

HF meson production at RHIC and LHC

Rongrong Ma (BNL) 12/19/2018

The Spectroscopy Program at EIC and Future Accelerators

Trento, December 19-21, 2018

QGP and Open Heavy Flavor

- Lattice-QCD predicts a phase transition from confined hadrons to Quark Gluon Plasma (QGP) where partons are deconfined.
 - $T_c = 156.5 \pm 1.5 \text{ MeV}$
 - Behaves like "perfect fluid"
 - Opaque to high energy partons

QGP and Open Heavy Flavor

- Lattice-QCD predicts a phase transition from confined hadrons to Quark Gluon Plasma (QGP) where partons are deconfined.
 - $T_c = 156.5 \pm 1.5 \text{ MeV}$
 - Behaves like "perfect fluid"
 - Opaque to high energy partons

Bazavov et al, PRD 97 (2018) 014510

• Heavy Flavor: $m_{c,b} >> T_{QGP}$, Λ_{QCD}

- Produced in high- Q^2 scatterings \rightarrow calculable in pQCD; numbers conversed
- Produced at early stage → imprint the entire evolution history of QGP
 - $t_{HF}^{form} < t_{OGP}^{form}$; $t_{HF}^{relax} \sim t_{OGP}^{life-time}$

What To Measure?

- Energy loss → transport coefficient
 - Color charge and parton mass dependence: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
 - Variable: $R_{AA} = Y_{AA}/(N_{coll} \times Y_{pp})$
 - Convolution of both energy loss and spectrum shape

What To Measure?

- Energy loss → transport coefficient
 - Color charge and parton mass dependence: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
 - Variable: $R_{AA} = Y_{AA}/(N_{coll} \times Y_{pp})$
 - Convolution of both energy loss and spectrum shape
- Collective motion → diffusion and drag coefficients
 - Degree of thermalization in the medium
 - Variable: $v_n = \langle \cos[n(\varphi \Psi_{RP})] \rangle$
 - Energy loss plays a role at high p_T

What To Measure?

- Energy loss → transport coefficient
 - Color charge and parton mass dependence: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
 - Variable: $R_{AA} = Y_{AA}/(N_{coll} \times Y_{pp})$
 - Convolution of both energy loss and spectrum shape
- Collective motion → diffusion and drag coefficients
 - Degree of thermalization in the medium
 - Variable: $v_n = \langle \cos[n(\varphi \Psi_{RP})] \rangle$
 - Energy loss plays a role at high p_T
- Hadronization → QGP dynamics
 - Is there any change of hadronization process in the medium?

What To Measure?

• Energy loss → transport coefficient

- Color charge and parton mass dependence: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Variable: $R_{AA} = Y_{AA}/(N_{coll} \times Y_{pp})$
 - Convolution of both energy loss and spectrum shape

• Collective motion → diffusion and drag coefficients

- Degree of thermalization in the medium
- Variable: $v_n = \langle \cos[n(\varphi \Psi_{RP})] \rangle$
 - Energy loss plays a role at high p_T

Hadronization → QGP dynamics

- Is there any change of hadronization process in the medium?

Where To Measure?

- p+p: baseline; emerging phenomenon
- p+A: CNM (effects due to presence of a nucleus, but not a medium)
- A+A: medium effects

pp Collisions pA Collisions AA Collisions

HF Electron Cross-section

- Inclusive cross-section for HF electron from 2.76 13 TeV
 - dominated by charm (bottom) decay at $p_T < (>) 5 \text{ GeV/c}$
- Data sit at the upper bound of FONLL calculation: good test of pQCD
 - Help to constrain model calculations

$HF \rightarrow e \ vs. \ Event \ Activity$

- Self-normalized HE electron yield increases stronger-than-linearly vs. event multiplicity
 - Similar trend observed at RHIC for J/psi STAR: PLB 786 (2018) 87
- Model comparison
 - PYTHIA 8 with MPI: describe data fairly well
 - EPOS including hydrodynamics: under-predicts data

pp Collisions pA Collisions AA Collisions

CNM Effects for HF

ALICE: PRL 113 (2014) 232301

• R_{pPb} is consistent with unity

- Low p_T : hint of showering?
- Models of small QGP predicts too much suppression at high p_T

