

Exotic Meson Candidates from COMPASS

Bernhard Ketzer

Rheinische Friedrich-Wilhelms-Universität Bonn

The Spectroscopy Program at EIC and Future Accelerators Trento 20 December 2018

Light Meson Spectrum

Quark model:

- SU(3)_{flavor}:
 - $q\otimes \overline{q}' = 3\otimes \overline{3} = 8\oplus 1$

color singlets

- Ground state 0⁻⁺, 1⁻⁻ nonets ok
- Many predicted radial and orbital excitations missing / unclear

[Amsler et al., Phys. Rept. 389, 61 (2004)]

Exotic States

Where are they?

Exotic States

Where are they?

How to identify them?

- Spin-exotic: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, \dots$
- Supernumerary states
- Charged QQbar, doubly charged QQ
- Comparison with models, lattice

Need:

- Large data sets with small statistical uncertainties
- Complementary experiments
 - production mechanisms
 - final states
- Advanced analysis methods
 - reaction models
 - theoretical constraints

The COMPASS Experiment

UNIVERSITÄT BONN

The COMPASS Experiment

UNIVERSITÄT BONN

The COMPASS Experiment

UNIVERSITÄT

BONN

liskp

Two-stage spectrometer Dipole magnets **MuonWall** Tracking detectors **RICH** SM₂ El.-mag. calorimeter E/HCAI Hadronic calorimeter CAL Muon identification MuonWall SM1 π X^{-} **Target** RICH π^+ Beam [COMPASS, P. Abbon et al., NIM A 779, 69 (2015)] Light exotics **B.** Ketzer

3π Final State

Partial-Wave Analysis

UNIVERSITÄT BONN

Total intensity

1⁺⁺ Waves

- Largest wave-set to date: 88 waves
- Independent fits in 100 bins (20 MeV) of $m_{3\pi}$ and 11 bins of t'

New a₁(1420)

New a₁(1420)

Issues to be clarified:

- Does not fit to radial excitation trajectory
- Too close to $a_1(1260)$
- Width narrower than ground state
- Mass very close to $K^*(892)\overline{K}$ threshold $\approx 1.38 \text{ GeV}/c^2$

Press Echo

Science Ticker

Particle Physics

New particle may be made of four quarks

By Andrew Grant 4:48pm, February 2, 2015

dagegen, dass bisherige theoretische Erklär das Verhalten dieses Teilchens nicht ausrei beschreiben. Ein Physiker bezeichnete es da "neues Mitglied im Club der bisher unerklärt Zustände".

Exotischer Teilchenzustand gibt Rätsel auf

01. September 2015

COMPASS-Kollaboration am CERN entdeckt neues Meson aus leichten Quarks

Fine exotische Kombination von leichten Quarks haben Wissenschaftler der COMPASS-Kollaboration am CERN beobachtet. Die Entdeckung gelang bei

CERN entdeckt neues Teilchen für den "Club der unerklärten Zustände"

MOTHERBOARD Videos . Maschinen . Politik . Zukurit . Natur . Kultur . Entdeckungen .

1 September 2015 // 09:31 AM CET

Ist es nicht schön, wenn man nach jahrelanger Partnerschaft noch unbekannte, aufregende Seiten an seinem Lebensgefährten entdeckt? So ähnlich muss es den Physikern des CERN, gegangen sein, die in einem schon sehr gut untersuchten Massebereich überraschenderweise ein neues Teilchen entdeckten.

Dem Standardmodell der Elementarteilchenphysik zufolge, welches alle bekannten Teilchen und ihre Wechselwirkungen aufführt, sind Quarks die fundamentalen

000000

Freitag

• Tetraquark state [Z.-G. Wang (2014), H.-X.Chen et al. (2015), T. Gutsche et al. (2017)]

- Tetraquark state [Z.-G. Wang (2014), H.-X.Chen et al. (2015), T. Gutsche et al. (2017)]
- $K^*\overline{K}$ molecule [T. Gutsche et al. (2017)]

