associated with
the strong interaction is created in nuclei by the scalar and
vector quark currents and described effectively in terms of the
σ and ω mesons [3]. Here, we consider the scalar mean field
associated with the LNV interaction. Then, an effective four-
fermion neutrino-quark Lagrangian with the operators of the
lowest dimension can be written in the form

Leff ¼
1

Λ2
LNV

X

i;j;q

ðgqijνCLiνLj · q̄qþ H:c:Þ (1)

þ 1

Λ3

X

i;j;q

hqijνLiiγ
μ∂
↔

μνLj · q̄q; (2)

where the fields νLi are the active neutrino left-handed flavor
states, gqij and hqij are their dimensionless couplings to the
scalar quark currents with i, j ¼ e, μ, τ satisfying gqij ¼ gqji
and ðhqijÞ% ¼ hqji. The first property follows from the identity
νCLiνLj ¼ νCLjνLi, the second one from the Hermiticity of the
neutrino operator in the form of kinetic terms. Note that the
first term in Eq. (1) violates the lepton number by two units
ΔL ¼ 2 while the second one is lepton number conserving
ΔL ¼ 0 . We neglect all the surface terms, which could, in
principle, be nontrivial due to the presence of a nuclear
surface where the gradient of the nuclear matter density is
large. Thus, we consider a simplified case of the infinite
nuclear radius. The scales ΛLNV and Λ of the ΔL ¼ 2 and
ΔL ¼ 0 operators are, in general, different and are of the
order of the masses M of virtual particles inducing these
effective operators at tree level. These particles could be
either scalars or vectors (vector leptoquarks) with the masses
M ≫ pF ∼280 MeV, where pF is the Fermi momentum of
nucleons in nuclei, which sets the momentum scale of 0 νββ
decay. The gauge invariant structure of the operators in
Eq. (1) is briefly discussed later.
In the mean field approximation, we replace the

operator q̄q in Eq. (1) with its average value hq̄qi over
the nuclear medium. Relying on the MIT bag model,
we have for the light quarks q ¼ u, d an estimate
hq̄qi ≈ 1

2 hq
†qi [4], which is equivalent to hq̄qi≈

0 .25 fm−3 at the saturation. Thus, in the nuclear environ-
ment, the Lagrangian (1) is reduced to
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hq̄qi
Λ2
LNV

ðνCLigijνLj þ H:c:Þ

þ hq̄qi
Λ3

νLihijiγμ∂
↔

μνLj; (3)

where gij ¼ ðguij þ gdijÞ=2 and hij ¼ ðhuij þ hdijÞ=2. We
assume for simplicity the nuclear medium to be an
isosinglet.
Let us recall the terms of the electroweak (EW)

Lagrangian in vacuum relevant to the calculation of the
amplitude of 0νββ decay via the Majorana neutrino
exchange mechanism. They are

Lvac
EW ¼ 1

4
νLiiγμ∂

↔

μνLi −
1

2
νCLiM̂

L
ijνLj

þ 4GF cos θCffiffiffi
2

p lLiγμνLj · ūLγμdL þ H:c:; (4)

whereML
ij ¼ ML

ji is a Majorana mass matrix symmetric for
the same reason as hqij is a matrix in Eqs. (1) and (2). It can
be diagonalized by a unitary transformation νi ¼ UL

ijν
0
j. In

the basis where the charged lepton mass matrix is diagonal,
the unitary matrix UL coincides with the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix. Thus, in the
vacuum, we have

Lvac
EW ¼ 1

4
ν0Liiγ

μ∂
↔

μν0Li −
1

2
m iν0CLiν

0
Li

þ 4GF cos θCffiffiffi
2

p lLiγμUL
ijν

0
Lj · ūLγμdL þ H:c: (5)

Here, m i (i ¼ 1, 2, 3) is the neutrino mass in the vacuum.
According to the conventional parametrization

UL ¼ VLD , where VL is a matrix depending on the
three mixing angles and one Dirac phase, D ¼
Diagf1; expðiα21=2Þ; expðiα31=2Þg is the diagonal matrix
of the Majorana phases, which are chosen so that m %

i ¼
m i ≥ 0 and the entry VL

e3 ¼ sin2 θ13 has no Dirac phase.
As is seen from Eq. (3), the neutrino interactions with

the nuclear matter affect both the mass and kinetic terms of
the vacuum Lagrangian (4), (5) so that the in-medium
Lagrangian written in the vacuum mass eigenstate basis
takes the form

Lmed
EW ¼ 1

4
ν0LiK̂ijiγμ∂

↔

μν0Lj −
1

2
ν0CLicMijν0Lj

þ 4GF cos θCffiffiffi
2

p lLiγμUL
ijν

0
Lj · ūLγμdL þ H:c:; (6)

where

K̂ij ¼ δij þ 4
hq̄qi
Λ3

ĥij; cMij ¼ m iδij − 2
hq̄qi
Λ2
LNV

ĝij; (7)

with ĥ ¼ UL†hUL, ĝ ¼ ðULÞTgUL. Thus, we have
K̂† ¼ K̂, and cMT ¼ cM.
First, we bring the neutrino kinetic term in the

