

Multi-differential analysis of dileptons in $\sqrt{s_{ m NN}}=2.4$ GeV Au+Au collisions

Szymon Harabasz for the HADES Collaboration

Introduction
Data Analysis
Differential Spectra
Summary

INTRODUCTION

Meet the HADES

(High Acceptance Di-Electron Spectrometer)

Beams from SIS18: protons, nuclei, secondary pion beams, E_{kin} =1-2 GeV/u

- $f \Delta$ Di-lepton production suppressed by the factor $lpha^2$
- ▲ Vector meson production sub-threshold

4.3×109 of 40% most central Au+Au events recorded

- ✓ Fast detector → interaction rate: 8 kHz in AuAu, 200 kHz at SIS100
- ✓ **Large acceptance** \rightarrow full azimuth, θ from 18° to 85°
- ✓ Mass resolution → of the order of few %
- ✓ Good particle identification → single e^{+/-} purity > 98 %
- ✓ Efficient track reconstruction

Dilepton excess yield

QM 2017

Coarse Graining (CG): ρ in-medium spectral function with thermodynamic parameters from transport

CG GSI-Texas A&M: Eur. Phys. J. A, 52 5 (2016) 131 CG SMASH: arXiv:1711.10297 [nucl-th]

CG FRA: Phys. Rev. C 92, 014911 (2015) HSD: Phys. Rev. C 87, 064907 (2013)

Medium radiation goes beyond incoherent superposition of NN collisions (like $A_{\text{part}}^{4/3}$)

Dilepton chronometer of the collision time:

$$N_{\text{ee}} \sim A_{\text{part}} \cdot A_{\text{part}}^{1/3} \sim V \cdot \boldsymbol{\tau}_{\text{fireball}}$$

DATA ANALYSIS

Electron Identification

- Track quality selection
- Energy loss
- Particle velocity
- Electromagnetic shower
- Cherenkov radiation
 - → two independent analyses:
 - Ring Finder
 - Backtracking
- All combined in a multivariate analysis (neural networks)
- Purity of single lepton identification at least 98 %

Correlated with momentum

- Distributions drop rapidly

 → Good discrimination power
- Train and test overlap

 → Ability of the model to
 generalize for unseen data

Selection of Signal Leptons

Close pair (CP) rejection: identify second lepton by loose cuts \rightarrow find the nearest to the reference lepton \rightarrow if opening angle smaller than given condition, remove reference lepton from the sample

Combinatorial Background

Efficiency and Acceptance Corrections

- Translate to pair observables by MC cocktails
- Error bands: variance from different models

- Perfect agreement
- Final version: "with CP" used above 0.3 MeV/c2, below – mean of the two

DIFFERENTIAL SPECTRA

p_t-dependent

- - Invariant mass spectra not affected by the blue shift
 - Less steep at higher p_t
 - Similar observation as for IMR dimuons at SPS NA60 [S. Damjanowic, Trento 2010]

p_t-dependent

Cocktail:

- π⁰ from charged pions multiplicity, cross-checked with the conversion method
- η from the γ conversion
- ω from the m_t scaling

Pluto thermal ρ :

- Breit-Wigner + Boltzmann
- Weighted with 1/M³ factor (from VMD)
- No 2m_π cutoff

p_t-dependent

Cocktail:

- π⁰ from charged pions multiplicity, cross-checked with the conversion method
- η from the γ conversion
- ω from the m_t scaling

Pluto thermal ρ :

- Breit-Wigner + Boltzmann
- Weighted with 1/M³ factor (from VMD)
- No 2m_π cutoff

p_t-dependent

- ¹/₂(pp + np) dileptons from elementary collisions at the same energy as Au+Au
- Respective η contribution subtracted
- "Reference spectra"

p_t-dependent

- Highest sensitivity to the excess below $M_{ee} \sim 500 \text{ MeV/c}^2$ and $p_{t,ee} \sim 400 \text{ MeV/c}$
- Crucial to cover this region with experimental acceptance

Fit to the invariant mass in centrality bins

Total e+e- yield

Hotter radiation source in more central collisions

Fit to the invariant mass in centrality bins

Total e+e- yield

Hotter source of radiation at higher pt

Rapidity distributions of dileptons

Total e+e- yield

Most of dileptons inside the rapidity region, where HADES do have acceptance coverage \rightarrow Validity of the thermal fits

Fit to invariant mass as a function of rapidity

TECHNISCHE UNIVERSITÄT DARMSTADT

Total e+e- yield

Consistent with thermal ansatz $T_{slope} \propto 1/cosh(y-y_{CM})$

Transverse momentum and model calculations

Total e+e- yield

Spectra consistent with the models

Transverse momentum with fits

Total e+e- yield

Assumes pure Boltzmann nature of the source:

$$\frac{d^3N}{d\vec{p}} \propto \exp\left(-\frac{E}{k_{\rm B}T}\right)$$

$$k_{\rm B}T_{\rm slope} = k_{\rm B}T_{\rm kin} + \frac{1}{2}M_{\rm ee}c^2\langle\beta\rangle^2$$

- Fit to the model points:
 - CG: $T_{kin} = 65 \text{ MeV}/k_{B}, \langle \beta \rangle = 0.19$
 - HSD: $T_{\rm kin} = 74 \text{ MeV}/k_{\rm B}$, $\langle \beta \rangle = 0.05$
- Blast-wave fit to hadrons spectra: $T_{\rm kin}=60~{
 m MeV}/k_{
 m B}$, $\langle eta \rangle=0.36$

Angular distributions

Total e+e- yield

along the direction of γ^* in LAB

- So called "helicity" angle, related to photon polatization
- Lack of anisotropy may be interpreted as hint for thermalized source
- Pseudoscalar Dalitz decays are self-polarizing

Azimuthal anisotropy at intermediate energies

Recall, at SIS18 energies:

- Long passing times
- Moderate temperatures
- Negative v₂: preferred emission of hadrons perpendicular to reaction plane
- Shadowing by spectators

Dilepton azimuthal anisotropy

- HADES is capable of extracting v₂ of dileptons
- For more conclusive results larger statistics is needed

Summary and Perspectives

Conclusions

- HADES explores baryon rich matter at SIS 18
- Properly extracted dilepton excess yield agrees well with theory predictions
- Differential spectra of p_t, rapidity and angular distributions have been presented
- Azimuthal anisotropy coefficient v₂ has been extracted

Outlook

- Analysis of more peripheral events and Au+C
- Look forward to the peaks in Ag+Ag at 1.65A GeV

Thank you for you attention

HADES Collaboration, Feb 22nd 20018

EXTRA SLIDES

Overview of data analysis

(Rapidity distribution as an example)

- Combinatorial background estimated from geometric mean of like-sign spectra
- Note very different acceptances for e⁺e⁺ and e⁻ e⁻

- Simulated cocktail of dilepton sources in 4π
- Use of single-lepton matrices $acc_{+}(p_{+},\theta_{+},\phi_{+})^{*}acc_{-}(p_{-},\theta_{-},\phi_{-})$ to get cocktail spectra inside HADES acceptance
- Use of single-lepton matrices $eff_+(p_+,\theta_+,\phi_+)^*eff_-(p_-,\theta_-,\phi_-)$ to get cocktail spectra "after reconstriction"
- Correction factors for data are ratios of these spectra: $\varepsilon = acc/eff$, $\alpha = 4\pi/acc$

 Systematics at forward rapidity is going to be understood and reduced

Combinatorial background estimation

Two formalisms

Single leptons are produced independently, with Poisson statistics.

[PHENIX analysis note]

Suitable for:

semileptonic decays.

$$\langle BG_{+-}\rangle = \frac{\epsilon_{+-}}{\sqrt{\epsilon_{++}\epsilon_{--}}} 2\sqrt{\langle FG_{++}\rangle \langle FG_{--}\rangle}$$

Leptons are always produced in pairs, no assumption about the statistics.

[Adare et al. (STAR) PRC 81 034911]

Suitable for:

virtual photons

$$\langle BG_{+-}\rangle = \frac{\epsilon_{+-}}{\sqrt{\epsilon_{++}\epsilon_{--}}} 2\sqrt{\langle FG_{++}\rangle \langle FG_{--}\rangle} \\ \langle BG_{+-}\rangle = \frac{[\epsilon_{+-} + \epsilon_{+}(1-\epsilon_{+-})][\epsilon_{+-} + \epsilon_{-}(1-\epsilon_{+-})]}{[\epsilon_{++} + \epsilon_{+}(1-\epsilon_{++})][\epsilon_{--} + \epsilon_{-}(1-\epsilon_{--})]} 2\sqrt{\langle FG_{++}\rangle \langle FG_{--}\rangle}.$$

Reality is somewhere between the two sets of assumptions Fortunately, "factors with epsilons" can be replaced with ratios of spectra from event mixing:

$$k = \frac{\langle FG_{+-}^{\text{mix}} \rangle}{2\sqrt{\langle FG_{++}^{\text{mix}} \rangle \langle FG_{--}^{\text{mix}} \rangle}}$$

Event Selection

DST gen 8

New standard event flags

File lists of good sectors

Track selection and sorting also standard

Lepton identification:

- Neural networks trained on data with two sets of input variables
- Neural network trained on SIM like on data
- Neural network trained on Geant PID
- Hard cuts
- All based on RICH ring finder, no usage

	7 m. nacoa on racerring miacr, no acago						
Bin	of backtrac	king META hit, cut	N _{META hit,cut} ≤				
0	Multiplicity of	overflow					
1	0-10 %	160	240				
2	10-20 %	121	160				
3	20-30 %	88	121				
4	30-40 %	58	88				
5	Multiplicity (underflow					

Low-mass Dileptons at 1 – 2A GeV

HADES "Resonance clock"

- \Box C+C: After η subtraction, coincides with (pp+np)
- □ Ar+KCl: First evidence for radiation from the "medium" in this energy regime!
- Rapid increase of relative yield reflects the number of ∆'s/ N*'s regenerated in fireball

NA60 excess p_t dependent

TOWARDS DILEPTON EXCITATION FUNCTION

Ag+Ag at $\sqrt{s_{\rm NN}}=$ 2.6 GeV

- Upgrade of RICH detector
- Installation of electromagnetic calorimeter
- → Higher efficiency for dileptons

 First measurement of the IMR slope at SIS18 energy regime

Exclusive analysis of pp→**ppe**⁺**e**⁻

QED: point like γ *NR, Heavy Ion Phys. 17, 27 (2003)

I&W: two component quark model, PRC 69, 055204 (2004)

R&P: covariant constituent quark model, PRD 93, 033004 (2016)

 $\Gamma(N\pi)/\Gamma_{total}$

S&M brems.: PRC 82, 062201 (2010)

PDG	2018

' ('V'')/' total					'1/'
VALUE	DOCUMENT ID		TECN	COMMENT	
0.994 OUR ESTIMATE					
1.00	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
1.0	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
1.0	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • We do not use the following the fol	owing data for average	s, fits,	limits, e	etc. • • •	
0.994	SHRESTHA	12A	DPWA	Multichannel	
1.0	ANISOVICH	10	DPWA	Multichannel	
1.000	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$	
1.00	PENNER	0 2C	DPWA	Multichannel	
$\Gamma(pe^+e^-)/\Gamma_{\text{total}}$					Γ_5/Γ
VALUE (units 10 ⁻⁵)	DOCUMENT ID				
4.19±0.34±0.62	1 ADAMCZEW.	17			
1=:					
The systematic uncertain	ty includes the model (depend	dence.		

△(1232) BRANCHING RATIOS

First measurement of BR($\Delta \rightarrow pe^+e^-$) = 4.19 ± 0.42(model) ± 0.46(syst.) ± 0.34(stat.)

 Γ_1/Γ

Role of the ρ meson

Model A [EPJA 50, 107 (2014)], e.g.:

Model B [PRC 82, 062201 (2010)], e.g.:

Exclusive $\pi^- + p \rightarrow ne^+e^-$, $\sqrt{s} = 1.49$ GeV

