Looking beyond LS4: new physics opportunities with a nearly massless collider detector

- a concept for a new, nearly massless collider detector
- general considerations on luminosity and physics opportunities

ISOQUANT

UNIVERSITÄT

SEIT 1386

SFB1225

selected remarks on physics topics

physics concepts developed with Federico Antinori, Stefan Floerchinger, Luciano Musa, Johanna Stachel, Krzysztof Redlich + feed-back from many ALICE colleagues

pbm ECT* meeting Electromagnetic Radiation from Hot and Dense Hadronic Matter Villazano Nov. 26-30, 2018

general remarks

- exceptional new opportunities arise with new technological developments and we (ALICE,...) should seize the moment
- new, ultra-thin (< 30 μm) Si pixels (MAPS), stitched together to large wafer-size area can be bent into cylindrical shape: possibility to realize a purely Si based collider detector for tracking and PID with a material budget of < 0.05 % X₀ per layer for the vertexer
- dE/dx measurements would be available for a few selected layers
- the excellent timing from MAPS (< 30 ps) combined with dE/dx measurements will provide PID information
- the whole detector could be less than 6 % X₀ in thickness (excluding the preshower part, of course)
- the Si is sufficiently fast and radiation-hard to allow an increase in luminosity by a factor of >> 10 compared to the upgraded ALICE apparatus in Run3/4
- except for end-cap specialized photon detectors and a pre-shower photon identifier beyond the outermost Si layer the detector would be a purely Si based collider detector
- any currently foreseen size fits well into the ALICE L3 solenoid
- with a focus on relatively low p_t phenomena, 0.01 < p_t < 10 GeV, magnetic fields of < 0.5 T would be sufficient for momentum resolution of the order of a few %

Selected Physics Topics

Electromagnetic radiation at (very) low mass and transverse mo-								
mentum								
Precision studies of thermalisation and spectral distortions								
Soft pions								
Hadronisation at very low transverse momenta								
Disoriented chiral condensates								
Femtoscopic measurements								
Fluctuation and diffusion of conserved charges								
Heavy flavour measurements								
Quarkonia, in particular excited states such as χ and X,Y,Z states .								
Dark photon search								

needs very high luminosity

1. brief outline of detector concept – not a technical design (mostly by Luciano Musa, CERN)

Design guidelines

- Increase rate capabilities (factor 20 to 50 wrt to RUN4): $<L_{NN}> \sim up$ to 10^{34} cm⁻²s⁻¹
- Improve vertexing
 - Ultra-thin wafer-scale sensors with truly cylindrical shape, inside beampipe
 - spatial resolution $\sim 1-3\mu m$
 - material thickness < 0.05% X₀ /layer
- Improve tracking precision and efficiency
 - About 10 layers with a radial coverage of 1m
 - Spatial resolution of about 5μm up to 1m
 - whole tracker could be less than 6% X₀ in thickness (at mid-rapidity)
- Extended rapidity coverage (ideally up to 8 rapidity units)

Focus on relatively low p_T phenomena, $0.01 < p_T < 10 \text{ GeV}/c$ Magnetic fields of < 0.5T would be sufficient but 1T (or higher) is to be considered

CMOS photolithographic process defines wafer reticles size

⇒ Typical field of view O(2 x 2 cm²)

Reticle is stepped across the wafers to create multiple identical images of the circuit(s)

Stitching allows fabrication of sensors larger than the reticle size

Can we exploit flexible nature of thin silicon ?

Courtesy: R. Turchetta, Rutherford Appleton Laboratory

Ultra-thin chip (<50 um): flexible with good stability

Tracker: ~10 tracking barrel layers (blue, yellow and green) based on CMOS sensorsHadron ID: TOF with outer silicon layers (orange)Extended rapidity coverage: up to 8 rapidity units

Electron ID: pre-shower (outermost blue layer)

 Preliminary studies

 Magnetic Field

 • B = 0.5 or 1 T

 Spatial resolution

 • Innermost 3 layers: σ ~ 1μm

 • Outer layers: σ ~ 5μm

 Time Measurement

 Outermost layer integrates high precision time measurement

 (σt < 30ps)</td>

+ FoCal

+ dedicated photon spectrometer at y = 4 for ultra-soft photons

 $0.01 < E_{photon} < 3 \text{ GeV} \ 0.37 < p_T < 110 \text{ MeV}$

green lines: resolutions with 2 layers inside beam pipe

FMCT: semi-analytical, includes QED hits, but no energy loss fluctuations Full MC: simplified ITS3 geometry, full MC simulation (GEANT3), Cellular Automaton ITS Tracker