- Tetraquark state [Z.-G. Wang (2014), H.-X.Chen et al. (2015), T. Gutsche et al. (2017)]
- $K^*\overline{K}$ molecule [T. Gutsche et al. (2017)]
- Interference of Deck $\rho\pi S$ and $f_0\pi P$ -wave [J.-L. Basdevant et al. (2015)]

- Tetraquark state [Z.-G. Wang (2014), H.-X.Chen et al. (2015), T. Gutsche et al. (2017)]
- $K^*\overline{K}$ molecule [T. Gutsche et al. (2017)]
- Interference of Deck $\rho\pi S$ and $f_0\pi P$ -wave [J.-L. Basdevant et al. (2015)]
- Triangle singularity [Wu et al., PRL 108, 081803 (2012), M. Mikhasenko et al., PRD 91, 094015 (2015)]

- Decay of $a_1(1260) \rightarrow K^*\overline{K}$ above threshold
- Final state rescattering of $K\overline{K}$ to $f_0(980)$

⇒ logarithmic singularity of amplitude if particles close to mass shell

Triangle Amplitude

- Equal $\chi^2_{\rm red}$ for both fits
- No new free parameters for $a_1(1420)$ signal by triangle mechanism

Comparison TA - BW

Triangle Amplitude

Breit-Wigner

Peak and phase motion are not unique sign of a resonance!

- $a_1(1420)$ signal can be fully described with $a_1(1260)$ as source and rescattering via triangle diagram
- Old theoretical concept, now data allow to clearly observe this for the first time!
- Intensity of signal ~1%, in agreement with experiment

Cannot completely exclude additional pole due to $K^*\overline{K}$ resonance

- Equal $\chi^2_{\rm red}$ for both fits
- No new free parameters for $a_1(1420)$ signal by triangle mechanism

Ordinary $q\bar{q}$ mesons:

• orbital, radial excitations

Hybrids:

- excitation of gluonic degrees of freedom
- angular momentum in flux tube
- excited states also seen in L-QCD, bag,...

 $(q\bar{q})_8 g$

Hybrids

Hybrids: Lattice QCD

Light exotics

- Resonance-model fit to spin-density matrix: 14 waves
- Exploit t' dependence to separate resonant and non-resonant contributions

[R. Akhunzyanov et al., arXiv: 1802.05913 (2018)]

1⁻⁺ Partial Wave

- Background shape in agreement with Deck-model studies
- Resonance parameters for $\pi_1(1600)$

 $M_0 = 1600^{+110}_{-60} \text{ MeV}/c^2$

 $\Gamma_0 = 580^{+100}_{-230} \text{ MeV}/c^2$

[R. Akhunzyanov et al., arXiv: 1802.05913 (2018)]

1⁻⁺ Partial Wave

Bad description of data without resonance component $\Rightarrow \pi_1(1600)$ needed to describe data

[R. Akhunzyanov et al., arXiv: 1802.05913 (2018)]

$\eta \pi^{-} / \eta' \pi^{-}$ Final States

[C. Adolph (COMPASS), Phys. Lett. B 740, 303 (2015)]

UNIVERSITÄT BONN

$\eta \pi^{-} / \eta' \pi^{-}$ Final States

UNIVERSITÄT

BONN

- ηπ⁻ waves scaled according to phase space and BR to final state
- D, G waves very similar
- P wave very different in $\eta\pi$ and $\eta'\pi$
- Breit-Wigner model fit unstable

[C. Adolph (COMPASS), Phys. Lett. B 740, 303 (2015)]

Extraction of Poles

Light exotics

$η\pi-\eta'\pi$ Coupled Channels

[A. Rodas et al. (JPAC), subm. to PRL, arXiv:1810.04171]

UNIVERSITÄT BONN

ηπ–η'π Coupled Channels

- only a single pole needed to describe both $\eta\pi$ and $\eta'\pi$ peaks
- consistent with $\pi_1(1600)$

Poles	Mass~(MeV)	Width (MeV)
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$
$a_2'(1700)$	$1722 \pm 15 \pm 67$	$247 \pm 17 \pm 63$
π_1	$1564 \pm 24 \pm 86$	$492\pm54\pm102$

