When Stars Attack!

Near-Earth Supernova Explosions

Revealed by Deep-Ocean and Lunar Radioactivity

Brian Fields

Astronomy & Physics, U Illinois

ECT* Indirect Methods in Nuclear Astrophysics, Nov 7 2018

Team Nearby Supernovae

Themis

John Ellis

Athanassiadou

Brian Fry

Kathrin Scott Hochmuth Johnson Ashvini Krishnan

Danylo Sovgut

Alexandra Trauth

Adrienne	Jesse
Ertel	Miller

When Stars Attack! Near-Earth Supernova Explosions Revealed

- *** Supernovae & Radioisotopes** massive star explosions as radioactive ion beams
- *** Nearby Supernovae** a unique laboratory...and a unique threat
- The Smoking Gun supernova radioactivities on Earth
- **★ Geological Signatures** telescopes probing prehistoric supernovae

Supernova Radioactivities

Image: Chardra & NuSTAR

Core-Collapse Supernovae Twitter Version

A star's life is a struggle against gravity

Lives of Massive Stars (> 8-10 M_{sun})

- **\star Begin burning** H \rightarrow He
- ★ Then, at accelerating pace
 - repeated cycles of ash is fuel
 - ever-heavier elements in core

When core ⁵⁶Fe: max binding

- core fusion stops: support by degen e-
- ★ Core "bounce" at nuke density
- * "Neutrino bomb" ignited: ~ few 10⁵³ erg Koshiba & Kamiokande 1987
- Shock launched: ~10⁵¹ erg

Explosion!

Supernovae are Element Factories

- bydrostatic and explosive nucleosynthesis
 - main products:
 - ✓ alpha nuclei: ¹²C, ¹⁶O, ..., ⁴⁰Ca, ⁴⁴Ti
 - ✓ Fe peak
 - medium-lived (> Myr) radionuclides: ⁶⁰Fe, ²⁶Al, ⁴¹Ca, ⁵³Mn, ^{97,98}Tc, ¹⁴⁶Sm
 - ⁶⁰Fe: made by neutron captures "weak s-process"

 59 Fe $(n, \gamma)^{60}$ Fe large theoretical uncertainties in yield sensitive to stellar evolution and to He burn rates: $3\alpha \rightarrow {}^{12}$ C 12 C (e accuracy ~order of magnitude r-process? 182Hf, 244Pu 59

$$12^{12} {
m C}(lpha,\gamma)^{16} {
m O}$$
 $12^{12} {
m C}(^{12}{
m C},n)^{23} {
m Mg}$
Tur, Heger, Austin, West 2010, 2017; Bucher+ 2015

 $^{59}{
m Fe}(n,\gamma)^{60}{
m Fe}$ thanks Peter Mohr!

Live Radioactivities and Nearby Supernovae

***** Supernova Explosions

the deaths of massive stars

*** Nearby Supernovae** a unique laboratory...and a unique threat

★ The Smoking Gun supernova radioactivities on Earth

★ Geological Signatures sea sediments as telescopes

Nearby Supernovae

Cosmic WMD: Rates

How often? Depends on how far! Shklovskii 68

***** Rate of Supernovae inside d:

– Galactic supernova rate today: $\mathcal{R}_{\mathrm{SN}}$

$$\lambda(< d) = \frac{V_{\text{disk}}(< d)}{V_{\text{disk,total}}} \mathcal{R}_{\text{SN}} = \underbrace{(10 \text{ Myr})^{-1} \left(\frac{d}{30 \text{ pc}}\right)^{3}}_{30 \text{ pc}}$$

- exponential disk: solar circle rate ~5x smaller Krishnan, Sovgut, Trauth, BDF 2018 in prep
- also: spiral arms, molecular clouds Talbot & Newman 77
- events < 10 pc in the last 4.5 Gyr!</p>

Nachbarsternsupernovaexplosionsgefahr or **Attack of the Death Star!**

BIOHAZARD

Ill efects if a supernova too close possible source of mass extinction

Shklovskii; Russell & Tucker 71; Ruderman 74; Melott group

Ionizing radiation

- initial gamma, X, UV rays destroy stratospheric ozone Ruderman 74: Ellis & Schramm 94
- solar UV kills bottom of food chain

Crutzen & Bruhl 96; Gehrels etal 03; Melott & Thomas groups; Smith, Sclao, & Wheeler 04

cosmic rays arrive with blast, double whammy

22

ionization damage, muon radiation

Neutrinos

Minimum safe distance: ~8 pc neutrino-nucleon elastic scatter "linear energy transfer"

DNA damage

Live Radioactivities and Nearby Supernovae

***** Supernova Explosions

the deaths of massive stars

*** Nearby Supernovae** a unique laboratory...and a unique threat

★ The Smoking Gun supernova radioactivities on Earth

★ Geological Signatures sea sediments as telescopes

The Smoking Gun

Nearby Supernovae Rain Ejecta on Earth

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

SN eject plows thru interstellar matter

- Earth shielded by solar wind
- If blast close enough:
 - plasma pushes to inner Solar System
 - dust decouples, rains on Earth
 - SN dust accumulates in deep ocean

The Fury of Aerial Bombardment: Supernova Blast Passage--Global View BDF, Athanassiadou, Johnson 2008

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

BDF, Athanassiadou, & Johnson 2008 Log10 Density (g/cm³) -22 1.3 0.7 z (AU) -23 0.0 🄁 -24 -0.7 -1.3 -25۵,۵ 0.3 0.7 1.0 1.3 1.7 r (AU) time = 0.000 ps number of blocks = 240 AMR levels = 3

Now in 3-D!

-23

It's a squid! Athanassiadou et al in prep

Timestep 2 of 2

-25

Debris Delivery via Dust

Athanassiadou & BDF 11; Benitez+ 02; Fry, BDF, & Ellis 2015,2016

What if $d_{\rm SN} > 10~{\rm pc}$ $r_{\rm shock} > 1~{\rm AU}$? • gas-phase SN debris excluded from Earth

But SN radioisotopes all are refractory elements dust grains

SN1987A:

~100% (!) of Fe in dust after 20 years

SN dust reaches Earth even if gas does not

- dust decouples from gas at shocks
- radioisotope delivery efficiency set by dust survival fraction

Spitzer Space Telescope

I Declary and exclution at a d

Hubble Space Telescope (Optical)

The Smoking Gun: Radioactivity

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

Q: How would we know?

Need observable SN "fingerprint" Nuclear Signature

Stable nuclides: don't know came from SN
Live radioactive isotopes: none left on Earth If found, must come from SN!

60**Fe**
$$t_{1/2} = 2.6 \; {
m Myr}$$

also, e.g., ²⁶Al, ⁹⁷Tc, ²⁴⁴Pu?

Live Radioactivities and Nearby Supernovae

***** Supernova Explosions

the deaths of massive stars

*** Nearby Supernovae** a unique laboratory...and a unique threat

The Smoking Gun

supernova radioactivities on Earth

★ Geological Signatures telescopes probing prehistoric supernovae

Geological Signatures

Deep Ocean Crust

Knie et al. (1999) **ferromanganese (FeMn) crust** Pacific Ocean

growth: ~ 1 mm/Myr

AMS
$$\blacksquare$$
 live 60 Fe, $t_{1/2}=2.6~{
m Myr}$!

Expect: one radioactive layer

1999: ⁶⁰Fe in multiple layers!?
detectable signal exists
but not time-resolved

⁶⁰Fe Confirmation Knie et al (2004)

Explosion Distance

Ellis, BDF, Schramm 1996; BDF & Ellis 1999; BDF, Hochmut & Ellis 2005; Fry, BDF, & Ellis 2015

Observable: surface density/fluence: $N_{60, {
m obs}} \sim {M_{60, {
m eject}}\over D^2}$ Turn the problem around: "radioactivity distance" from ⁶⁰Fe yield

$$D\sim \sqrt{M_{60,{
m eject}}/N_{60,{
m obs}}}$$

⁶⁰Fe Suspects:

Whodunit?

Fry, BDF, & Ellis 2015

New Data, New Probes, New Sites

- **New crust data** Wallner+ 2016
 - consistency check
- **Cean sediment data** Ludwig+ 2016; Wallner+ 2016
 - faster growth rate ~ 1 mm/kyr
 - much improved time resolution
 - magnetic microfossils!
- **Lunar cores!** Fimiani+ 2016
 - ⁶⁰Fe excess over cosmic-ray production
- **Cosmic rays** Binns+ 2016
 - ⁶⁰Fe detected, requires local source

⁶⁰Fe Sample Sites

BEFORE ⁶⁰Fe data, first clear detection

8

★confirmation of ⁶⁰Fe crust signal at 2-3 Myr ★another signal at ~8 Myr? ...now confirmed

★⁶⁰Fe flux duration ~1 Myr ★far exceeds Sedov prediction!?! _{Fry+ 2015}

⁶⁰Fe Probes Supernova Dust

Fry, BDF, Ellis 2017; Fry, Ertel, Fields, Ellis 2017

- *⁶⁰Fe dust moves in magnetized SNR
- ***** decouples from blast
- reflected by shocked ISM fields
- *** bounces inside SNR**
- ★ timescale probes dust drag & sputtering!

Plutonium-244

Bishop talk; r-process sessions

- \star half-life $t_{1/2}(^{244}\mathrm{Pu})=80~\mathrm{Myr}$
 - gateway to mass extinctions
- ***** made in r-process
 - binary neutron star mergers: kilonovae!
 - a component from core-collapse SN?
- **★** detection would confirm:
 - (some) SN are r-process factories!
- *** Results:**
 - see Bishop talk!

CONCLUSION

THS IS ATHING new probe for astronomy,

astrophysics, geology, biology...

Neil de Grasse Tyson Cosmos Finale Episode

FeMn nodule!

The difference between

seeing nothing but a pebble and reading the history of the cosmos inscribed inside it

is Science.

Outlook

Live ⁶⁰Fe seen globally and on the Moon

- ★ signal in deep ocean crusts, nodules, sediments find
- confirmed pulse ~2-3 Myr ago
- * now strong evidence for pulse at ~7 Myr
- ★ ⁶⁰Fe pulse duration ~1 Myr ?!?
- * evidence for lunar signal—directionality?
- 244Pu detection announced
- Source of Local Bubble?

Birth of "Supernova Archaeology"

Convergence among disciplines: astro (nucleosynthesis, cosmic dust, stellar evolution, local bubble) beyond: geology, bio evolution, astrobiology Close similarities to SN injection model of presolar radioactivities

Future Research

200 nm

Congratulations

Shawn!

- Supernova(e) origin and direction
 - \star lunar distribution
 - ★ cosmic-ray anisotropies, ⁶⁰Fe excess
 - \star neutron star/pulsar correlation
 - \star dust production, evolution, dynamics
- more, different samples:
 - other isotopes (reactions and nucleosynthesis!)
 - e.g., ²⁶Al, ⁴¹Ca, ⁵³Mn, ^{97,98}Tc. Now also: ²⁴⁴Pu!!!
 - 🗸 other media (fossil bacteria)
 - other sites: back to the Moon!
- other epochs? Mass extinction correlations?
- stay tuned!

Aftermath: The Local Bubble

★ The Sun lives in region of hot, rarefied gas

- The Local Bubble
- hot cavity >50 pc buge

Nearby SN needed

- we live inside SN remains
- bubble requires >> 1 SN in past 10 Myr Smith & Cox 01
- ⁶⁰Fe from near star cluster? Benitez et al 02
- Bubble wall as source of ~1 Myr ⁶⁰Fe pulse width? Breitschwerdt+ 2016; 2017

A Near Miss?

Thomas+ 2016, Knie+ 2004, BDF+ 2005

- $d > d_{kill} \sim 10 \text{ pc}$...but barely: "near miss"
- TeV cosmic-ray boost: 20x muon irradiation
- **★**cosmic-ray winter?
- the second seco

If true:

implications for astrobiology tightens Galactic habitable zone

The Hits Keep Coming: Gamma-Ray Bursts

Melott, Thomas; Dermer & Holmes

- ★ Gamma-ray bursts also deliver intense ionizing radiation dose
 - tightly beamed
 - relativistic jet
 - ultra-high energy cosmic rays?

\star Ozone removal if Earth in beam

- kill radius ~ 1000 pc = 1 kpc
- but in-beam events rare
- ***** Net lethality ~ same as SN!

★ Nearest GRB candidate: eta Carinae

- distance: 2.3 kpc
- could explode as GRB-producing "hypernova"
- but non-lethal even if aimed at us Thomas et al 2008

Cosmic-Ray Corroboration?

The Moon!

Lunar Soil

- ★ consistency check for deepocean signal
- ★ but: nontrivial background: cosmic-ray activation of lunar regolith $CR + Ni \rightarrow {}^{60}Fe + \cdots$ $CR + Fe \rightarrow {}^{53}Mn + \cdots$

Fimiani+ 2016 PRL

- ★ ⁶⁰Fe excess in top layer of lunar drill core
- signal (surface density)
 consistent with deep ocean

radioactive ⁵³Mn abundance

Fry, BDF, Ellis 2015

Whodunit? The Moon as a Telescope

Fry, BDF, & Ellis (2016)

- *⁶⁰Fe dust grains nearly undeflected in Solar Systen
- *** Earth:**
 - stratosphere scrambles
- **Moon is airless:**
 - encodes direction!
 - ⁶⁰Fe pattern points to source!

Fry, BDF,

Ellis

2017

 $\Delta \theta = \Delta \phi = 10.0^{\circ}$, $\Delta t_{\text{signal}} = 351.0 \text{ kyr}$

(c)