Searching hidden-charm baryon in yp reaction

Jia-Jun Wu (UCAS)

Collaborator: T.-S. H. Lee, Bing-Song Zou

The spectroscopy program at EIC and future accelerators 2018. 02. 20

Outline

- Motivation
- γ p → J/ψ p background mechanism
- $\gamma p \rightarrow P_c \rightarrow J/\psi p$
- How to extract information of P_c?
- Summary

• In 2010, from this paper, first propose N*, Λ * with hidden-charm exist around 4 GeV in theory.

PRL 105 , 232001 (2010)	PHYSICAL REVIEW	LETTERS	week ending 3 DECEMBER 2010
Prediction of Na	arrow N^* and Λ^* Resonances	with Hidden Charı	n above 4 GeV
	Jia-Jun Wu, ^{1,2} R. Molina, ^{2,3} E. Ose ¹ Institute of High Energy Physics, CAS, a and IFIC, Centro Mixto Universidad d Apartado 22085, 46071 Valutical Physics Center for Science Facilitie (Received 5 July 2010; published 2	Beijing 100049, China le Valencia-CSIC, Instituto encia, Spain es, CAS, Beijing 100049,	

 In 2015, LHCb group first find two peaks of J/ψp invariant mass spectrum from Λ_h → J/ψKp reaction.

From 2015-Now, there are more than 500 citations for LHCb experimental paper.

- How understand two peaks of J/ψp invariant mass spectrum of LHCb group?
- 1. Are these two peaks are from two resonances or kinematics effects (Threshold & TS)?
- 2. If they are really resonances, what is the internal structure?
 Meson-Baryon molecule or 5 quark configuration state?
- 3. Now the spin and parity (J^p) is not confirmed, 3/2⁻ or 5/2⁺, which one is correct one? Furthermore, why we do not find 1/2⁻ state?

=> To answer these questions, we need more reactions to observe these hidden-charm states.

- $\gamma p \rightarrow P_c \rightarrow J/\psi p \ VS \ \Lambda_b \rightarrow J/\psi K p$
- 1. No Threshold & TS effect because two bodies final state.
- To distinguish Meson-Baryon molecule and 5 quark configuration state, it needs more decay width of channels.
- 3. To confirm J^p of state, we need information of angular differential cross section, but in $J/\psi Kp$ system, the interaction of $J/\psi K$ and Kp will infect the angular differential cross section of $J/\psi p$. But two bodies final state will avoid this problem.

=> Definitely, it will provide fruitful information of P_c from γ p reaction.

- $\gamma p \rightarrow P_c \rightarrow J/\psi p$ is important for understanding P_c .
- Jlab 12 GeV ep reaction can provide enough energy to generate P_c state.

=> In this work, we will use very limited parameters based on theory model to estimate the differential cross section of $\gamma p \rightarrow J/\psi p$ for helping search hidden-charm baryon state around the Jlab experimental energy region.

γ p → J/ψ p background mechanism

Feynman Diagram

Formulas

$$\frac{d\sigma}{d\Omega} = \frac{1}{(2\pi)^2} \frac{m_N m_B}{4W^2} \frac{1}{4} \sum_{\lambda_\gamma, \lambda_M} \sum_{m_s, m_s'} \left| \bar{u}_p(p', m_s') \epsilon_\mu^*(q', \lambda_{J/\Psi}') \mathcal{M}^{\mu\nu}(q, p, q', p') u_p(p, m_s) \epsilon_\nu(q, \lambda_\gamma) \right|^2$$

$$\mathcal{M}_{P}^{\mu\nu}(q,p,q',p') = \left(\frac{s}{s_0}\right)^{\alpha_P(t)-1} \exp\left\{-\frac{i\pi}{2}\left[\alpha_P(t)-1\right]\right\} i12e\frac{M_V^2\beta_q\beta_{q'}}{f_V} \frac{1}{M_V^2-t} \left(\frac{2\mu_0^2}{2\mu_0^2+M_V^2-t}\right) \frac{4M_N^2-2.8t}{(4M_N^2-t)(1-t/0.71)^2} \{\gamma.qg^{\mu\nu}-q^{\mu}\gamma^{\nu}\}$$