Lagrangian (6) to the canonical form. Toward this end,
we diagonalize it by a unitary transformation ν00i ¼ Vijν00j ,
V†K̂V ¼ Diagfλkg≡Ω, where λ%k ¼ λk ≥ 0. The positive-
ness of these eigenvalues is maintained as long as
4hq̄qiĥ ≤ Λ3, which is implied in our analysis. With this
condition, a field rescaling ν00i → λ−1=2i ν00i allows us to arrive
at the canonical kinetic term

Lmed
EW ¼ 1

4
¯ν00Liiγ

μ∂
↔

μν00Li

− 1

2
ν00CLi λ

−1=2
i Vji

cMjkVknλ
−1=2
j ν00Ln

þ 4GF cos θCffiffiffi
2

p lLiγμUL
ijVjkλ

−1=2
k ν00Lk · ūLγμdL

þ H:c: (8)

Then, we diagonalize the effective Majorana mass term by
a unitary transformation ν00i ¼ WL

ij ~νj,

ðWLÞTðΩ−1=2VTcMVΩ−1=2ÞWL ¼ Diagfμ̄ig; (9)

where μ̄i ¼ μi expð−iϕiÞ with jμ̄ij¼ μi. These phases can
be absorbed by the neutrino fields ~νLi → expðiϕi=2Þ~νLi.
Only two of these phases are physical. One of ϕ1;2;3 can be
erased by an overall phase rotation of the charged lepton
fields: lLi → lLi expð−iϕ1=2Þ, where we conventionally
selected the phase ϕ1 to be eliminated. After all that, we
finally arrive at the neutrino Lagrangian in the nuclear
matter

Lmed
EW ¼ 1

4
~νLiiγμ∂

↔

μ ~νLi −
1

2
μi ~νCLi ~νLi

þ 4GF cos θCffiffiffi
2

p lLiγμUeff
ij ~νLj · ūLγμdL þ H:c:; (10)

in terms of an effective mass eigenstate neutrino field ~νLi in
the nuclear environment related to the in-vacuum fields νi
from Eq. (4) as νLi ¼ Ueff

ij ~νLj with U
eff ¼ ULVΩ−1=2WLP,

where P ¼ Diagf1; expðiϕ21=2Þ; expðiϕ31=2Þg is the
diagonal matter generated Majorana phase matrix, with
ϕ21 ¼ ϕ2 − ϕ1, ϕ31 ¼ ϕ3 − ϕ1. Note that the neutrino
mixing matrix in medium Ueff is not unitary, contrasting
to unitarity of the neutrino mixing matrix UL in vacuum.
The amplitude of 0νββ decay for the Majorana neutrino

exchange in nuclear medium is proportional to the quantity

m ββ ¼
X

i

ðUeff
ei Þ2μi; (11)

which should be compared with the corresponding quantity
without nuclear matter effects
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m vac
ββ ¼

X

i

ðUL
eiÞ2m i: (12)

The experimental searches for 0νββ decay provide
information on the in-medium effective parameter m ββ
from Eq. (11). For various choices of nuclear matrix
elements, the currently most stringent limit on this param-
eter derived by EXO-200 and KamLAND-Zen experiments
with 136Xe [5] and by the GERDA experiment with 76Ge
[6] is in the range jm ββj≤ 0.2–0.4 eV. Discussion of the
next-generation experiments aimed at improving the 0νββ
limits can be found in Ref. [1].
The information on the in-vacuum neutrino masses and

mixing is provided by neutrino oscillation experiments (for
a review, see Ref. [7]). The quantities measured in these
experiments are the neutrino mass squared differences
Δm 2

ij ¼ m 2
i − m 2

j and mixing angles θ12, θ23, and θ13. If
the overall mass scale is fixed, e.g., by the mass of the
lightest neutrino, m 0 ≡minðm iÞ, all the other masses
are determined. Two types of the neutrino mass spectra
are possible: the normal one with m 1 < m 2 < m 3 (NS) and
the inverted one with m 3 < m 1 < m 2 (IS).
The overall neutrino mass scale in vacuum can be

constrained by tritium β decay measurements and cosmo-
logical data.
Presently, the best experimental limit on the neutrino

parameter m β observable in tritium β decay is [8] m 2
β ¼P

ijUL
eij2m 2

i ≤ ð2.2 eVÞ2 at 95% C.L. The KATRIN
experiment is expected to improve this limit by a factor
of 10 in the near future [9].
Recently, the Planck collaboration [10] reported

new limits on the sum of the neutrino masses:P
im i ≤ 0.23–1.08 eV, derived from the measurements

of the temperature of the cosmic microwave background
and lensing-potential power spectra. The lowermost bound
implies m 0 ≤ 0.07 eV. An upper limit of 0.28 –0.47 eV for
the sum of neutrino masses was reported in Ref. [11].
From the constraints of Refs. [5,6] and [8,10,11], we

derive limitations on the four-fermion effective neutrino-
quark interactions introduced in Eq. (1). We consider a
simplified case for the scalar couplings in Eqs. (1–3) such
that 4ĥijΛ−3 ¼ δijh, 2ĝijΛ−2