CNM Effects for HF

ALICE: PRL 113 (2014) 232301

• R_{pPb} is consistent with unity

- Low p_T : hint of showering?
- Models of small QGP predicts too much suppression at high p_T
- B⁺: inline with nPDF expectation
 - Forward rapidity: strong suppression explained by shadowing effect
 - Backward rapidity: consistent with unity

Collective Flow in High-mult Events

p+Pb @ 5.02, 8.16 TeV

- HF-decayed leptons: non-zero flow observed in high-multiplicity p+A collisions at both RHIC and LHC
 - Smaller values than charged hadrons
- What is the origin?
 - CGC: correlation in the emitted gluons (Can it be observed at EIC? Unlikely)
 - Small drop of QGP?
 - Other mechanisms?

Charm Baryon Production

JHEP 04 (2018) 108

- Mid-y: Λ_c/D^0 ratio in p+p collisions is significantly higher than model calculations
 - PYTHIA with CR is closer to data
- Similar ratios in p+Pb and p+p collisions
- However, there seems strong rapidity dependence for the ratio. Different mechanism for hadronization?

pp Collisions pA Collisions AA Collisions

HF Suppression at RHIC

- Strong suppression of D^0 and HF e at high $p_T \rightarrow$ strong interactions between charm and medium
 - Bottom quarks also seem to lose energy
- Indication of energy loss hierarchy: $R_{CP}^{\pi} < R_{CP}^{D}$, $R_{AA}^{c->e} < R_{AA}^{b->e}$
- Help to extract transport coefficient of the QGP

A Similar Picture at the LHC

- p_T < 10 GeV/c or so: mass hierarchy of energy loss
- p_T > 20 GeV/c: all R_{AA} start to converge as the parton mass becomes less important compared to momentum
 - Spectrum shape needs to be taken into account
- Precision will be improved with more data to come

Charm Quark Flows in the Medium

- Significant $v_2 \rightarrow$ strong collective behavior of charm quarks in the medium
- Smaller value compared to LF hadron at low p_T
 - Mass dependence?
 - Charm quarks do not flow as strong as light quarks?
- LHC: models with strong charm-medium interaction (low p_T), and collisional and radiative energy losses (high p_T) can qualitatively describe data

Diffusion Coefficient vs. T

X. Dong and V. Greco, Progr. Part. Nucl. Phys. (2018)

- $2\pi TD_s$: fundamental properties of the medium. Large discrepancy among different models.
- $D^0 v_2$ can help to constrain:
 - RHIC: $2 \sim 12$ within T_c to $2T_c$ STAR: PRL 118 (2017) 212301
 - LHC: $1.5 \sim 7$ at T_c ALICE: PRL 120 (2018) 102301

$D^0 v_1$: A Different Perspective

- 1. HF drag: mis-match between symmetric production profile for HF and titled bulk medium
 - $\qquad v_1^{HF} > v_1^{LF}$
 - Same effect for HF and anti-HF

- 2. Initial EM field: strong impact for HF as they are produced early
 - $v_1^{HF} >> v_1^{LF}$ (EM field decays rapidly)
 - Opposite effect for HF and anti-HF

$D^0 v_1$ at RHIC

- $v_1(D^0+anti-D^0)$: much larger than Kaon v_1
 - Model predicts correct sign but lower magnitude
- $v_1(D^0)-v_1(anti-D^0)$: hint of splitting, but not precise enough
- Data seem to favor larger drag coefficient.

Chatterjee, Bozek,

$D^0 v_1$: RHIC vs. LHC

- $v_1(D^0)-v_1(anti-D^0)$: opposite splitting between RHIC and LHC
- Model calculation and better experimental precision are needed to understand the apparent difference

HF Hadronization: Λ_c

• Baryon-to-meson ratio enhanced for LF, and explained by coalescence hadronization

- Strongly enhanced Λ_c/D^0 ratio in A+A collisions compared to baseline
 - Decrease with increasing p_T
 - Level of enhancement is similar to LF
- RHIC: model calculations with coalescence hadronization are closer to data, but still not sufficient

Summary

- Open HF has served as an important probe in understanding the properties of the QGP
- p+p: charm cross section agrees with pQCD
 - Yield increases rapidly with event multiplicity → MPI
- p+A: consistent with nPDF expectation
 - Origin of the collective motion
 - Rapidity dependence of fragmentation
- A+A: strong interactions between charm quarks and medium
 - → transport/diffusion/drag coefficients
 - Expected mass/flavor hierarchy of energy loss
 - Charm quark coalescence in the medium

What Can EIC Bring?