2. soft electromagnetic radiation

direct and thermal photons in Pb-Pb collisions at LHC energy

figure from CERN yellow report HL-LHC 2018 is the range below 2 GeV measurable? can one go further down in p_{τ} ?

physics considerations real and virtual photon production at very low mass (<10 MeV) and very low p_T (< 20 MeV)

- low mass lepton and photon production are a consequence of the structure all gauge theories, see, in particular, [1, 3, 20, 23]. This realization has led to the development of 'soft theorems' a la Francis Low, [2]. According to these theorems the number of soft (real) photons and dileptons (virtual photons) actually diverges towards low p_T but *in a highly controlled manner that is central to the consistency of quantum field theory*, [23]. It would be of prime importance to reach the experimental sensitivity to test this prediction. This needs measurements at very low masses or p_T , probably below 10 MeV.
- it would be appropriate and important to measure dielectron mass distributions down to masses of the order of a few MeV and for p_T values of order 1/radius of the system under consideration. For r = 10 fm such as fireball size in Pb-Pb at LHC, this implies $p_T < 20$ MeV. Current measurements have typically $p_T \ge 200$ MeV, recent unpublished ALICE results at low B field go to 75 MeV for pp collisions.

physics considerations real and virtual photon production at very low mass (<10 MeV) and very low p_T (< 20 MeV)

- soft photons can be measured with the conversion method, need to evaluate the p_T values possible. Note that photons from π⁰ decay will be significantly suppressed below p_T = 30 MeV because of the decay Jacobian, see [13], where measurements with p + Be → γ+X at 450 GeV were made down to a few MeV with a BaF₂ crystal spectrometer. Some (tentative) indication of enhancement is observed over standard bremsstrahlung calculations. These results were analyzed by Nachtmann et al., [9, 15], in the framework quark synchrotron radiation. It would be very interesting to follow this up.
- an interesting area to pursue is the multiplicity dependence of photon and dielectron production. Bjorken and Weisberg, [4] and Rückl [5] and Pisut et al., [6, 7, 8, 10, 11, 12] predict a quadratic dependence (qq̄ annihilation).

physics considerations real and virtual photon production at very low mass (<10 MeV) and very low p_T (< 20 MeV) from pp to Pb-Pb collisions

- 1. suppressing Dalitz decays of $\pi^0, \eta, \omega, \eta'$ as well decays from open charm and open beauty is key for a low mass dielectron measurement, see Fig. 11 of the ALICE pp paper, ref. 24. Note that the π^0 channel here is removed by a mass cut but we should aim for much lower mass cut. The main aim should be the measurement of 'primordial electromagnetic radiation' from the fireball formed ion the collision. Collision systems should range from pp to pPb to Pb-Pb, all studies as function of charged particle multiplicity. Conversions should be dramatically reduced by the layers inside the beam pipe and the generally low detector mass.
- 2. very low p_T photons could be measured with a special, small spectrometer at forward rapidity, say rapidity 2.5 - 5. A 5 MeV p_T photon would be boosted to energies of 60 - 740, respectively, maybe even 1 MeV p_T experiments could be done. The special spectrometer should have ultimate granularity, including charged particle veto. Since cross sections at very low p_T are large, large acceptance and hermeticity are not needed.
- 3. very important is efficient electron ID. Below p = 100 MeV this can be done well with dE/dx. Above that momentum some kind of pre-shower detector is needed.

Low-mass lepton-pair production in p-Be collisions at 450 GeV/c

a few examples from the past, ...

Soft photon production in 450 GeV/c p-Be collisions

real photons down to the MeV scale, bremsstrahlung rise towards low p_T clearly observed, consistent with Low theorem

single positron measurements

ISR anomaly in di-electrons

first ALICE results at full LHC energy

chiral symmetry restoration and the rho-a1 region

ALI-SIMUL-306839

vacuum masses:

the idea: the rho and a1 mesons are chiral partners. In the vacuum, chiral symmetry is broken, the rho couples to e+e-, but not the a1.

in medium, chiral symmetry is restored, the chiral partners mix, and the hole in the spectral distribution should be filled.

to detect this, measure dilepton mass distribution in the mass range 0.6 - 2.5GeV region in Pb-Pb collisions with precision and at low transverse momentum, $p_T < 50$ MeV and compare with pp and e+e- results

the challenge: at LHC energies, the dominant dilepton decays from open charm and beauty need to be quantitatively removed new massless detector