LNV ¼ δijg, with h, g being real
numbers, where ĥ, ĝ are defined after Eq. (7). Then, we
have Vij ¼ δij, WL

ij ¼ δij, Ωij ¼ δijλ, λ ¼ 1þ hq̄qih,
μi ¼ λ−1jm i − hq̄qigj. The effective Majorana mass (11)
in this case is

m ββ ¼
Xn

i¼1

ðVL
eiÞ2ξi

jm i − hq̄qigj
ð1 − hq̄qihÞ2

: (13)

Here, VL
ij is the PMNS mixing matrix in vacuum

without Majorana phases. The Majorana phase factor is
ξi ¼ f1; expðiα1Þ; expðiα2Þg with α1 ¼ ðα21 þ ϕ21Þ=2,
α2 ¼ ðα31 þ ϕ31Þ=2, where αij are the Majorana phases
in vacuum defined together with the matrix VL after Eq. (5).

Within the simplified scheme, the quantity m ββ in nuclear
medium in comparison with the one in vacuum depends on
the two new unknown parameters: h, g. In our numerical
estimations, we assume that only one of them is different
from zero at a time. The unknown phases in Eq. (13) are
varied in the interval [0, 2π]. The vacuum mixing angles
and the neutrino mass squared differences are taken from
Ref. [7]. We illustrate our results in Fig. 1. The shaded areas
display allowed values of jm ββj and m 0 for a set of sample
values of g with h ¼ 0. For both NS and IS, these results,
being combined with the cosmological and tritium β-decay
limits, suggest for the LNV scale

ΛLNV ≥ 2.4 TeV ðPlanckÞ; 1.1 TeV ðtritiumÞ: (14)

With the future KATRIN data, the limit 1.1 TeV in Eq. (14)
will be pushed up to ∼2 TeV. For convenience, we also
give our limits in terms of a dimensionless parameter εij

FIG. 1 (color online). The bands 1, 2, 3, 4, and 5 show
admissible values of jm ββj and m 0 for h ¼ 0 and hq̄qig ¼ −1,
−0.1, 0, 0.1, and 1 eV, respectively. The upper and lower panels
correspond to the normal (NS) and the inverted (IS) neutrino
spectrums. The charge-parity-violating phases spread in the
interval [0, 2π]. Regions to the right from the vertical solid
and dotted lines are excluded by the tritium β decay [8] and by the
cosmological data [10,11].
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m vac
ββ ¼

X

i

ðUL
eiÞ2m i: (12)
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information on the in-medium effective parameter m ββ
from Eq. (11). For various choices of nuclear matrix
elements, the currently most stringent limit on this param-
eter derived by EXO-200 and KamLAND-Zen experiments
with 136Xe [5] and by the GERDA experiment with 76Ge
[6] is in the range jm ββj≤ 0.2–0.4 eV. Discussion of the
next-generation experiments aimed at improving the 0νββ
limits can be found in Ref. [1].
The information on the in-vacuum neutrino masses and
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experiments are the neutrino mass squared differences
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j and mixing angles θ12, θ23, and θ13. If
the overall mass scale is fixed, e.g., by the mass of the
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are determined. Two types of the neutrino mass spectra
are possible: the normal one with m 1 < m 2 < m 3 (NS) and
the inverted one with m 3 < m 1 < m 2 (IS).
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constrained by tritium β decay measurements and cosmo-
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Presently, the best experimental limit on the neutrino

parameter m β observable in tritium β decay is [8] m 2
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i ≤ ð2.2 eVÞ2 at 95% C.L. The KATRIN
experiment is expected to improve this limit by a factor
of 10 in the near future [9].
Recently, the Planck collaboration [10] reported
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im i ≤ 0.23–1.08 eV, derived from the measurements

of the temperature of the cosmic microwave background
and lensing-potential power spectra. The lowermost bound
implies m 0 ≤ 0.07 eV. An upper limit of 0.28 –0.47 eV for
the sum of neutrino masses was reported in Ref. [11].
From the constraints of Refs. [5,6] and [8,10,11], we

derive limitations on the four-fermion effective neutrino-
quark interactions introduced in Eq. (1). We consider a
simplified case for the scalar couplings in Eqs. (1–3) such
that 4ĥijΛ−3 ¼ δijh, 2ĝijΛ−2

LNV ¼ δijg, with h, g being real
numbers, where ĥ, ĝ are defined after Eq. (7). Then, we
have Vij ¼ δij, WL

ij ¼ δij, Ωij ¼ δijλ, λ ¼ 1þ hq̄qih,
μi ¼ λ−1jm i − hq̄qigj. The effective Majorana mass (11)
in this case is

m ββ ¼
Xn

i¼1

ðVL
eiÞ2ξi

jm i − hq̄qigj
ð1 − hq̄qihÞ2

: (13)

Here, VL
ij is the PMNS mixing matrix in vacuum

without Majorana phases. The Majorana phase factor is
ξi ¼ f1; expðiα1Þ; expðiα2Þg with α1 ¼ ðα21 þ ϕ21Þ=2,
α2 ¼ ðα31 þ ϕ31Þ=2, where αij are the Majorana phases
in vacuum defined together with the matrix VL after Eq. (5).