$$\mathcal{M}_{\pi}^{\mu\nu}(q,q',p,p') = \frac{e}{f_{\rho}} \frac{g_{J/\Psi,\rho^{0}\pi^{0}}}{m_{J/\Psi}} \frac{f_{\pi}}{m_{\pi}} \frac{-m_{\rho}^{2}}{q^{2} - m_{\rho}^{2} + i\Gamma_{\rho}m_{\rho}} \frac{\Lambda_{\rho}^{4}}{\Lambda_{\rho}^{4} + (q^{2} - m_{\rho}^{2})^{2}} \frac{1}{t - m_{\pi}^{2}} \left(\frac{\Lambda_{\pi}^{2} - m_{\pi}^{2}}{\Lambda_{\pi}^{2} - t}\right)^{4} \epsilon^{\mu\nu\alpha\beta} q_{\alpha}' q_{\beta} \left(\gamma.(p' - p)\right) \gamma^{5}$$

γ p → J/ψ p background mechanism

Feynman Diagram

Result

P_c → VB with various Model

										CC
No.	J^P	m	Γ	$\Gamma_{J/\psi N}$	$\Gamma_{\rho N}$	$\Gamma_{\omega N}$	$\Gamma_{\bar{D}\Lambda_c}$	$\Gamma_{\bar{D}^*\Lambda_c}$	Main Channel	Ref.
1	$\frac{1}{2}^{-}$	4262	35.6	10.3	_	_	0.01	_	$ar{D}\Sigma_c$	[6]
2		4308	_	1.2	_	_	0.02	1.4	$ar{D}\Sigma_c$	[7]
3		4412	47.3	19.2	3.2	10.4	_	_	$ar{D}^*\Sigma_c$	[8, 9]
4		4410	58.9	52.5	_	_	0.8	0.7	$ar{D}^*\Sigma_c$	[6]
5		4460	_	3.9	_	_	1.0	0.3	$ar{D}^*\Sigma_c$	[7]
6		4481	57.8	14.3	_	_	1.02	0.3	$ar{D}^*\Sigma_c^*$	[6]
7	$\frac{3}{2}$	4334	38.8	38.0	_	_	_	0.8	$ar{D}\Sigma_c^*$	[6]
8	-	4375	_	1.5	_	_	_	0.9	$ar{D}\Sigma_c^*$	[7]
9		4380	144.3	3.8	1.4	5.3	1.2	131.3	$ar{D}\Sigma_c^*$	[5]
10		4380	69.9	16.6	0.15	0.6	17.0	35.3	$\bar{D}^*\Sigma_c$	[5]
11		4412	47.3	19.2	3.2	10.4	_	_	$ar{D}^*\Sigma_c$	[8, 9]
12		4417	8.2	4.6	_	_	_	3.1	$\bar{D}^*\Sigma_c$	[6]
13		4450	139.8	16.3	0.14	0.5	41.4	72.3	$\bar{D}^*\Sigma_c$	[5]
14		4450	21.7	0.03			1.4	6.8	$\bar{D}^*\Sigma_c$	[10]
15		4450	16.2	11	_	_	0.6	4.2	$\Psi'N$	[10]
16		4453	_	1.5	_	_	_	0.3	$ar{D}\Sigma_c^*$	[7]
17		4481	34.7	32.8	_	_	_	1.2	$ar{D}^*\Sigma_c^*$	[6]
18	$\frac{5}{2}$ +	4450	46.4	4.0	0.3	0.3	18.8	20.5	$\bar{D}^*\Sigma_c$	[5]
19	$\frac{3}{2}^{-}/\frac{5}{2}^{+}$	$4380_{\pm 29}^{\pm 8}$	$205_{\pm 86}^{\pm 18}$	_	_	_	_	_	Exp	[1, 2]
20		$4450_{\pm 3}^{+23}$	$39_{\pm 19}^{\pm 5}$	_	_	_	_	_	Exp	[1, 2]

^[5] Lin, Shen, Guo, Zou, PRD95 114017 [6] Xiao, Nieves, Oset, PRD88 056012 [10] Eides, Petrov, 1811.01691