- Precise determination of 3D spatial and momentum distributions of partons as well as their fluctuations in the nucleus
 - Initial condition for hydrodynamic modeling for extracting fundamental properties of the QGP
 - Baseline for interpreting energy loss measurement
 - Shed lights on emerging phenomena in pA collisions

Backup

HF Hadronization in p+p Collisions

ALICE: PLB 781 (2018) 8

- First measurement of Ξ_c^0 at the LHC
- Measured $\Xi_c^{\ 0}/D^0$ in 7 TeV p+p collisions is significantly larger than PYTHIA prediction

D Meson in High-mult Events

PRC 91 (2015) 064905

- D⁰: enhancement in high-mult p+Pb events compared to low-mult events
 - Magnitude similar to charged hadrons
 - Effects of radial flow?
- Not inline with the existence of QGP

Jets with D-meson

- $R_{pPb} \sim 1$ for jets with D^0 , $3 < p_T^D < 6$ GeV/c
- No strong CNM effects for charm quarks

D-h Correlation

EPJC 77 (2017) 245 $0.3 < p_T^h < 1 \text{ GeV/c}$ $p_{T}^{h} > 0.3 \text{ GeV/c}$ $p_{\tau}^{h} > 1 \text{ GeV/c}$ ALICE 3 Near side $p_{_+}^{\mathrm{assoc}} > 0.3 \; \mathrm{GeV}/c, \, |\Delta \eta| < 1$ $0.3 < p_{_{_{T}}}^{assoc} < 1 \text{ GeV}/c, |\Delta \eta| < 1$ $p_{\tau}^{\rm assoc} > 1 \text{ GeV}/c, |\Delta \eta| < 1$ Associated yield → pp, \sqrt{s} = 7 TeV, $|y_{\text{cms}}^{\text{D}}|$ < 0.5 → p-Pb, $\sqrt{s_{\text{NN}}}$ = 5.02 TeV, <7% variation expected from different energy and rapidity (Pythia, Perugia 2011) $-0.96 < y_{cms}^{D} < 0.04$ 0.5 0.6 0.5 $\sigma_{\text{fit,NS}}$ (rad) 0.4 0.1 8 10 12 14 16 0 2 D meson p_{\pm} (GeV/c)

- Near-side peak is compatible between pp and pPb
- Fragmentation to D meson seems largely unaltered in pPb

CNM Effects for Charm

ALICE: PRL 113 (2014) 232301

PRL 121 (2018) 052004

R_{pPb} is consistent with unity

- Low p_T : hint of showering?
- High p_T : not much room for >20% suppression
- Models of small QGP predicts too much suppression at high p_T
- Provide valuable constraints to nPDF

CNM Effects for Bottom

- **B**⁺
 - Forward rapidity: strong suppression explained by shadowing effect
 - Backward rapidity: consistent with unity
- Λ_b : similar level of CNM effects as B^0 at forward/backward rapidities

Does Bottom Quark Flow?

- Hint of non-zero v₂ for bottom quarks at both RHIC and LHC.
- Improved precision on measurement is needed.

$HF\ Hadronization:\ D_s$

• Expect enhanced D_s production in the medium: i) strangeness enhancement; ii) coalescence

- Enhanced D_s/D⁰ ratio compared to fragmentation baseline
- No strong centrality dependence, and persists to high p_T
- Model calculation with coalescence hadronization is closer to data, but not able to do so at high p_T

How Do HF Jets Modified?

• RHIC: extract near-size widths from D⁰-h correlation

- Widths in peripheral events are similar to those in PYTHIA
- In central and semi-central collisions, substantial broadening of near-side jets along both η and φ directions
- Levels of broadening is similar to those for charged hadrons at similar mean p_T