 M_{ee} (GeV/ c^2)

Drell-Yan distributions in the low mass region, extrapolated via Pythia6 from CMS measurements in the mass range 20 < m_ee < 120 GeV

3. physics considerations multi-charm and beauty states

Work in collaboration with Anton Andronic, Markus Koehler, Krzysztof Redlich, Johanna Stachel

Andronic, pbm, Redlich, Stachel, arXiv:1710.09425, Nature 561 (2018) no.7723, 321-330

enhancement is precisely prediction by Statistical Hadronization Model for quadratic scaling in number of charm quarks, they have to travel freely over

the size of the fireball of 10 fm, about 10 times the radius of a proton

Andronic, pbm, Koehler, Redlich, Stachel, to appear

doorway state hypothesis:

all nuclei and hyper-nuclei, penta-quark and X,Y,Z states are formed as virtual, compact multi-quark states at the phase boundary. Then slow time evolution into hadronic representation. Excitation energy about 20 MeV, time evolution about 10 fm/c

Andronic, pbm, Redlich, Stachel, arXiv :1710.09425

How can this be tested?

precision measurement of spectra and flow pattern for light nuclei and hyper-nuclei, penta-quark and X,Y,Z states from pp via pPb to Pb-Pb

a major new opportunity for ALICE beyond LS4 for X,Y,Z, multi-charm, charm-beauty and penta-quark states

thermal production yields of exotic states in central Pb-Pb collisions at 5 TeV/u

Andronic, pbm, Koehler, Redlich, Stachel preprint in preparation

example: X(3872)

physics considerations quarkonia, chi states and deconfinement

psi' and bound states in the QGP

centrality

J/psi and hyper-triton described with the same flow parameters in the statistical hadronization model

binding energies: J/psi 600 MeV hypertriton 2.2 MeV Lambda S.E. 0.2 MeV

from review: hypernuclei and other loosely bound objects produced in nuclear collisions at the LHC, pbm and Benjamin Doenigus, arXiv:1809.04681

transverse momentum spectrum for X(3872) in the statistical hadronization model Pb-Pb collisions at 5 TeV/u

new opportunity: deconfinement from quarkonium measurements

An essential ingredient of the statistical hadronization scenario for heavy guarks is that they can travel, in the QGP, significant distances to combine with other uncorrelated partons. The observed increase of the R_{AA} for J/ψ with increasing collision energy strongly supports the notion that the mobility of the heavy quarks is such that it allows travel distances exceeding that of the typical 1 fm hadronic confinement scale. In fact, for LHC energy, the volume of a slice of one unit of rapidity of the fireball exceeds 5000 fm³, implying that charm quarks can travel distances of the order of 10 fm. This results in the possibility of bound state formation with all other appropriate partons in the medium with statistical weights quantified by the characteristics of the hadron (mass, quantum numbers) at the phase boundary. The results of the charmonium measurements thereby imply a direct connection to the deconfinement properties of the strongly interacting medium created in ultra-relativistic nuclear collisions.

measure p_T spectra and v_n(p_T) for excited charmonia psi(2s), chi_c, Y(2s), Y(3s), chi_b

The detection and quantitative measurement of χ_c states involves the identification of a low energy (about 300 - 440 MeV near mid-rapidity) photon in addition to a J/ ψ meson. To measure this we will pursue two options. In option 1 the low energy photon is measured with large efficiency and over the full solid angle in the pre-shower detector. To separate the χ_c states one needs a photon energy resolution of about 5% near 400 MeV corresponding to $\frac{\delta E_{\gamma}}{E_{\gamma}} \approx 3\% / \sqrt{E_{\gamma}(GeV)}$ which should be achievable in the preshower detector. For the second option, with lower efficiency but excellent photon energy resolution we plan to introduce, very close to the beam pipe, a (removable) external converter of thickness of 5 - 10% of a radiation length. A photon can then be identified by the absence of tracks in the inner Si layers and by two tracks of opposite charge whose combined momentum precisely points to the primary interaction vertex.

