Constraining neutron-capture reactions for the astrophysical r-process

Artemis Spyrou

MICHIGAN STATE UNIVERSITY

National Science Foundation Michigan State University

Overview

- R-process nucleosynthesis
- Neutron-star merger
- Kilonova

- Neutron-captures
- Beta-decay rates
- Neutron-γ competition
 - Experimental techniquesFRIB

National Science Foundation Michigan State University Credit: Erin O'Donnel, NSCL Artemis Spyrou, Trento 2018, Slide 2

Stellar Nucleosynthesis

National Science Foundation Michigan State University

B2FH 1957, Cameron 1957

The site of the r-process ???

Credit: Erin O'Donnell, MSU

Kasen et al, Nature 2017

Martinez-Pinedo et al. PRL 109, 251104 (2012)

National Science Foundation Michigan State University Core Collapse Supernova? (maybe ... require magnetorotation)

Neutron Star Merger?

r-process in neutron-star mergers

National Science Foundation Michigan State University

Made with SkyNet by Jonas Lippuner

r-process in neutron-star mergers

Nuclear Input for r-process

figure by M. Mumpower

National Science Foundation Michigan State University

R-process sensitivity to neutron-captures

S NSCL

National Science Foundation Michigan State University

Artemis Spyrou, Trento 2018, Slide 8

Liddick, Spyrou, et al., PRL 2016

Neutron-capture sensitivity

Michigan State University

Current (n,γ) measurements

National Science Foundation Michigan State University

Current (n,γ) measurements

National Science Foundation Michigan State University

Neutron capture reactions

- Variation of theoretical predictions using TALYS, changing NLD and γ SF
- Predictions diverge moving away from stability

S NSCL

National Science Foundation Michigan State University Calculations by G. Perdikakis, S. Nikas Central Michigan University Liddick, Spyrou, et al., PRL 2016

Indirect Techniques for (n,γ) reactions

Neutron Captures within the Statistical Model

Oslo method

National Science Foundation Michigan State University T.G. Tornyi, M. Guttormsen, et al., PRC2014

Traditional Oslo method

- Use reaction to populate the compound nucleus of interest
- > Measure excitation energy and γ -ray energy
- > Extract level density and γ -ray strength function (external normalizations)
- > Calculate "semi-experimental" (n, γ) cross section
- > Excellent agreement with measured (n, γ) reaction cross sections

• AFRODITE (Ge clovers) array + two 3.5" x 8" LaBr3 detectors from Oslo

National Science Foundation Michigan State University

Siem, Wiedeking, Larsen, Guttormsen, Wegner

Oslo method in inverse kinematics

Yield vs Resolution

new approach

- Populate the compound nucleus via β-decay (large Q-value far from stability)
- Spin selectivity correct for it
- \bullet Extract level density and $\gamma\text{-ray}$ strength function
- Advantage: Can reach (n,γ) reactions with beam intensity down to 1 pps.
- Need Total Absorption Spectroscopy

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

National Superconducting Cyclotron Lab

Experimental Setup

β -Oslo validation

Weak r-process measurements

National Science Foundation Michigan State University Liddick, Spyrou et al, PRL 2016 Spyrou et al., JPG 2017

First Results ^{69,70}Ni

The future of β -Oslo @ MSU

r-process in neutron-star mergers

The pandemonium effect

John Milton's "Paradise Lost

Small size – low efficiency detector

National Science Foundation Michigan State University

J.C. Hardy et al., Phys. Lett. B 71 (1977) 307.

The pandemonium effect: solution

John Milton's "Paradise Lost

Large size - high efficiency detector

Small size – low efficiency detector

The pandemonium effect in action

The pandemonium effect in action

% γ-ray emission

- Sensitivity study to identify important nuclei
- More measurements needed
- Impact on kilonova observations?

⁷⁰Co β-decay Intensity

National Science Foundation Michigan State University Tou, S.IV. Liddler, et al. Thys. Rev. Lett. 2010

⁷⁰Co β-decay Intensity

National Science Foundation Michigan State University ylou, S.N. Liddick, et al. Phys. Rev. Lett. 2010

⁷⁰Co β-decay Intensity

National Science Foundation Michigan State University A. Spyrou, S.N. Liddick, et al. Phys. Rev. Lett. 2016

⁷⁰Co β-decay Intensity

National Science Foundation Michigan State University Tou, S.N. Liddick, et al. *Phys. Rev. Lett.* 2010

γ emiss No entrone the one ptertition the shold

Artemis Spyrou, Trento 2018, Slide 36

 $(9/2^{+})$

 S_n

5

6

7

8

⁸⁸Br

 $\boldsymbol{\varrho}_{\scriptscriptstyle \mathsf{B}}$

9

National Science Foundation Michigan State University

Z=28	N=42

Z=28 N=41

 ^{69}Ni

National Science Foundation Michigan State University

Summary

- Nuclear Physics input is essential for understanding the r process
- β-Oslo: Indirect Technique to constrain neutron-capture reactions
- Kilonova: More data needed to interpret the observations
- Neutron-gamma competition how important is it?
- Future...

Facility for Rare Isotope Beams

National Science Foundation Michigan State University

FRIB Rates

Michigan State University

Collaboration

A.C. Larsen
M. Guttormsen
T. Renstrøm
S. Siem
L. Crespo-Campo

200

A. Couture S. Mosby M. Mumpower

D. L. Bleuel