QCD EXOTICA: FROM LHC TO EIC

Ronan McNulty (UCD) ECT* Workshop, Trento, 19-21 Dec 2018.

QCD: Great Expectations

- Extensions to the quarks model
 - Tetraquarks
 - Hybrids
 - Glueballs
- Odderon
- Saturation
- Dark photons

"Take nothing on its looks; take everything on evidence. There's no better rule."

Charles Dickens, Great Expectations.

LHC

- CMS and ATLAS are designed for high-Pt physics.
 - Trigger bandwidth dedicated to supersymmetry etc not forward physics
 - Low-pt objects often absorbed or scattered
 - Multiple pp interactions 10-50.
 - However, some dedicated low-lumi runs and proton tagging
- LHCb designed for low-Pt physics in forward region
 - Huge samples of low multiplicity events (<10 tracks)
 - Good pion, kaon, photon, electron identification for pT>~200 MeV
 - Typical pile-up of ~1.
 - But no proton-tagging....

CEP: Colourless propagators

- Signal: central system with rapidity gaps down to proton
- Background: proton dissociation & finite detector acceptance.
- pp running: generally $\sigma_{PP} > \sigma_{P\gamma} > \sigma_{\gamma\gamma}$
- pA running
 - σ_{PV} enhanced by Z^2 in UPC, σ_{PP} enhanced by $A^{1/3}$
- AA running
 - σ_{vv} enhanced by Z^4 in UPC

Searching for tetraquarks

Selection requirement:

Require precisely 4 tracks, at least three identified as muons

Double J/ψ production

Final state theoretically studied in diphoton production (linear collider) but not through double pomeron exchange (hadron collider)

Sensitivity to higher mass states (tetraquarks, η_b) Inclusive production has attracted much interest (DPS effects)

Double J/ψ production (Tetraquark candidate)

LHCb estimates exclusive cross-section. **24+-9 pb**

Harland-Lang, Khoze, Ryskin: JPG 42 (2015) 5,055001 **2-7 pb**

Lessons learnt:

A very distinctive signal (leptons) is clearly observable at hadron colliders.

You don't know what you find until you look...

Theory may need updating

EIC message: Produce such states through gamma-gamma collisions.

Hybrids

LHC has large samples of Central Exclusive Produced $\pi^+\pi^0\,K^+\,K^0\,\eta\,\eta'\,\gamma$ e μ in pp, pA and AA data.

Difficulty separating competing resonances. PWA: Reconstruct cosθ* but not Φ* EIC message: Proton/Ion tagging

Glueballs

Double-pomeron-exchange processes: Glue Laboratory

Glueballs: decay characterisation

Analysis of available common CMS-TOTEM data set ($\mathcal{L}=3~\text{nb}^{-1}$ of double arm RP trigger) show sensitivity to $f_0(1710) \rightarrow \rho^0 \rho^0$. Study signal + non-resonant $\rho^0 \rho^0$ background (DIME MC[1]) using parametrisation of CMS tracker performance \Rightarrow 0.06 pb⁻¹ needed for $f_0(1710)$ observation

K. OsterbergLHC Forward Meeting7.12.2014

How do we know when we have found it? Democratic final states?

EIC message: Little sensitivity

Odderon

Physics Letters B

Volume 778, 10 March 2018, Pages 414-418 open access

Did TOTEM experiment discover the Odderon?

Evgenij Martynov a A Ø, Basarab Nicolescu b Ø

From K.Osterberg yesterday at Forward Meeting CERN.

The odderon (1)

Bzdak, Motyka, Szymanowski, Cudell PRD 75 (2007) 094023 arXiv:0808.2216

$d\sigma^{ m corr}/dy$	J/ψ		Υ	
	odderon	photon	odderon	photon
Tevatron	0.3–1.3–5 nb	0.8–5–9 nb	0.7–4–15 pb	0.8–5–9 pb
LHC	0.3–0.9–4 nb	2.4–15–27 nb	1.7–5–21 pb	5–31–55 pb

Requires understanding p_T^2 spectrum for proton dissociation (or rejection of it)

Odderoproduction

Proton dissociation or Odderoproduction?!

EIC message: Proton tagging

Open questions in QCD: The odderon (2)

Brodsky, Rathsman, Merino,

PLB461 (1998) 114.

Hagler, Pire, Szymanowski, Teryaev,

EPJ26 (2002) 261.

Bolz, Ewerz, Maniatis, Nachtmann, Sauter,

Schoening, JHEP 1501 (2015) 151.

$$A(Q^2,t,m_{2\pi}^2,y,\alpha) = \frac{\sum\limits_{\lambda=+,-}^{\sum}\int\cos\theta\,d\sigma(s,Q^2,t,m_{2\pi}^2,y,\alpha,\theta,\lambda)}{\sum\limits_{\lambda=+,-}^{\sum}\int d\sigma(s,Q^2,t,m_{2\pi}^2,y,\alpha,\theta,\lambda)} = \frac{\int d\cos\theta\cos\theta\,N_{charge}}{\int d\cos\theta\,D}$$

EIC message: Detect outgoing proton

Open questions in QCD: The odderon (3)

γp->ηp, γp->π⁰p, γp->f₂p, γγ->π⁰π⁰

Czyzewski et al., PLB398 (1997) 400. Berger et al., EPJ C9 (1999) 491. M.G. Ryskin EPJ C2 (1998) 339. Kilian & Nachtmann, EPJ C5 (1998) 317. Harland-Lang et al. arXiv:1811.12705

C-even	Odderon Signal		Backgrounds		
meson (M)	Upper	QCD		Pomeron-	
	Limit	Prediction	$\gamma\gamma$	Pomeron	$V \rightarrow M + \gamma$
π^0	7.4	0.1 - 1	0.044	_	30
$f_2(1270)$	3	0.05 - 0.5	0.020	3 - 4.5	0.02
$\eta(548)$	3.4	0.05 - 0.5	0.042	negligible	3
η_c	_	$(0.1-0.5)\cdot 10^{-3}$	0.0025	$\sim 10^{-5}$	0.012

EIC message: Perfect use-case. Comparison of ep and e-ion in high luminosity environment should find these if they exist

Saturation

EIC message (slightly provocative): The forward region of the LHC accesses much lower-x than EIC. If saturation is not found in LHC data, it is unlikely to be found in EIC e-p data.

On the other hand, eA data will have much higher luminosity, less backgrounds than in AA or pA LHC data, and A^{1/3} enhancement.

Saturation

Once again, the 'smoking gun' is in the non-perturbative plot.....

Dark photons.

Weakly coupled dark photon requires high stats. Search in production or decay of photon processes.

Decay:

EIC will have enormous sample of clean π η ω Look for: π -> γ U; η -> γ U $\mu\mu$ U, $\pi\pi$ U; ω -> π U; with U->ee

EIC message: Develop good electron identification

Conclusion

- LHC and EIC are somewhat complementary.
- Both reconstruct similar low-multiplicity low-mass states and have potential to discover new QCD effects

 LHC reaches to lower x but the detectors are not so well suited for this physics.

EIC may do this better but detector design is critical.