^[7] Huang, Ping, 1811.04260 [8,9] Wu, Molina, Oset, Zou, PRL 105 232001, PRC 84 015202

P_c → VB with various Model

$$\mathcal{M}_{N^*(\frac{1}{2}^-)NV} = \bar{u}_N \gamma_5 \tilde{\gamma}_{\mu} u_{N^*} \epsilon_{V \nu}^* \left(g_{1V} g^{\mu\nu} + f_{1V} \left(\frac{3}{2} \frac{\tilde{r}^{\mu} \tilde{r}^{\nu}}{\tilde{r}^2} - \frac{1}{2} \tilde{g}_{N^*}^{\mu\nu} \right) \right)$$

$$\mathcal{M}_{N^*(\frac{3}{2}^-)NV} = \bar{u}_N u_{N^* \mu} \epsilon_{V \nu}^* \left(g_{3V} g^{\mu\nu} + f_{3V} \left(\frac{3}{2} \frac{\tilde{r}^{\mu} \tilde{r}^{\nu}}{\tilde{r}^2} - \frac{1}{2} \tilde{g}_{N^*}^{\mu\nu} \right) \right)$$

$$+ h_{3V} \epsilon_{\mu\nu\lambda\delta} \bar{u}_N \gamma_5 (\tilde{\gamma}^{\mu} g_{\alpha}^{\beta} + \tilde{\gamma}_{\alpha} g^{\mu\beta}) u_{N^* \beta} \epsilon_{V \nu}^* \left(\frac{\tilde{r}^{\alpha} \tilde{r}^{\lambda}}{\tilde{r}^2} - \frac{1}{3} \tilde{g}_{N^*}^{\alpha\lambda} \right) \hat{P}^{\delta}$$

$$\begin{split} \mathcal{M}_{N^*(\frac{5}{2}^+)NV} &= \bar{u}_N u_{N^*} \ _{\mu\nu} \epsilon_V^* \ _{\alpha} \left(\frac{g_{5V}}{m_N} g^{\alpha\mu} \tilde{r}^{\nu} + \frac{f_{5V}}{m_N} \left(\frac{3}{5} \frac{\tilde{r}^{\mu} \tilde{r}^{\nu} \tilde{r}^{\alpha}}{\tilde{r}^2} - \frac{1}{5} \left(\tilde{g}_{N^*}^{\mu\nu} \tilde{r}^{\alpha} + \tilde{g}_{N^*}^{\nu\alpha} \tilde{r}^{\mu} + \tilde{g}_{N^*}^{\alpha\mu} \tilde{r}^{\nu} \right) \right) \right) \\ &+ \frac{h_{5V}}{m_N} \epsilon_{\mu\nu\lambda\delta} \bar{u}_N \gamma_5 \left(\tilde{\gamma}^{\mu} g_{\xi\alpha} g_{\sigma\beta} + \tilde{\gamma}_{\xi} g_{\sigma\beta} g_{\mu\beta} + \tilde{\gamma}_{\sigma} g_{\mu\beta} g_{\xi\beta} \right) u_{N^*}^{\alpha\beta} \epsilon_V^* \\ &\times \left(\frac{\tilde{r}^{\xi} \tilde{r}^{\lambda} \tilde{r}^{\sigma}}{\tilde{r}^2} - \frac{1}{3} \left(\tilde{g}_{N^*}^{\xi\sigma} \tilde{r}^{\lambda} + \tilde{g}_{N^*}^{\sigma\lambda} \tilde{r}^{\xi} + \tilde{g}_{N^*}^{\lambda\xi} \tilde{r}^{\sigma} \right) \right) \hat{P}^{\delta} \end{split}$$