Within the simplified scheme, the quantity m ββ in nuclear
medium in comparison with the one in vacuum depends on
the two new unknown parameters: h, g. In our numerical
estimations, we assume that only one of them is different
from zero at a time. The unknown phases in Eq. (13) are
varied in the interval [0, 2π]. The vacuum mixing angles
and the neutrino mass squared differences are taken from
Ref. [7]. We illustrate our results in Fig. 1. The shaded areas
display allowed values of jm ββj and m 0 for a set of sample
values of g with h ¼ 0. For both NS and IS, these results,
being combined with the cosmological and tritium β-decay
limits, suggest for the LNV scale

ΛLNV ≥ 2.4 TeV ðPlanckÞ; 1.1 TeV ðtritiumÞ: (14)

With the future KATRIN data, the limit 1.1 TeV in Eq. (14)
will be pushed up to ∼2 TeV. For convenience, we also
give our limits in terms of a dimensionless parameter εij

FIG. 1 (color online). The bands 1, 2, 3, 4, and 5 show
admissible values of jm ββj and m 0 for h ¼ 0 and hq̄qig ¼ −1,
−0.1, 0, 0.1, and 1 eV, respectively. The upper and lower panels
correspond to the normal (NS) and the inverted (IS) neutrino
spectrums. The charge-parity-violating phases spread in the
interval [0, 2π]. Regions to the right from the vertical solid
and dotted lines are excluded by the tritium β decay [8] and by the
cosmological data [10,11].
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How about some other contributions from 
SM? E.g. high density atomic electrons.
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Neutrinos in atomic nuclei
Atomic nucleus is a high electron density medium: 

Consider 2 electrons in the lowest s-orbital of an 
Hydrogen-like atom

Electron density inside nucleus:

Ne (0) ≈
2
π
Z
aB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

Equivalent matter density: ρ =mNNe =1.67×10
6 2
π
Z
53
⎛

⎝
⎜

⎞

⎠
⎟

3

in g / cm2 >> ρSun

ρSuncore ≈150 g / cm
3

Si2 dimer

DFT el. density

2 x 1s el. Hydrogen-like density 

Electron density near nucleus:

Ne (r) ≈
2
π
Z
aB

⎛

⎝
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⎞

⎠
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e−2rZ /aB
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Neutrinos in matter: local mass eigenstates
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(Anti)neutrinos are ”emitted” in dense 
matter in the local (lowest)highest “mass 
eigenstates”.

𝑉(𝑒𝑉) = ±7.6×10?#@𝑚A(𝑔)𝑁D(𝑐𝑚?&)

Local in-matter mass eigenstates approach:

Time (space) dependent flavor amplitudes evolution:

𝑖
𝑑
𝑑𝑡

𝜈D
𝜈J
𝜈"

= 𝐻
𝜈D
𝜈J
𝜈"

Time dependence of vm:

𝜈K = 𝑈5𝜈5

On the MSW neutrino mixing e↵ects in atomic weak interactions and double beta decays5

one needs to consider the MSW evolution for three (or more) mass eigenstates

mixing. Given that we are interested to extend this approach to double beta

decay taking place inside atomic nuclei, we consider the traditional approach of

separating the neutrino wave-length scale from the neutrino oscillation and matter

density variation scales, by introducing local in-matter mass eigenstates and mixing

matrix, and by analyzing the evolution of their amplitudes [5]. An analysis based

on two mass eigenstates accompanied by numerical examples is provided in the

Appendix (section 5). Here we extend the evolution equation for the mass eigenstates

amplitudes following the algorithm described in Eqs. (51)-(63) of Ref. [5]. The

vector of in-matter ”mass eigenstate” amplitudes is denoted as ⌫m = (⌫m
1 , ⌫

m
2 , ⌫

m
3 )T ,

which are eigenstates of the in-matter Hamiltonian H = H0 + V , where H0 =

Udiag (m2
1/(2P ),m2

3/(2P ),m2
3/(2P ))U †, and V = diag (Ve + VN , VN , VN). ma are the

masses of the vacuum mass eigenstates, and VN is the neutral current potential generated

by (mostly) neutrons and protons. The vector of 3 flavor amplitudes is denoted as

⌫f = (⌫e, ⌫µ, ⌫⌧ )
T , and then the Schroedinger-like evolution equation for the flavor

amplitudes in matter reads

i
@⌫f

@t
= (H0 + V ) ⌫f . (5)

The general requirement for the validity of neutrinos getting mixed and evolving in

accordance with the above evolution equation in the optical potential created by a

varying electron density is that the neutrino wavelength be smaller than the length over

which there is a significant change of the potential [5, 4].

� ⌧| V (x)/ (dV/dx) | (6)

In the case of the potential density created by the atomic electron density, Eqs. (3) and

(4), this condition reads

2⇡
h̄c

Pc
⌧ 53000

2Z
(in fm), (7)

which is satisfied for neutrino energies larger than 2-5 MeV and for a wide range of

atomic numbers. This condition is satisfied for all the relevant double beta decay

cases, for which the relevant P is of the order of 150 MeV. Eq. (4) indicates that

the electron density inside the atomic nucleus is much larger than that in the Sun‘s core

and, therefore, the (anti)neutrinos are “born“ in the (lower)higher mass eigenstates.

Using the unitary transformation of the in-matter mass eigenstates amplitudes

⌫f = Um⌫m , (8)

where Um are the in-matter mixing matrix made out of the eigenvectors of the in-matter

Hamiltonian H0 + V , one can write an alternative evolution equation

@⌫f

@t
= U̇m⌫m + Um⌫̇m , (9)

where the upper dots represent total derivatives with respect to t (time or distance).

Combining Eq. (5) with Eq. (9) one gets

i⌫̇m = U
†
m (H0 + V )Um⌫m � iU

†
mU̇m⌫m . (10)

On the MSW neutrino mixing e↵ects in atomic weak interactions and double beta decays6

where we used the assumption that ⌫m are always eigenstates of H0+V (see Eq. (8) and

comments thereafter). For the two state approximation one gets the following evolution

equations for the amplitudes [5] (see Appendix for notations and details)
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where the dots denote time derivatives. Comparing the evolution equation, Eq. (10),

with Eq. (11), one concludes that the first term on the right hand side of Eq. (10)

corresponds to the diagonal terms in Eq. (11), and the second term corresponds to the

o↵-diagonal terms in Eq. (11). Following the discussion after Eq. (39) in Appendix one

can conclude that in the extreme no-adiabatic conditions existing in medium-Z atoms,

the first term in Eq. (10) can be neglected. One can go further and conclude that in

the evolution of mixing under the conditions described above one can neglect the term

(H0 + V )Um, and when combined with Eqs. (8) and inserted in Eq. (5) one gets

i
�⌫f

�t
⇡ 0 . (12)

The interpretation of this equation is that during the short �t transition, under extreme

non-adiabatic conditions existing in medium-Z atoms, the flavor amplitudes do not

change, while the in-matter mass eigenstate amplitudes may change dramatically (see

Appendix for numerical examples). This interpretation needs to be further investigated

numerically for lower-Z atoms, where mixed amplitudes may co-exist.

Following the above interpretation on can conclude that whatever the vacuum

electron neutrino amplitude is outside the atomic nuclei, it will not change when the

neutrino arrives at the nucleus. Similarly, the neutrino created as the electron flavor

inside the atomic nucleus will exit the atom as the known mixture of vacuum mass

eigenstates described by PMNS matrix. One can conclude that the e↵ects of mixing in

the high electron density existing inside the atomic nuclei, combined with the standard

evolution of these mixings through the atomic electron cloud, do not change the known

flavor neutrino emission and detection phenomenology. Therefore, we conclude that we

can extend this approach of using in-matter mass eigenstates to neutrino fields [3, 4]

and we can apply it to neutrinoless double beta decay taking place inside the atomic

nuclei.
One should mention that although using in-matter mass eigenstates represents a

useful tool in understanding the neutrino oscillations for almost constant matter density,
it seems to introduce significant complexity in understanding situations where non-
adiabatic evolution is needed, as in traversing atomic electron clouds described above.
In reality there are only vacuum mass eigenstates slightly perturbed by matter densities,
and their evolution can be described by the coupled Dirac equations
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FIG. 1. The outgoing evolution of the probabilities of neu-
trinos produced inside a nucleus (Z=53 here). The neutrinos
are produced in state 2 (dashed, red) and they evolve non-
adiabatically to 68% state 1 (full, blue) and 32% state 2. The
horizontal axis represents the distance from the nucleus in
pm.

FIG. 2. Same as Fig. 1 for antineutrinos

NP = h0|T
⇥
 eL(x1) 

T
eL(x2)

⇤
|0i (11)

where  (x) is a four component Majorana spinor field.
For double beta decay only the left handed components
of the electron neutrino field contribute. The standard

FIG. 3. Similar to Fig. 1, but representing a high energy solar
neutrino coming in (from right) in state 2 with probability
100%, which decreases to 32% when it reaches the nucleus
(r=0).

FIG. 4. Same as Fig. 3 for a regular neutrino (68% state 1
and 32% state 2), which arrives with probability 1 in state 2
at the nucleus.

derivation of the 0�� decay half-life assumes that the
electron neutrino fields can be expanded in terms of the
vacuum mass eigenstates, Eq. (1), and one gets (up to
some phases)
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Here PL is the left-handedness projector operator, and C
is the spinor charge conjugation operator. The product
PLC is further used for processing the electron current
and one arrives to the standard formula for the 0�� decay
constant [10]
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where G(Z,Q) is a phase space factor, M0⌫ is a nuclear
matrix element [20], and me is the electron mass.
If one wants to consider the MSW e↵ects due to the

high electron density in the atomic nuclei, one has to
take into account that di↵erent components of the vac-
uum mass eigenstate fields in Eq. (1) are changing di↵er-
ently. A simpler approach is to use 2-components spinor
fields ( See Refs. [10, 14, 16, 17, 19]). Then, one needs
to make the connection to the four-components spinor
fields necessary to further process the electron current.
The typical approach is to use a specific representation
of the Dirac matrices, the Weyl’s chiral representation
being most convenient. Using the phase conventions of
Ref. [19] (see Eqs. (A.109)-(A.122)), in the Weyl’s chiral
representation one gets
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PLC product is further used to process the electron current, and one finally gets: 

!m!!" # $%
k

mkUek
2 $ . &3'

Here the mk’s are the masses of the three light neutrinos
and U is the matrix that transforms states with well-
defined mass into states with well-defined flavor &e.g.,
electron, mu, tau'. Equation &2' gives the !!&0"' rate if
the exchange of light Majorana neutrinos with left-
handed interactions is responsible. Other mechanisms
are possible &see Secs. III and IV.D', but they require the
existence of new particles and/or interactions in addition

to requiring that neutrinos be Majorana particles. Light-
neutrino exchange is therefore, in some sense, the
“minima” mechanism and the most commonly consid-
ered.

That neutrinos mix and have mass is now accepted
wisdom. Oscillation experiments constrain U fairly
well—Table I summarizes our current knowledge—but
they determine only the differences between the squares
of the masses mk &e.g., m2

2−m1
2' rather than the masses

themselves. It will turn out that !!&0"' is among the best
ways of getting at the masses &along with cosmology and
!-decay measurements', and the only practical way to
establish that neutrinos are Majorana particles.

To extract the effective mass from a measurement, it
is customary to define a nuclear structure factor FN
#G0"&Q!! ,Z'(M0"(2me

2, where me is the electron mass.
&The quantity FN is sometimes written as Cmm.' The ef-
fective mass !m!!" can be written in terms of the calcu-
lated FN and the measured half-life as

!m!!" = me)FNT1/2
0" *−1/2. &4'

The range of mixing matrix values given in Table I, com-
bined with calculated values for FN, allow us to estimate
the half-life a given experiment must be able to measure
in order to be sensitive to a particular value of !m!!".
Published values of FN are typically between 10−13 and
10−14yr−1. To reach a sensitivity of !m!!"+0.1 eV there-
fore an experiment must be able to observe a half-life of
1026–1027 yr. As we discuss later, at this level of sensitiv-
ity an experiment can draw important conclusions
whether or not the decay is observed.

The most sensitive limits thus far are from the
Heidelberg-Moscow experiment: T1/2

0" &76Ge'# 1.9$ 1025

yr &Baudis et al., 1999', the IGEX experiment:
T1/2

0" &76Ge'# 1.6$ 1025 yr &Aalseth et al., 2002a, 2004',
and the CUORICINO experiment: T1/2

0" &130Te'# 3.0
$ 1024yr &Arnaboldi et al., 2005, 2007'. These experi-
ments contained 5–10 kg of the parent isotope and ran
for several years. Hence increasing the half-life sensitiv-
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FIG. 2. Feynman diagrams for !!&2"' &top' and !!&0"' &bot-
tom'.

TABLE I. Neutrino mixing parameters as summarized by the Particle Data Book )Yao et al. &2006'*
based on the individual experimental reference reporting. The limit on !m!" and % are based on the
references given. The !m!!" limit comes from the Ge experiments. The parameter values would be
slightly different if determined by a global fit to all oscillation data &Fogli et al., 2006'.