Interesting new opportunities arose with recent findings by Belle2 and LHC_b that the $\chi_c \rightarrow l^+ l^- J/\psi$ is of order 10⁻⁴. This would imply that the $\chi_c \rightarrow 4leptons$ becomes an attractive channel to study the production of χ states with very high resolution. Also it would be very interesting in this context to measure the production of B⁺_c in Pb–Pb collisions. Recent LHC_b findings indicate substantial branching ratios into J/ $\psi\pi^+$ which could be detected in the planned detector with good accuracy. Very large enhancements are predicted for B⁺_c production in the statistical hadronization model. A measurement in this channel would hence be very illuminating.

5. fluctuations of conserved charges

Locally conserved quantum number like net baryon number or electric charge undergo diffusive motion in a medium such as the quark-gluon plasma. The corresponding transport properties at first order in a fluid dynamic derivative expansion are the baryon diffusion constant, which is directly related to heat conductivity, and the electric conductivity. Correlation functions of net baryon number and net electric charge that are differential in azimuthal angle and in rapidity as well as transverse momentum contain in principle the corresponding information. With sufficient particle identification capabilities and additional theory developments one could access this highly interesting physics and attempt a determination of heat conductivity as well as electric conductivity in an expanding quark-gluon plasma.

The experimental coverage at very low transverse momenta will greatly facilitate the comparison of predictions from LQCD on chiral susceptibilities and transport coefficients with experimental measurements of higher moments of the distributions of net baryon number. Note that, in LQCD, no possibilities exist to introduce cuts in rapidity and transverse momentum, implying that measurements need to be performed over the widest phase space possible for meaningful results.

6. spectral distortions at very low transverse momentum for pions

- Is the spectrum of hadrons in the low-p_T regime a Bose-Einstein or Fermi-Dirac spectrum (depending on spin) governed by a common temperature T and fluid velocity u^μ on the freeze-out surface?
- Can deviations from ideal gas occupation numbers on the freeze-out surface due to dissipative terms and interactions be understood quantitatively in terms of dissipative fluid dynamics, kinetic theory or non-equilibrium quantum field theory?
- Are the effect of quantum statistics visible in spectra of light hadrons, in particular pions, at low transverse momentum?
- Is maybe even a condensate or coherent fraction of pions or kaons visible in the spectrum and correlation functions at low transverse momentum?

Spectrum of charged pions from a fluid dynamics calculation with an added component from a coherent component. The coherent field at freeze-out is assumed to be of the form $\pi^{\pm}(\tau, r, \phi, \eta) \sim e^{-r^2/2l^2}$ where *l* is a coherence length. In momentum space this leads to a Gaussian contribution from the coherent component $\sim e^{-l^2 p_T^2}$. The coherence length *l* is varied between 1 fm (orange curve) and 25 fm (blue curve). The black curve shows the spectrum without coherent fraction for comparison.

References

- [1] F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.
- [2] F. E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974. doi:10.1103/PhysRev.110.974
- [3] R. N. Cahn, Inclusive Photon Spectra And High-energy Multiplicities, Phys. Rev. Lett. 29 (1972) 1481.
- [4] J. D. Bjorken and H. Weisberg, Direct Lepton Production and the Drell-Yan Mechanism, Phys. Rev. D 13 (1976) 1405.
- [5] R. Ruckl, Direct Lepton Production by Soft Virtual Bremsstrahlung, Phys. Lett. 64B (1976) 39.
- [6] V. Cerny, P. Lichard and J. Pisut, Origin of the Dimuon Continuum and the Space-Time Evolution of Hadron Collisions, Phys. Lett. **70B** (1977) 61.
- [7] V. Cerny, P. Lichard and J. Pisut, Production of Dileptons During the Space-Time Evolution of Hadronic Collisions, Acta Phys. Polon. B 9 (1978) 901.
- [8] V. Cerny, P. Lichard and J. Pisut, Comparison of the Soft Annihilation Model of the Low Mass Dilepton Production With the Data, Phys. Rev. D 24 (1981) 652.
- [9] O. Nachtmann and A. Reiter, The Vacuum Structure in QCD and Hadron -Hadron Scattering, Z. Phys. C 24 (1984) 283.
- [10] V. Cerny, P. Lichard and J. Pisut, A Clear Cut Test of Low Mass Dilepton Production Mechanism in Hadronic Collisions, Z. Phys. C 31 (1986) 163.