$p \xrightarrow{N_{o\bar{c}}} p$

P_c → VB with various Model

J^P	m	Γ	$\Gamma_{J/\psi N}$	$\Gamma_{\rho N}$	$\Gamma_{\omega N}$	$\Gamma_{ar{D}\Lambda_c}$	$\Gamma_{\bar{D}^*\Lambda_c}$	Main Channel	Ref.
$\frac{3}{2}$		144.3 39.5	$\frac{3.8}{0.03}$				131.3 6.8	$D\Sigma_c^* \\ \bar{D}^*\Sigma_c$	[5] [10]

$$\mathcal{M}_{N^*(\frac{3}{2}^-)NV} = \bar{u}_N u_{N^* \mu} \epsilon_{V \nu}^* \left(g_{3V} g^{\mu\nu} + f_{3V} \left(\frac{3}{2} \frac{\tilde{r}^{\mu} \tilde{r}^{\nu}}{\tilde{r}^2} - \frac{1}{2} \tilde{g}_{N^*}^{\mu\nu} \right) \right)$$

$$+ h_{3V} \epsilon_{\mu\nu\lambda\delta} \bar{u}_N \gamma_5 (\tilde{\gamma}^{\mu} g_{\alpha}^{\beta} + \tilde{\gamma}_{\alpha} g^{\mu\beta}) u_{N^* \beta} \epsilon_{V \nu}^* \left(\frac{\tilde{r}^{\alpha} \tilde{r}^{\lambda}}{\tilde{r}^2} - \frac{1}{3} \tilde{g}_{N^*}^{\alpha\lambda} \right) \hat{P}^{\delta}$$

No.	J^P for N^*	N^*BV	$g_v(f_v = h_v = 0)$	$f_v(g_v = h_v = 0)$
1	$\frac{3}{2}$	$N^*(4380)J/\psi N$	0.36	0.50
2	-	$N^*(4380)\rho N$	0.061	0.066
3		$N^*(4380)\omega N$	0.12	0.13
4		$N^*(4450)J/\psi N$	0.030	0.042

• $\gamma p \rightarrow P_c$ with VDM

$$\mathcal{L}_{VDM} = \frac{iem_V^2}{f_V} A_\mu V^\mu$$

$$\mathcal{L}_{N^{*}(\frac{1}{2}^{-})NV} = \overline{N}^{*}\gamma_{5}\tilde{\gamma}_{\mu}NV_{\nu}\left(g_{1V}g^{\mu\nu} + f_{1V}\left(\frac{3}{2}\frac{\tilde{r}^{\mu}\tilde{r}^{\nu}}{\tilde{r}^{2}} - \frac{1}{2}\tilde{g}_{N^{*}}^{\mu\nu}\right)\right) + h.c.$$

$$\mathcal{L}_{N^{*}(\frac{1}{2}^{-})N\gamma} = \overline{N}^{*}\gamma_{5}\tilde{\gamma}_{\mu}NA_{\nu}\left(\frac{g_{1\gamma}g^{\mu\nu} + g_{1\gamma}\left(\frac{3}{2}\frac{\tilde{r}^{\mu}\tilde{r}^{\nu}}{\tilde{r}^{2}} - \frac{1}{2}\tilde{g}_{N^{*}}^{\mu\nu}\right)\right) + h.c.$$

$$\mathcal{T}_{N*(\frac{1}{2}^-)\to NV\to N\gamma} = \overline{u}_N \mathcal{M}^{\nu} u_{N*} \epsilon_{\nu}^*,$$

$$\mathcal{M}^{\nu} = \frac{ie}{f_{V}} \frac{-m_{V}^{2}(g_{1\rho}(1-\alpha) + f_{1\rho}\alpha)}{q^{2} - m_{V}^{2} + i\Gamma_{V}m_{V}} \gamma_{5}\tilde{\gamma}_{\mu} \left(g_{\mu\nu'} + \left(\frac{3}{2}\frac{\tilde{r}_{\mu}\tilde{r}_{\nu}}{\tilde{r}^{2}} - \frac{1}{2}\tilde{g}_{N^{*}}_{\mu\nu'}\right)\right) \tilde{g}_{V}^{\nu'\nu}(q) \times F_{V}(q^{2})$$

$$g_{1\rho}(1-\alpha) + f_{1\rho}\alpha \in (g_{1\rho}, f_{1\rho})$$

$$F_V(q^2) = \frac{\Lambda^4}{\Lambda^4 + (q^2 - m_V^2)^2}$$

With
$$\Lambda = 1 - 2 \text{ GeV}$$

 $N_{c\bar{c}}$

• $\gamma p \rightarrow P_c$ with VDM

$$\mathcal{L}_{VDM} = \frac{iem_V^2}{f_V} A_\mu V^\mu$$

No.	J^P for N^*	N^*BV	$g_v(f_v = h_v = 0)$	$f_v(g_v = h_v = 0)$
1	$\frac{3}{2}$	$N^*(4380)J/\psi N$	0.36	0.50
2	-	$N^*(4380)\rho N$	0.061	0.066
3		$N^*(4380)\omega N$	0.12	0.13
4		$N^*(4450)J/\psi N$	0.030	0.042

$$g_{1\rho}(1-\alpha) + f_{1\rho}\alpha \in (g_{1\rho}, f_{1\rho})$$

$$F_V(q^2)=rac{\Lambda^4}{\Lambda^4+(q^2-m_V^2)^2}$$
 With Λ = 1 - 2 GeV

• $\gamma p \rightarrow P_c \rightarrow J/\psi p$ total cross section

$$p \xrightarrow{N_{c\bar{c}}} p$$

$$\begin{split} \frac{d\sigma}{d\Omega} &= \frac{1}{(2\pi)^2} \frac{m_N m_B}{4W^2} \frac{1}{4} \sum_{\lambda_\gamma, \lambda_M} \sum_{m_s, m_s'} \left| \bar{u}_p(p', m_s') \epsilon_\mu^*(q', \lambda_{J/\Psi}') \mathcal{M}^{\mu\nu}(q, p, q', p') u_p(p, m_s) \epsilon_\nu(q, \lambda_\gamma) \right|^2 \\ \mathcal{M}_{N^*(\frac{1}{2}^-)}^{\mu\nu}(q, p, q', p') &= g_{1V} \gamma_5 \tilde{\gamma}^\mu \frac{\gamma \cdot (q+p) + m_{N_{cc}^*}}{W^2 - m_{N_{cc}^*}^2 + i \Gamma_{N_{cc}^*} m_{N_{cc}^*}} F_V(0) \times \frac{ie}{f_V} \frac{-m_V^2 g_{1V\gamma}}{-m_V^2 + i \Gamma_V m_V} \gamma_5 \tilde{\gamma}_\beta \left(g^{\beta\nu} + \frac{3}{2} \frac{\tilde{r}^\beta \tilde{r}^\nu}{\tilde{r}^2} - \frac{1}{2} \tilde{g}_{N^*}^{\beta\nu} \right) \\ \mathcal{M}_{N^*(\frac{3}{2}^-)}^{\mu\nu}(q, p, q', p') &= g_{3V} g^{\mu\alpha} \frac{(\gamma \cdot (q+p) + m_{N_{cc}^*}) P_{\alpha\beta}^{\frac{3}{2}}(p+q)}{W^2 - m_{N_{cc}^*}^2 + i \Gamma_{N_{cc}^*} m_{N_{cc}^*}} F_V(0) \times \frac{ie}{f_V} \frac{-m_V^2 g_{3V\gamma}}{-m_V^2 + i \Gamma_V m_V} \left(g^{\beta\nu} + \frac{3}{2} \frac{\tilde{r}^\beta \tilde{r}^\nu}{\tilde{r}^2} - \frac{1}{2} \tilde{g}_{N^*}^{\beta\nu} \right) \\ \mathcal{M}_{N^*(\frac{5}{2}^+)}^{\mu\nu}(q, p, q', p') &= g_{5V} g^{\mu\alpha} \tilde{r}^{\alpha'} \frac{(\gamma \cdot (q+p) + m_{N_{cc}^*}) P_{\alpha\alpha\beta}^{\frac{5}{2}}(p+q)}{W^2 - m_{N_{cc}^*}^2 + i \Gamma_{N_{cc}^*} m_{N_{cc}^*}} F_V(0) \times \frac{ie}{f_V} \frac{-m_V^2 g_{3V\gamma}}{-m_V^2 + i \Gamma_V m_V} \left(g^{\beta\nu} + \frac{3}{2} \frac{\tilde{r}^\beta \tilde{r}^\nu}{\tilde{r}^2} - \frac{1}{2} \tilde{g}_{N^*}^{\beta\nu} \right) \\ \times \left(g^{\nu\beta} \tilde{r}^{\beta'} + \frac{3}{5} \frac{\tilde{r}^\nu \tilde{r}^\beta \tilde{r}^\beta}{\tilde{r}^2} - \frac{1}{5} \left(\tilde{g}_{N^*}^{\nu\beta} \tilde{r}^{\beta'} + \tilde{g}_{N^*}^{\beta\beta'} \tilde{r}^\beta + \tilde{g}_{N^*}^{\beta\beta'} \tilde{r}^\nu \right) \right) \\ P_{\alpha\beta}^{\frac{3}{2}}(p) &= -g_{\alpha\beta} + \frac{1}{3} \gamma_\mu \gamma_\nu + \frac{2}{3} \frac{p_\mu p_\nu}{m_{N^*}} + \frac{1}{3m_{N^*}} (\gamma_\mu p_\nu - \gamma_\nu p_\mu) \\ P_{\alpha\beta}^{\frac{5}{2}}(p) &= \frac{1}{2} (\tilde{g}_{N^*}^{\alpha\alpha'} \tilde{g}_{N^*}^{\beta'} + \tilde{g}_{N^*}^{\alpha\beta'} \tilde{g}_{N^*}^{\beta\alpha'}) - \frac{1}{5} \tilde{g}_{N^*}^{\alpha\beta} \tilde{g}_{N^*}^{\alpha'} - \frac{1}{10} \left(\tilde{\gamma}^\alpha \tilde{\gamma}^\alpha' \tilde{g}_{N^*}^{\beta\beta'} + \tilde{\gamma}^\alpha \tilde{\gamma}^\beta' \tilde{g}_{N^*}^{\alpha\beta'} + \tilde{\gamma}^\beta \tilde{\gamma}^\alpha' \tilde{g}_{N^*}^{\alpha\beta'} + \tilde{\gamma}^\beta \tilde{\gamma}^\beta' \tilde{g}_{N^*}^{\alpha\alpha'} \right) \\ \end{pmatrix}$$