Parameter Value Confidence level Reference

sin2&2&12' 0.86−0.04
+0.03 68% Aharmin et al. &2005'

sin2&2&23' ' 0.92 90% Ashie et al. &2005'
sin2&2&13' ( 0.19 90% Apollonio et al. &1999'
)m21

2 8.0−0.3
+0.4$ 10−5 eV2 68% Aharmin et al. &2005'

()m32
2 ( 2.4−0.5

+0.6$ 10−3 eV2 90% Ashie et al. &2004'
!m!" ( 2 eV 95% Lobashev et al. &1999'; Kraus et al. &2005'
!m!!" ( 0.7 eVa 90% Klapdor-Kleingrothaus et al. &2001a'; Aalseth

et al. &2002a'
% ( 2 eV 95% Elgaroy and Lahov &2003'

aUsing the matrix element of Rodin et al. &2006'.
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In atomic nuclei NP = In vacuum NP

Vacuum result stands : mββ = Uea
2 ma
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Some of the contributions entering the neutrino field can be simplified if one consider the high electron density medium
where the neutrinos are born. In that case the terms without masses reduce to one state
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where jh is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and jl is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). One then wonder if these limits could change the propagator, Eq. (12), and consequently the
decay half-life Eq. (13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in
an electron density medium using the full expression for the field �M

e (x), as
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Using the unitarity of the ↵(�)(p) and �(+)(p) matrices one gets
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator, Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (MGT 0 , MT 0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in

the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
limits for the LNV couplings are found for 136Xe, closely
followed by 76Ge. An upper-limit for the Majorana neu-
trino mass hm��i of 140 meV was calculated in the case
of 136Xe. Assuming a Yukawa coupling corresponding to
the electron mass, one can conclude that the 0⌫�� decay
could be consistent with a new physics scale somewhere
between 2 TeV and 20 TeV.

Using the upper limits for the LNV coupling we ex-
tract limits for the energy scale of the new physics, using
EFT arguments. We found that the scale associated with
the dimension-9 EFT operator is stable, and indicates a
new physics scale around 3 TeV. We also found that the
dimension-5 EFT operator associated with the Majorana
neutrino mass varies significantly with the Yukawa cou-
pling to Higgs and the 0⌫�� decay half-life.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons angular and energy distributions (presented in

Details are rather complex and can be found in arXiv:1803.06332

Conclusions: • the in-matter propagator still contains the vacuum 
PMNS matrix and masses!

• The formalism allows the extension of this result if 
sterile neutrinos are present (a = 1…4,(5))

• The propagators for long range 0nbb diagrams seem 
to remain unchanged (work not finished yet)
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Answer 1: potentially for Majoron decay!
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The implications of the Majoron decay for the neutrinos from astrophysical objects are also briefly dis-
cussed.
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I. INTRODUCTION

The effective properties of neutrinos while they propa-
gate in a dense medium can be much different from those
in a vacuum, leading to new interesting phenomena, the
Mikheyev-Smirnov-Wolfenstein (MSW) effect [1] being
the most well known. The MSW equation describes the
time evolution of weak neutrino states and the mixing be-
tween weak states and energy eigenstates. It has been
shown [2,3] that the MSW equation can be derived in the
framework of quantum field theory. However, the MSW
equation does not contain any information about the neu-
trino fields in matter, whose structure can be found only
by solving the field equations. On the other hand, the
knowledge of the effective neutrino fields in matter in the
presence of flavor mixing is essential in order to perform
realistic calculations of neutrino decays, such as radiative
or Majoron decays, or cross sections in matter.
In this paper we solve the field equations for neutrinos

in matter using the two-component helicity formalism in-
troduced by Mannheim [3]. We derive the spinorial wave
functions of neutrinos propagating in matter for the gen-
eral (n, m) theories in which there are n neutrino fields
belonging to SU(2)L isodoublets and m isosinglet neutrino
fields. Next, we study the Majoron decay of neutrinos in
matter assuming a model-independent approach, i.e.,
starting from a general interaction Lagrangian between
the neutrino fields and a massless pseudoscalar boson
which we call Majoron. In this approach the coupling
constants in the neutrino-Majoron interaction Lagrang-
ian are generic; i.e., they are independent from the origin
of the neutrino masses and their value is constrained only
by the experimental limits.
It is well known that in the simple Mal'oron models [4]

the Majoron decay of neutrinos in vacuum is negligibly
slow, essentially because the coupling matrix and the
mass matrix are generated through the same mechanism

and the off-diagonal couplings in the mass basis are
strongly suppressed. It is also well known, from the
MSW effect, that the energy eigenstates of relativistic
neutrinos in matter are a mixture of mass eigenstates.
Therefore, the coupling matrix between neutrinos and the
Majoron is effectively mixed in matter and fast Majoron
decays are possible. Furthermore, in matter the neutri-
nos can acquire very large effective masses that may lead
to a significant increase in the available phase space for
the decay. The possibility of these effects were first point-
ed out in Ref. [5]. In this reference the authors mixed the
chiral neutrino fields in the Lagrangian through the
efFective mixing angles in matter obtained from the diago-
nalization of the MSW equation. This formulation of the
problem was clearly incorrect, because the fields in the
Lagrangian cannot be mixed by a momentum-dependent
matrix. Moreover, for massive neutrinos, chirality is not
a good quantum number and one should consider the de-
cays of neutrinos propagating with a definite helicity. To
elucidate this point, let us consider the interaction La-
grangian that describes the coupling between the chiral
neutrino fields in the tnass basis v,z (a =I, . . . , N is a
generation index') and the Majoron field JK:

N

(v.t. )'G~bvbt. +H.c. ,
a, b=l

where GM is a real symmetric coupling matrix. A naive

iThroughout this paper the greek indices a,P, . . . refer to the
neutrino fields in the weak basis (and related quantities), the first
latin indices a, b, . . . refer to the neutrino fields in the mass
basis (and related quantities), and the middle latin indices i (ini-
tial), f (fina), j, k, . . . refer to the energy eigeustate neutrinos
propagating in matter.
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in a vacuum, leading to new interesting phenomena, the
Mikheyev-Smirnov-Wolfenstein (MSW) effect [1] being
the most well known. The MSW equation describes the
time evolution of weak neutrino states and the mixing be-
tween weak states and energy eigenstates. It has been
shown [2,3] that the MSW equation can be derived in the
framework of quantum field theory. However, the MSW
equation does not contain any information about the neu-
trino fields in matter, whose structure can be found only
by solving the field equations. On the other hand, the
knowledge of the effective neutrino fields in matter in the
presence of flavor mixing is essential in order to perform
realistic calculations of neutrino decays, such as radiative
or Majoron decays, or cross sections in matter.
In this paper we solve the field equations for neutrinos

in matter using the two-component helicity formalism in-
troduced by Mannheim [3]. We derive the spinorial wave
functions of neutrinos propagating in matter for the gen-
eral (n, m) theories in which there are n neutrino fields
belonging to SU(2)L isodoublets and m isosinglet neutrino
fields. Next, we study the Majoron decay of neutrinos in
matter assuming a model-independent approach, i.e.,
starting from a general interaction Lagrangian between
the neutrino fields and a massless pseudoscalar boson
which we call Majoron. In this approach the coupling
constants in the neutrino-Majoron interaction Lagrang-
ian are generic; i.e., they are independent from the origin
of the neutrino masses and their value is constrained only
by the experimental limits.
It is well known that in the simple Mal'oron models [4]

the Majoron decay of neutrinos in vacuum is negligibly
slow, essentially because the coupling matrix and the
mass matrix are generated through the same mechanism

and the off-diagonal couplings in the mass basis are
strongly suppressed. It is also well known, from the
MSW effect, that the energy eigenstates of relativistic
neutrinos in matter are a mixture of mass eigenstates.
Therefore, the coupling matrix between neutrinos and the
Majoron is effectively mixed in matter and fast Majoron
decays are possible. Furthermore, in matter the neutri-
nos can acquire very large effective masses that may lead
to a significant increase in the available phase space for
the decay. The possibility of these effects were first point-
ed out in Ref. [5]. In this reference the authors mixed the
chiral neutrino fields in the Lagrangian through the
efFective mixing angles in matter obtained from the diago-
nalization of the MSW equation. This formulation of the
problem was clearly incorrect, because the fields in the
Lagrangian cannot be mixed by a momentum-dependent
matrix. Moreover, for massive neutrinos, chirality is not
a good quantum number and one should consider the de-
cays of neutrinos propagating with a definite helicity. To
elucidate this point, let us consider the interaction La-
grangian that describes the coupling between the chiral
neutrino fields in the tnass basis v,z (a =I, . . . , N is a
generation index') and the Majoron field JK:

N

(v.t. )'G~bvbt. +H.c. ,
a, b=l

where GM is a real symmetric coupling matrix. A naive

iThroughout this paper the greek indices a,P, . . . refer to the
neutrino fields in the weak basis (and related quantities), the first
latin indices a, b, . . . refer to the neutrino fields in the mass
basis (and related quantities), and the middle latin indices i (ini-
tial), f (fina), j, k, . . . refer to the energy eigeustate neutrinos
propagating in matter.
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Answer 2: matter effects in neutrino oscillations?

DFT calculations of SiO2 electron density (all atomic units)

Average flat 
density used in 
matter effects

log10r
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Answer 2: yes for matter effects in neutrino oscillations!

Fermilab -> Gran Sasso or

CERN -> Sanford
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Answer 2: yes for matter effects in neutrino oscillations!
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Matter density model
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x

• Different spike shapes produce the 
same result

• The 3D topology of atoms can be 
simulated in 1D with random spikes

• Actual density is a mixture: 
rmixed_spikes=0.6rspikes+0.4rflat

• rave= rflat =3.8 g/cm3 (PREM)



Energy distribution
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Dependence on dCP
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Summary 

• Neutrinoless DBD (0vbb), if observed, will represent a 
big step forward in our understanding of the neutrinos, 
and of the physics beyond Standard Model.

• Ratios of half-lives for several isotopes are essential to 
account for alternative 0vbb decay mechanisms.

• The effects of the high electron densities in atomic 
nuclei were investigated and they do not change the 
neutrino emission or detection, nor the 0vbb outcome.

• The effects of the high electron densities around atomic 
nuclei may be observed in Majoron decay and in (very) 
long baseline neutrino oscillations experiments.
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Dependence on dCP
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