- [11] O. P. Pavlenko and J. Pisut, Low Mass Dilepton Production In P P And P A Collisions As A Signature Of The Thermalization Of Hadronic Matter, Phys. Lett. B 220 (1989) 247.
- [12] P. Lichard, N. Pisutova and J. Pisut, On The Origin Of Anomalous Soft Photons In Muon - Proton Interactions At High-energy, Z. Phys. C 42 (1989) 641.
- [13] J. Antos *et al.*, Soft photon production in 400-GeV/c p Be collisions, Z. Phys. C 59 (1993) 547.
- [14] T. Akesson *et al.*, "Low mass lepton pair production in p Be collisions at 450-GeV/c," Z. Phys. C 68 (1995) 47.
- [15] G. W. Botz, P. Haberl and O. Nachtmann, "Soft photons in hadron hadron collisions: Synchrotron radiation from the QCD vacuum?," Z. Phys. C 67 (1995) 143
- [16] G. Agakichiev *et al.* [CERES Collaboration], Enhanced production of low mass electron pairs in 200-GeV/u S - Au collisions at the CERN SPS, Phys. Rev. Lett. **75** (1995) 1272.
- [17] R. Rapp and J. Wambach, Chiral symmetry restoration and dileptons in relativistic heavy ion collisions, Adv. Nucl. Phys. 25 (2000) 1

- [18] G. Agakichiev *et al.* [CERES Collaboration], e+ e- pair production in Pb -Au collisions at 158-GeV per nucleon, Eur. Phys. J. C 41 (2005) 475
- [19] D. Adamova *et al.*, [CERES Collaboration], Modification of the rho-meson detected by low-mass electron-positron pairs in central Pb-Au collisions at 158-A-GeV/c, Phys. Lett. B 666 (2008) 425
- [20] V. Lysov, S. Pasterski and A. Strominger, Low's Subleading Soft Theorem as a Symmetry of QED, Phys. Rev. Lett. 113 (2014) no.11, 111601
- [21] L. Adamczyk *et al.* [STAR Collaboration], Dielectron Mass Spectra from Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. **113** (2014) no.2, 022301 Addendum: [Phys. Rev. Lett. **113** (2014) no.4, 049903]
- [22] A. Adare *et al.* [PHENIX Collaboration], Dielectron production in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV, Phys. Rev. C **93** (2016) no.1, 014904
- [23] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [hep-th].
- [24] S. Acharya *et al.* [ALICE Collaboration], Dielectron production in protonproton collisions at $\sqrt{s} = 7$ TeV,

additional slides

L. Musa (CERN) - ALICE Physics Week, 23 Oct 2018

6 cm

• L0 = 14 cm x 6.0 cm

different layers. For example

- L1 = 14 cm x 7.5 cm
- L2 = 14 cm x 9.0 cm

Significance as a function of m_{ee}

ITS3 proposal – August 2018

Proposal for the construction of a novel vertex detector

- New beam pipe with IR = 16mm, ΔR = 0.5mm
- Three truly cylindrical layers based on curved ultra-thin sensors ($\Rightarrow x/X_0 \approx 0.05\%$ per layer)
- The three layers differ only for their radii, with the innermost layer at 18mm radial distance from IP

The new vertex detector (ITS3) would be installed in LS3 to replace the innermost three layers of ITS2 (LS2)

The ITS3 will consist of two separate barrels: Inner Barrel and Outer Barrel

- The Outer Barrel (four outermost layers) will be that of ITS2
- The new Inner Barrel (three innermost layers) will instead replace the Inner Barrel of ITS2

The ITS3 will provide a large reduction of the material budget (close to IP) and an improvement of the tracking precision and efficiency at low p_T

The combination of these two improvements will lead to a significant advancement in the measurement of low p_T charmed hadrons and low-mass dielectrons

impact parameter resolution improved by a factor of 3 compared to ITS2 for p_T < 0.5 GeV

schematic detector setup

Tracker based on CMOS sensors: ~ 10 tracking barrel layers, ~ 7 endcap disks

note: the two innermost layers could be inside the beam pipe, to avoid problems with conversions and dE/dx in the beam pipe L. Musa – AGLCM Mar 2018 - CERN

Timing with silicon - CMOS MAPS

Two approaches

- Implement gain layer underneath the standard N-well collection electrode
- Optimize layout for timing measurement

First order approximation

$$\sigma_t = \frac{t_r}{SNR}$$

In ultra-thin (O(10µm), fully depleted CMOS sensors (e.g. INVESTIGATOR or ALPIDE with CERN/TJ modified p

- Charge collection time < 1ns
- Noise ≈ few electrons
- Signal on seed pixel ≈ 1000 electrons

 $t_r < 1ns$ SNR > 100

 $\sigma_t < 10$

Time is ultimately limited by signal shape fluctuations inside the sensor

Use ultra-thin layers (e.g. $10\mu m$ and uniform depletion field)

note: TOF separation power scales ~ L/σ_{TOF}

so: 80 ns and L = 4m (ALICE TOF) is equivalent to 20ps and L = 1 m

Novel fully depleted CMOS Pixel Sensors

In the framework of the R&D for the ALICE upgrade, CERN has developed in collaboration with Tower Semiconductor a process modification that allows full depletion of the high resistivity silicon layer

- Reduces charge collection time (<1ns)
- Enhances radiation hardness (~10¹⁵ n / cm²)

Foundry Standard Process

Vertical full depletion Lateral partial depletion Collection time < 30ns (V_{bb}=-3V) Suitable for up to 10¹⁴ n/cm²
 NUCS
 PMCS
 Investigation

 pvest
 neet
 pvest

 pvest
 neet
 deep pvest

 low dose n-type impiant
 depieted zone

 pr epitaxial layer
 gepleted zone

mask with no changes on the sensor and circuit layout

The process modification requires a single additional process

Modified process CERN/Tower

Epi-layer fully depleted Collection time < 1ns Operational for up to 10¹⁵ n/cm²

The ALICE test vehicle chip (investigator) and prototype ALPIDE chips exist with both flavors For details on process modification and experimental results see: NIM, A 871C (2017) pp. 90-96

L. Musa – AGLCM Mar 2018 - CERN

Stitching allows the fabrication of wafer scale sensors

CMOS photolithographic process defines wafer reticles size

 \Rightarrow Typical field of view O(2 x 2 cm²)

Reticle is stepped across the wafers to create multiple identical images of the circuit(s)

Stitching allows fabrication of sensors larger than the reticle size

Ultra-thin curved silicon chips

Can we exploit flexible nature of thin silicon ?

Chipworks: 30µm-thick RF-SOI CMOS

Ultra-thin chip (<50 um): flexible with good stability

Die type	Front/back side	Ground/polished/plasma	Bumps	Die thickness (µm)	CDS (MPa)	Weibull modulus	MDS (MPa)	r_{\min} (mm)
Blank	Front	Ground	No	15-20	1263	7.42	691	2.46
Blank	Back	Ground	No	15-20	575	5.48	221	7.72
IZM28	Front	Ground	Yes	15-20	1032	9.44	636	2.70
IZM28	Back	Ground	Yes	15-20	494	2.04	52	32.7
Blank	Back	Polished	No	25-35	1044	4.17	334	7.72
IZM28	Back	Polished	Yes	25-35	482	2.98	107	24.3
Blank	Back	Plasma	Yes	18-22	2340	12.6	679	2.50
IZM28	Front	Plasma	Yes	18-22	1207	2.64	833	2.05
IZM28	Back	Plasma	Yes	18-22	2139	3.74	362	4.72

van den Ende DA et al. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending. Mircoelectron reliab (2014), http://dx.doi.org/10.1016/j.microrel.2014.07.125

L. Musa (CERN) – ALICE Week, 17 July 2017

momentum resolution estimate for barrel no multiple scattering

B = 0.5 T

δp/p = 0.6 % @ 1 GeV δp/p = 0.8 % @ 10 GeV

Spatial resolution

- Innermost 3 layers: σ ~ 1μm
- Outer layers: σ ~ 5μm

Time Measurement Outermost layer integrates high precision time measurement $(\sigma_t < 30ps)$

Aug. 2018 update: excellent description of ALICE@LHC data

Andronic, pbm, Redlich, Stachel, arXiv:1710.09425, Nature 561 (2018) no.7723, 321-330

Quark Model Spectroscopy

Why does the quark model work so well? Why do M and B body plans dominate? Why don't multibaryons make one big bag?

Frank Wilczek, QM2014 introductory talk

see also the recent review: Marek Karliner, Jonathan L. Rosner, Tomasz Skwarnicki, arXiv:1711.10626

X(3872) transverse momentum spectrum for Kr+Kr and Pb+Pb at 5 TeV

A. Andronic, pbm, M. Koehler, K. Redlich, J. Stachel, paper in preparation

Pb/Kr ratio for X(3872)

Pb/Kr ratio is of order 5 for transverse momenta < 5 GeV

X(3872) transverse momentum spectrum for Kr+Kr and Pb+Pb at 5 TeV

Pb/Kr ratio for X(3872)

Pb/Kr ratio is of order 5 for transverse momenta < 5 GeV