(1) 中国种学院大学

• $\gamma p \rightarrow P_c \rightarrow J/\psi p$ total cross section

J^P	m	Γ	$\Gamma_{J/\psi N}$	$_{I}\Gamma_{\rho N}\Gamma_{\omega N}$	$\Gamma_{\bar{D}\Lambda_{\epsilon}}$	$\Gamma_{\bar{D}^*\Lambda_c}$	
				1.4 5.3			

Lin, Shen, Guo, Zou, PRD95 114017

• $\gamma p \rightarrow P_c \rightarrow J/\psi p$ total cross section

With $\Lambda = 2 \text{ GeV}$

With $\Lambda = 1 \text{ GeV}$

$\gamma p \rightarrow J/\psi p$

Background + Signal

$\gamma p \rightarrow J/\psi p$

- Background + Signal
- Lowest Signal

$\gamma p \rightarrow J/\psi p$

- Background + Signal
- Lowest Signal

How to extract information of P_c?

Angular cut

How to distinguish J^p of P_c?

 The differential cross section of Pomeron exchange and Pc s-channel contribution

Summary

- We calculated the cross section of γ p → J/ψ p reaction through background and resonance with hidden-charm.
- Discuss how to extract the γ p → P_c → J/ψ p signal from the background.
- Outlook, there will be some other diagrams for P_c and Λ^* with hidden-charm.

$\gamma p \rightarrow$ other final states

- $\gamma p \rightarrow P_c \rightarrow \overline{D}{}^0 \Lambda^+_c \text{ or } \overline{D}{}^{*0} \Lambda^+_c$
- Feynman diagram and Total cross section

- $\gamma p \rightarrow K \Lambda^*_{\overline{c}c} \rightarrow K J/\psi \Lambda$
- Just on the energy edge of Jlab, around 11.5 GeV

Thank very much!