[A. Rodas et al. (JPAC), subm. to PRL, arXiv:1810.04171]

UNIVERSITÄT

BONN

- Hadron spectroscopy is entering a new era
- Statistical uncertainties very small, systematic model uncertainties dominate
- Large data sample on diffractive of COMPASS \Rightarrow PWA in bins of m_X and t'
- Spin-exotic $\pi_1(1600)$: (re-) observed by COMPASS
 - $\Rightarrow \rho \pi$ final states: resonance required to fit data, esp. at high t
 - $\Rightarrow \eta \pi \eta' \pi$ coupled channel analysis: one single pole sufficient
 - ⇒ background due to Deck-like production important
- New axial vector signal observed in $a_1(1420) \rightarrow f_0(980)\pi$
 - Has all features of a genuine resonance
 - Data can be described by triangle singularity, more studies needed
- Develop models satisfying principles of S-matrix theory
- $a_1(1420)$: look for it in τ decays, $K\overline{K}\pi$ final state
- Hybrids: identify (exotic) multiplets and measure decay patterns

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent (Draft 2.0)

A New QCD facility at the M2 beam line of the CERN SPS October 17, 2018

Proton radius measurement using muon-proton elastic scattering Hard exclusive reactions using a muon beam and a transversely polarised target Drell-Yan and charmonium production Measurement of antiproton production cross sections for Dark Matter Search Spectroscopy with low-energy antiprotons Spectroscopy of kaons Study of the gluon distribution in the kaon via prompt-photon production Low-energy tests of QCD using Primakoff reactions Production of vector mesons and excited kaons off nuclei

https://arxiv.org/abs/1808.00848

Reminder: Panofsky-Schnell-System with two cavities (CERN 68-29)

- Particle species: same momenta but different velocities
- Time-dependent transverse kick by RF cavities in dipole mode
- RF1 kick compensated or amplified by RF2
- Selection of particle species by selection of phase difference $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1})$
- For large momenta: $\beta_1^{-1} \beta_2^{-1} = (m_1^2 m_2^2)/2p^2$

Kaon Excitation Spectrum

- 25 kaon states listed by PDG (<3.1GeV), 13 of those need confirmation
- many predicted quark-model states still missing
- some hints for supernumerary states

Light exotics

UNIVERSITÄT BONN

Timelines

- conventional-beams program: 2022-2024
- RF-separated beams: from 2026 on

Overview of Physics Topics

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	additions
		[GeV]	$[s^{-1}]$	[kHz]			duration	
muon-proton	Precision					high-		active TPC,
elastic	proton-radius	100	$4 \cdot 10^6$	100	$\mid \mu^{\pm}$	pressure	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^7$	10	$\mid \mu^{\pm}$	NH_3^\uparrow	2022	modified polarised
reactions							2 years	target magnet
Input for Dark	\overline{p} production	20-280	$5 \cdot 10^5$	25	p	LH2,	2022	liquid helium
Matter Search	cross section					LHe	1 month	target
								target spectrometer:
\overline{p} -induced	Heavy quark	12, 20	$5 \cdot 10^7$	25	\overline{p}	LH2	2022	tracking,
spectroscopy	exotics						2 years	calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^7$	25	π^{\pm}	C/W	2022	
							1-2 years	
Drell-Yan	Kaon PDFs &	~ 100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\mathrm{NH}_{3}^{\uparrow},$	2026	"active absorber",
(RF)	Nucleon TMDs					C/Ŵ	2-3 years	vertex detector
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^6$	> 10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^6$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				$\mid \pi^{\pm}$	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	$5 \cdot 10^6$	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	$5 \cdot 10^{6}$	10-100	$ K^{\pm},\pi^{\pm} $	from H	2026	
(RF)	Elements					to Pb	1 year	

- a diverse and exciting QCD physics programme is compiled for being carried out at a powerful future facility at the M2 beamline of CERN SPS
- nicely bridges the physics and time gap to EIC!
- further collaborators are currently searched for; signatures are collected until end of 2018
- if interested sign up through our web page:

