
Primordial Nucleosynthesis after Planck: The Lithium Problem and Dark Matter

Brian Fields

Indirect Methods in Nuclear Astrophysics ECT* Trento, Nov 5 2018

Collaborators

Richard Cyburt

Nachiketa Chakraborty

Vasilis Spanos

Tiajana Prodanovic Tsung-Han Yeh 葉宗翰

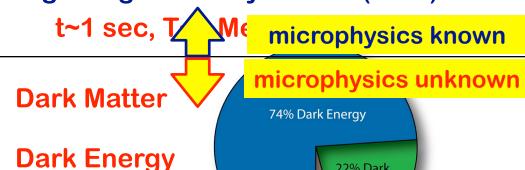
Charlie Young

Keith Olive

Chris Howk

John Ellis

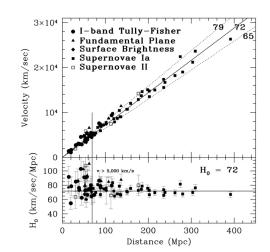
Big Bang Nuke After Planck

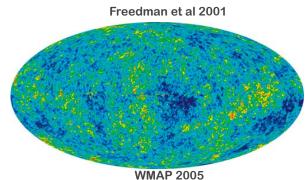

- ★ Nuclear Physics in the Early Universe
 - Cosmology
 - Big bang nuke (BBN) theory
 - Light element observations and cosmic baryons
- **★** Battle of the Baryons
 - Cosmic microwave background (CMB): a new baryometer
 - BBN vs CMB: particle dark dark matter beyond Standard Model
- ★ The Lithium Problem
 - ▶ ⁷Li+⁷Be disagreement: CMB vs astro observations
 - new nuclear physics? new particle physics?

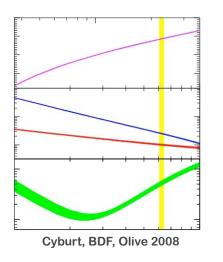
The Standard Cosmology: Hot Big Bang Model

Friedmann-Lemaitre-Robertson-Walker

Gravity = General Relativity Space: Homogeneous & Isotropic


- Expanding Universe
 t~14 Gyr; T~10⁻⁴ eV
- Cosmic Microwave Background (CMB)
 t~400,000 yr; T~1 eV atomic physics
- Big-Bang Nucleosynthesis (BBN)




22% Dark Matter

4% Atoms

Inflation

Cosmic Job Security: Precision Ignorance

Why does the dark matter weigh? apologies to Feynman what is it? how is it produced? how does it interact? what was its role in the early universe?

- Dark energy—who ordered that? apologies to Rabi is it related to dark matter? does it evolve with time? what was its role in the early universe?
- What sets $ho_{
 m baryon} \sim
 ho_{
 m matter} \sim
 ho_{\Lambda}$ today? compare: nuclear physics sets $ho_{
 m H} \sim
 ho_{
 m He}$

Big Bang Nucleosynthesis: A Symphony of Fundamental Forces

- BBN: unique arena
- all four fundamental forces participate
- BBN: unique testbed
 - probes all fundamental interactions

Standard BBN

- **Series Gravity = General Relativity**
- **Microphysics: Standard Model of Particle Physics**
 - $N_
 u=3$ neutrino species
 - $m_{\nu} \ll 1 \text{ MeV}$
 - Left handed neutrino couplings only
 - neutrinos non-degenerate: $ar{L}pproxar{P}$ and $ar{p}$
- **** Kinetic equilibrium: Maxwell-Bo**
- **** Dark Matter and Dark Energy**
 - Present (presumably) b
- Homogeneous U.
- Expansion adiabatic

$$\frac{n_{\rm B}}{n_{\gamma}} \sum_{\rm BBN}$$

 $\eta \propto
ho_{
m B,today} \propto \Omega_{
m B} h^2 \propto 1$

 $\left(\frac{\text{entropy}}{\text{baryon}}\right)^{-}$

Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae

Radiation dominates! $\gamma,\ e^{\pm},\ 3\nu\bar{\nu}$

Baryons p, n

(the only free parameter!)

tiny baryon-to-photon ratio (the only free parameter!)
$$\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$$

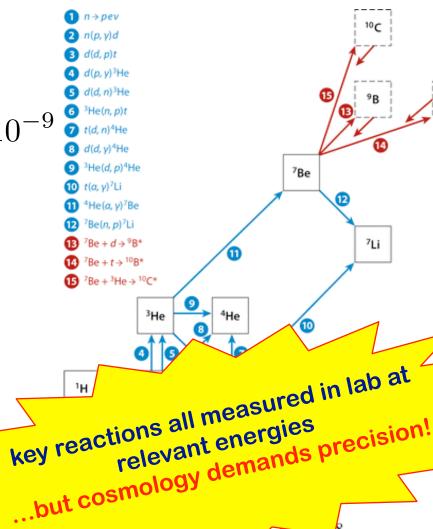
Initial Conditions: T >> 1 MeV, t<< 1 sec

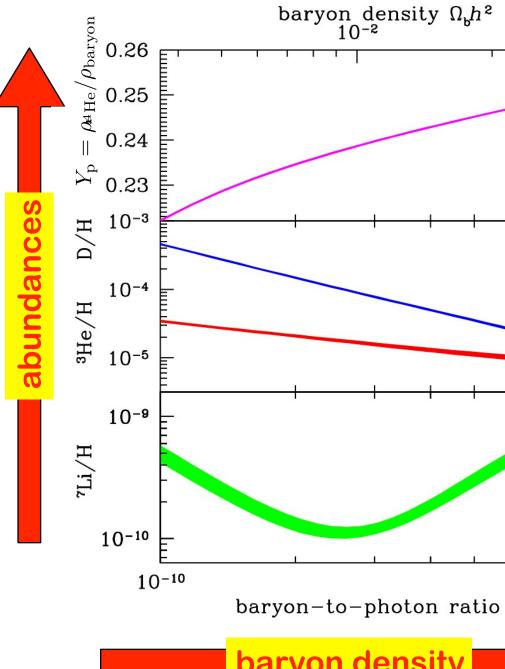
n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$

neutron-to-proton ratio:
$$n/p = e^{-(m_n - m_p)c^2/kT}$$

Weak Freezeout: T ~ 1 MeV, t~1 sec

$$\tau_{\text{weak}}(n \leftrightarrow p) > t_{\text{universe}}$$


$$\operatorname{fix}\left(\frac{n}{p}\right)_{\text{freeze}} \approx e^{-\Delta m/T_{\text{freeze}}} \sim \frac{1}{7}$$


Light Elements Born: T~0.07 MeV, t~3 min

reaction flow most stable light nucleus

essentially all n 4He, ~24% by mass

also: traces of D, 3He, 7Li

BBN Predictions

Curve Widths: Theoretical uncertainty nuclear cross sections

Cyburt, BDF, Olive, Yeh 2015 **Descouvement poster** Cyburt, BDF, Olive 2008 **Cyburt 2004** Coq et al 2004 Serpico et al 2005 Cyburt, BDF, Olive 2001 Krauss & Romanelli 1988 Smith, Kawano, Malaney 1993 Hata et al 1995 Copi, Schramm, Turner 1995 Nollett & Burles 2000

baryon density

BBN Observations: Light Element Abundances


The Problem

- Theoretical predictions: there and then
- Observations: here and now

The Solution

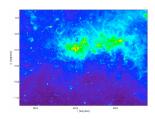
correct for post-BBN processing:

Metals $\Leftrightarrow \operatorname{stars} \ge 10 M_{\odot} \Leftrightarrow \text{"time"}$

Light Elements: Sites

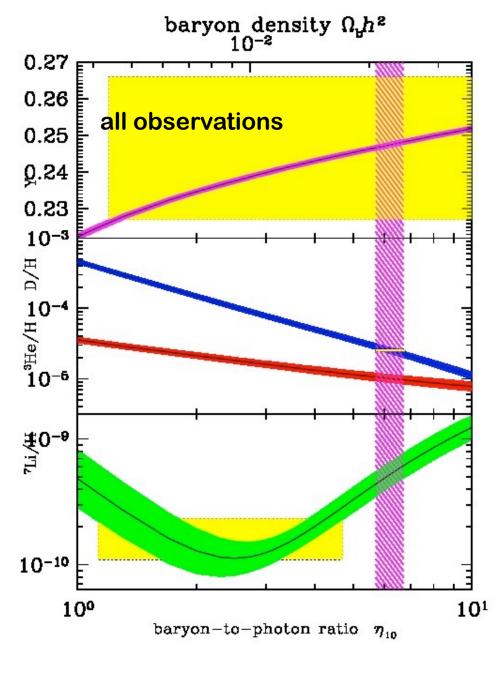
Deuterium

- QSO absorbers
- z~3, metals~0.01 solar
- New! leap in precision: Pettini+ 2013 Riemer-Sørensen+ poster


⁴He

- ionized gas (HII regions) in metal-poor galaxies
- New! CMB damping tail: SPT 2011,2012; Planck 2013

7Li


- metal-poor halo stars in Milky Way
- New! now also extragalactic observations

³He

- hyperfine in Milky Way HII regions Rood, Wilson, Bania+
- no low-metal data; not used for cosmology

Testing BBN: Light Element Observations

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, 4He, 7Li

Comparison:

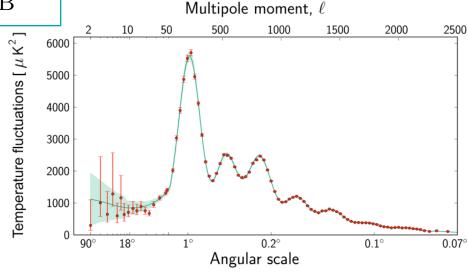
- **★**each nuclide selects baryon density
- ★overconstrained--nontrivial test!

Result:

- **★**rough concordance!
- ★ but not in detail! D and ⁷Li disagree

need a tiebreaker

The Cosmic Microwave Background: CMB A Powerful New Baryometer


CMB ΔT_{ℓ} independent measure of $~\Omega_{B}$

BBN vs CMB: fundamental test of cosmology

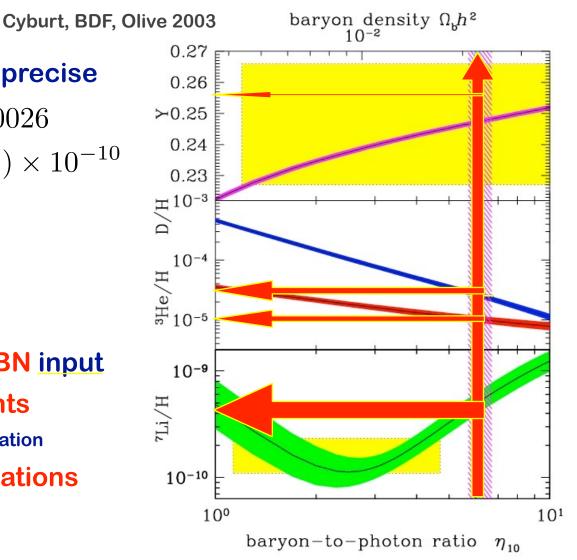
Planck Explorer:

$$\Omega_{\rm B} h_{100}^2 = 0.02218 \pm 0.00026$$

$$\eta = (6.078 \pm 0.071) \times 10^{-10}$$

Battle of the Baryons: II New World Order

Planck baryon density very precise


$$\Omega_{\rm B} h_{100}^2 = 0.02218 \pm 0.00026$$

$$\eta = (6.078 \pm 0.071) \times 10^{-10}$$

i.e., a 1% measurement!

New strategy to test BBN:

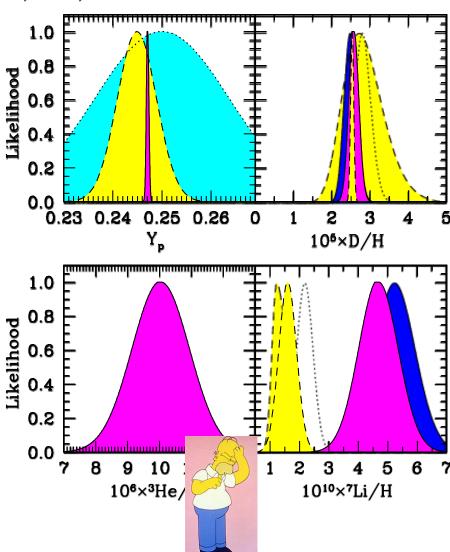
- \checkmark use Planck $\eta_{
 m cmb}$ as BBN input
- ✓ predict all lite elements
 with appropriate error propagation
- √ compare with observations

New! Improved!
Planck baryons
QSO D/H

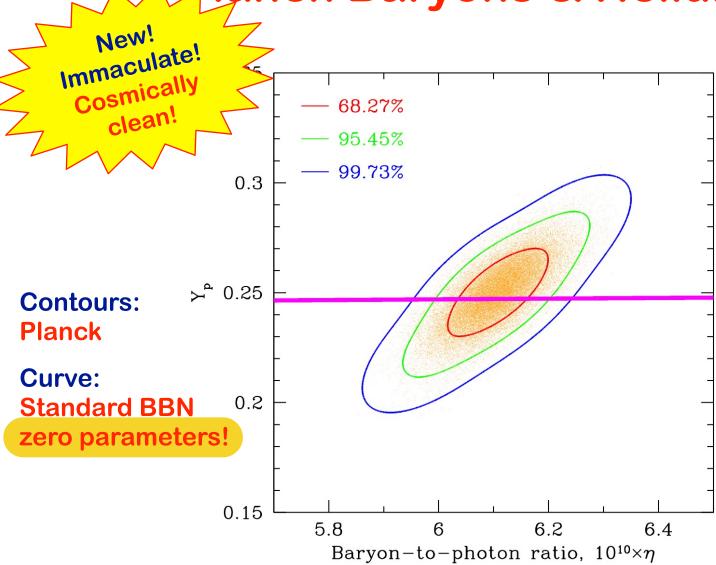
of the Baryons: II Closer Look

Cyburt, BDF, Olive 2003, 2008, 2015

Predict:

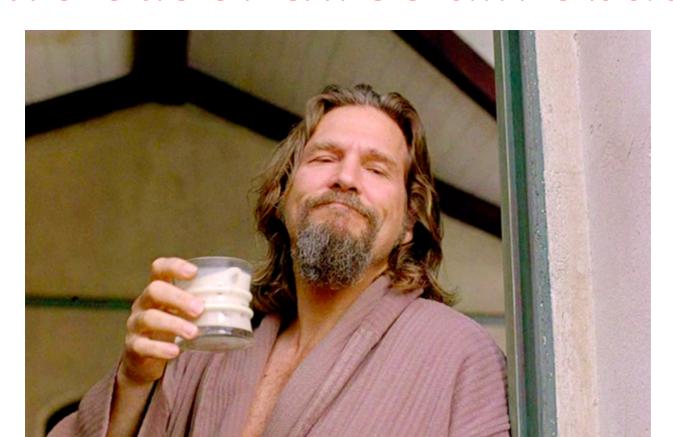

BBN theory: abundances vs η

WMAP^{η_{cmb}} BBN+CMB abundances (blue)


Compare with Observations (yellow)

Results:

- D agreement excellent: woo hoo!
- 7Li poor agreement:
 - observation ~ theory/4
 - 4-5 sigma discrepancy
 - Lithium Problem



Standard BBN Tested With CMB Only Planck Baryons & Helium!

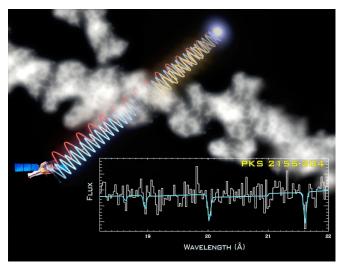
Lithium Strategy I: No Worries Two out of three ain't bad

Dark Matter

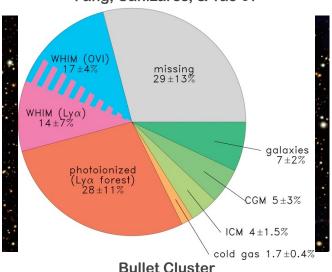
Pre-CMB Anisotropies:

BBN Dark Matter

WMAP finds:


- $\star \Omega_{\rm B} = 0.044 \pm 0.004$
- $\frac{\star}{\Omega_{\rm B}} = \frac{\rm matter}{\rm baryons} = 5.9 \pm 0.3$

Optical galaxy surveys implication limits by luminous matter


 $\star \Omega_{\rm lum} \sim 0.007$

Confirms & sharpens case for dark matter: two kinds!

Intergalactic gas absorbs QSO backlight Fang, Canizares, & Yao 07

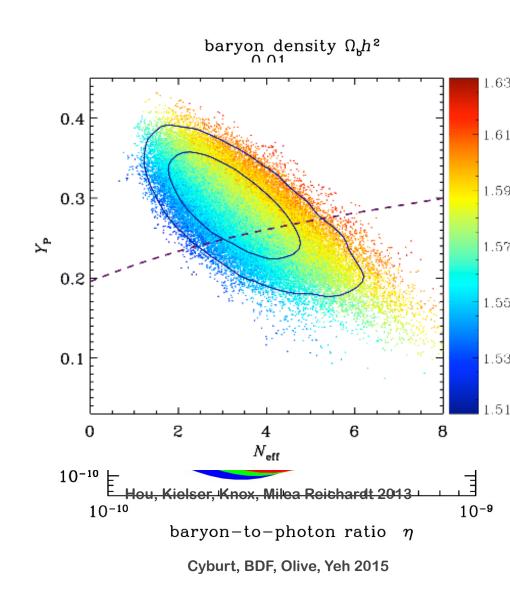
optical, X-raystharyons (red) to he in the property (blue)

BBN Beyond the Standard Model: Probing

Predicted Lite elements sensitive to expansion history during BBN

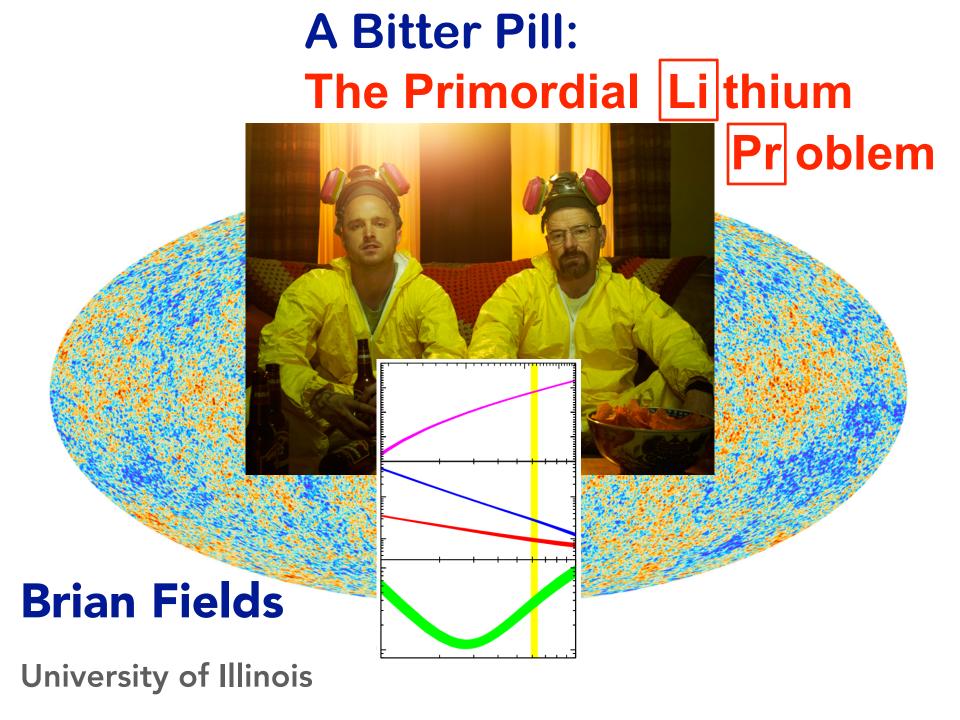
Rate
$$(\text{expansion})^2 = H^2 \sim G \rho_{\text{tot,rel}}$$

Controlled by


$$ho_{
m tot,rel} =
ho_{
m EM} + N_{
u,
m eff}
ho_{
uar{
u}}$$

Observed Lite Elements Constrain anything that

- ✓ Couples to gravity
- ✓ Perturbs relativistic energy dens Stiegman, Schramm, & Gunn 77

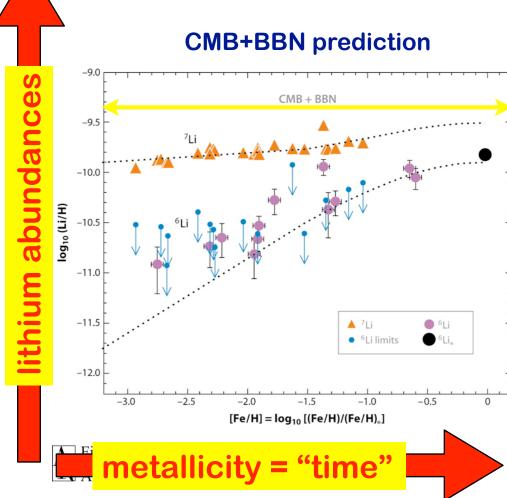

All light elements sensitive to $N_{\nu, {\rm eff}}$ New! D/H now an interesting probe 7Li shift right direction but small

New! CMB damping tail can probe al $\eta \ N_{\nu, {\rm eff}} ^4 {\rm He}$ clean test of BBN

Lithium Strategy II: Worry

Primordial Lithium

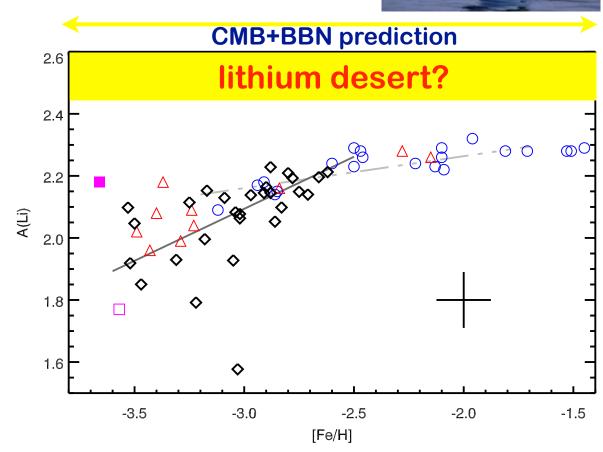
Observe in primitive (Pop II) stars


Li-Fe evolution

Plateau at low Fe Spite & Spite & Spite 82

- ★ down to [Fe/H]~-2.75
- const. abundance at early epochs
- ★ Li is primordial

But is the plateau at Li_p?


- Li_{Planck}/Li_{obs} ~ 4
- Why?

New! Nuclear

- Meltdown Shordone+ 2010
- huge increase in scatter at low [Fe/H]
- at least some stars efficiently eat lithium
- why does meltdown "turn on"?
- no points scatter up to BBN+CMB abundance

Hoyle's Revenge?

A Resonatingly Pretty Solution to Lithium?

Cyburt & Pospelov 20

- * 11 dominant BBN reaction already with studied
- \star no room for κ
- ★ but "sub-domina im; missed cf Hoyle state ip
- * prope

Chakraborty, B 2011

- * systemati sudy of all A destruction rxns
 - √ confirms ⁷Be+d ⇔ ⁹
 - ✓ even better: ³He+⁷Be→ ¹⁰C*
 t+⁷Be→ ¹⁰B*

Experiment Says: Not there!

¹⁰C*: Hammache+ 2013 ⁹Be*: O'Malley+ 2011

eso

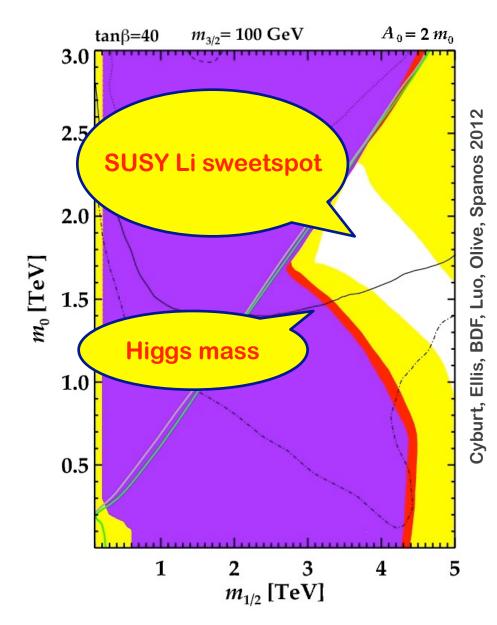
Could Lithium Be SUSY-licious?

If

- the world is supersymmetric
- and nonbaryonic dark matter is the lightest SUSY particle

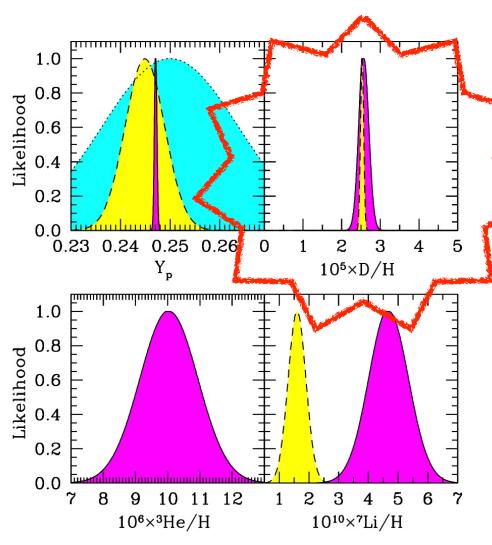
Then

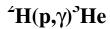
- In Early U: SUSY cascade
- next-to-lightest particle can be long-lived
- hadronic decays can erode ⁷Li, and fix Li problem Jedamzik
- if next-to-lightest particle charged, additional effects (catalysis!) make ⁶Li Pospelov, Cyburt etal,

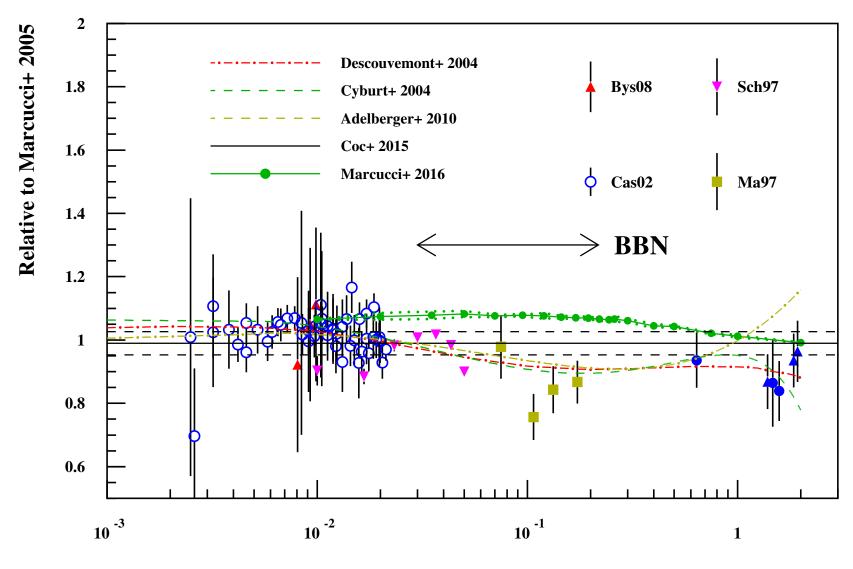

A SUSY solution to lithium problems?

New D/H removes much solution space

Also: Light elements are a strong SUSY probe


- √ rule out large regions of parameter space
- √ complementary to LHC


Illustrates tight links among nucleocosmo-astro-particle physics



Precision Cosmology Demands Precision Cross Sections

- D/H obs more precise than theory!
- Need ~1% absolute cross sections for
 - $d(p,g)^{3}He$
 - -d(d,p)t
 - $-d(d,n)^3He$

Pitrou, Col, Uzan, Vangioni 2018

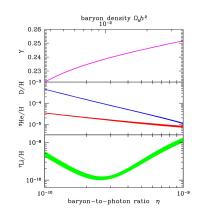
 E_{CM} (MeV)

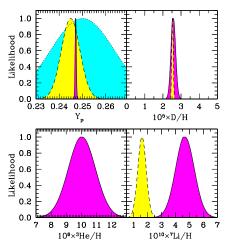
OUTLOOK

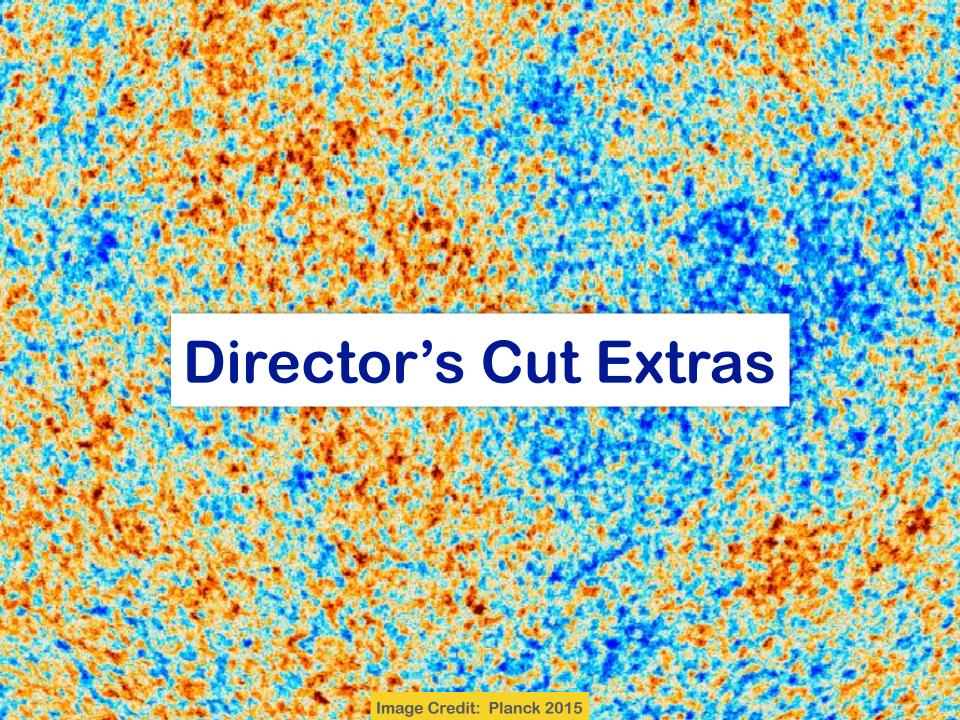
Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe


- basic concordance: big bang working to t~1 sec
- CMB alone now independently tests BBN!
- BBN + CMB powerfully probe new physics: dark matter, early Universe


The Lithium Problem: Planck+BBN >> Liobs

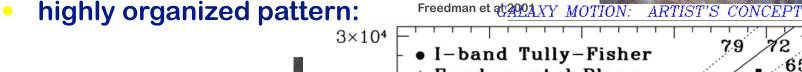

- problem has worsened since WMAP 2003
- astrophysics solutions possible but highly constrained
- nuclear physics precision needed: d(p,gamma)3He; 7Be(n,p)7Li
- new physics: SUSY? non-WIMP dark matter?

The Future:

- Even better CMB measurements (S4)
- New light element measures
- Closer interplay with dark matter & accelerator physics Stay Tuned!

The Standard Cosmology

Cosmodynamics

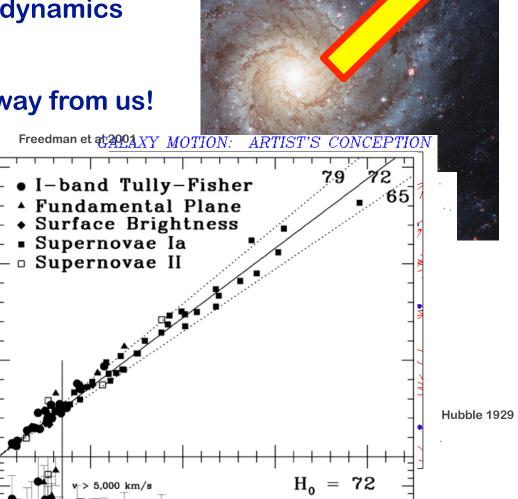

Space: Homogeneous & Isotropic

Think Big! Galaxies as building blocks

Edwin Hubble (1929): Cosmic dynamics

map velocity vs distance

result: ~all galaxies move away from us!


2×104

104

Interpretation:

speed distance

Universe is **EX**

Lithium Problem: Conventional Solutions

Astrophysical Systematics

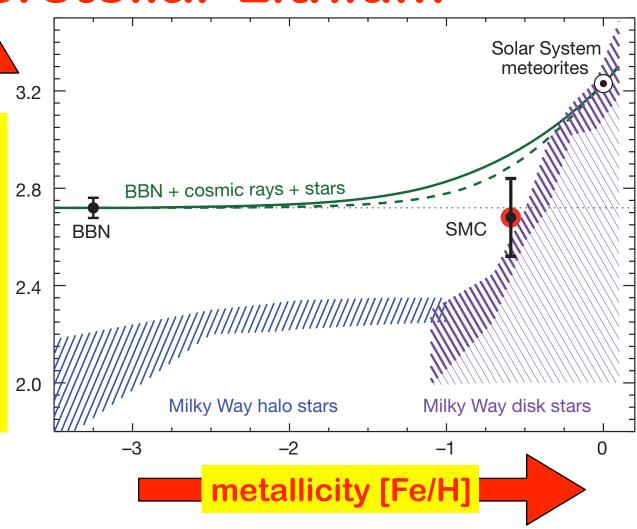
Scenario:

- data & theory correct,
- Li/H accurate portrait of stars today
- but not of initial Li/H

stellar depletion over ~10¹⁰ yr if Li burned: correct Li_p upward!

But:

- ★Li scatter small:
 - within observational errors for low metallicity
 - possible increase in scatter at very lowest metallicity
- **★**⁶Li apparently preserved
 - despite weaker binding, exponentially stronger destruction Brown & Schramm 1988, Stiegman et al 1993
- ★no stars seen close to BBN value


A New Lampost: Interstellar Lithium

- stellar lithium: measuring air quality outside factory
- try going to countryside!
 - interstellar medium of lowmetal galaxies
- proof of concept:
 - interstellar Li in SMC
 - metals ~ solar/4
 - VLT UVES

A New Lampost: Interstellar Lithium

- SMC Li/H is at BBN level!
- but fits MilkyWay stellartrend
- stellar effects must "turn on" at lower metallicities...

Howk, Lehner, BDF, & Mathews 2013

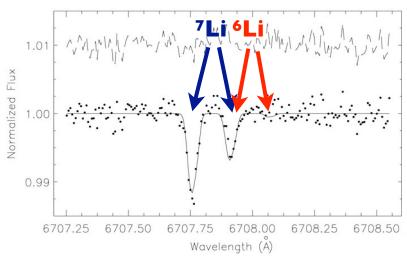
Lithium: Observables

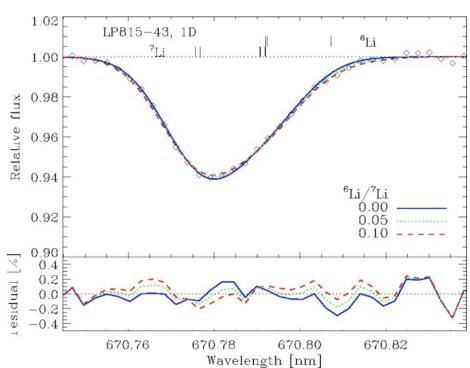
Good News

both $^7\mathrm{Li}$ and $^6\mathrm{Li}$ observable isotope shift $\lambda(^6\mathrm{Li}) > \lambda(^7\mathrm{Li})$ resolved in local interstellar medium (high-metallicity, cold gas) Knauth, Federman, Lambert 03

Bad News

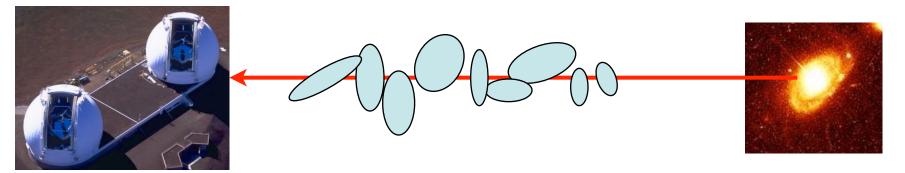
in stellar atmosphere: isotopes blend into one line $\delta \lambda_{\rm thermal} > \delta \lambda_{\rm isotope}$

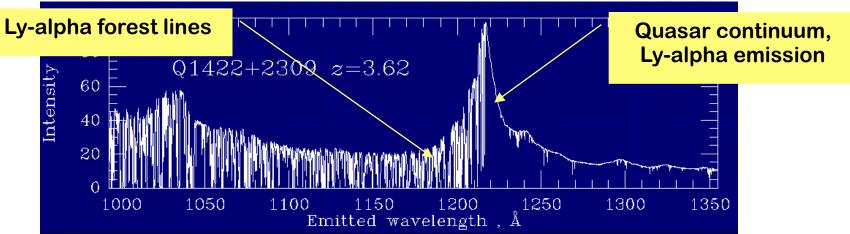

Strategy


high resolution stellar spectra:

elemental abundance Li = 7Li + 6Li

ultra-high resolution stellar spectra Smith Lambert Nissen; Asplund et al


lineshape gives isotopic ratio 6Li/7Li



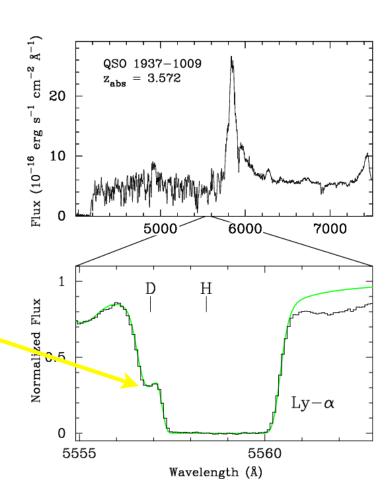
BBN Observations: Case Study Primordial Deuterium

- High-redshift quasar=light bulb
- Intervening H gas absorbs at ${
 m Ly} lpha(n=1
 ightarrow n=2)$
- Observed spectrum: Ly-alpha "forest"

Deuterium Data

Deuterium Ly-alpha shifted from H:

$$E_{\rm Ly\alpha} = \frac{1}{2}\alpha^2 \mu_{\rm reduced}$$


$$\frac{\delta \lambda_{\rm D}}{\lambda_{\rm D}} = -\frac{\delta \mu_{\rm D}}{\mu_{\rm D}} = -\frac{m_e}{2m_p}$$

$$c\delta z = 82 \text{ km/s}$$

Get D directly at high-z!

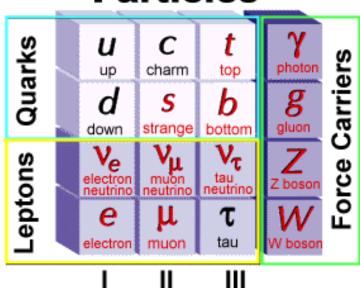
But:

- Hard to find good systems
- Don't resolve clouds
- Dispersion/systematics?

Tytler & Burles

Non-Baryonic Dark Matter: Neutrinos?

Required Dark Matter Properties


dark feeble interactions matter has mass present at t~14 Gyr stable inert @ BBN, recomb non-baryonic abundant: $\Omega_{\rm m} \simeq 0.3$

Consult Standard Model

neutrinos very promising!

- √ massive
- √ stable
- √ weakly interacting
- √ not quarks → not baryons

Elementary Particles

Three Families of Matter

Non-Baryonic Dark Matter: Neutrinos?

Neutrino densities today

• number: $n_{\nu} = \frac{3}{11} N_{\nu} n_{\gamma} \simeq 350 \text{ neutrinos cm}^{-3}$

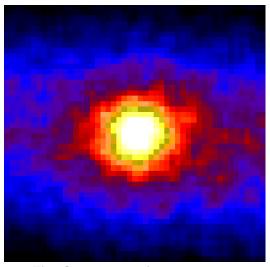
• mass: $ho_{
u} = \sum m_{
u} n_{
u}$

• cosmic contribution: $\Omega_{\nu} = \frac{\sum m_{\nu}}{46 \, \, \mathrm{eV}}$

All hangs on neutrino masses

...which we don't know

But we know enough: Smirnov, Pena-Garay lectures


mass differences (from oscillations)

 $m(\nu_e) \leq 2 \text{ eV}$ (from beta decays)

 $\sum m_{\nu} \le 2 \text{ eV}$ (from large-scale structure)

Total density contribution: $\Omega_{\nu} \leq 0.1~\Omega_{\rm m}$

Neutrinos are not the dark matter

The Sun, imaged in neutrinos SuperKamiokande

KamLAND Reactor Neutrino Detector

Lithium Problem: Conventional Solutions

I: Observational Systematics

Scenaro: Data &Standard Model correct inference of Li/H wrong

Measure: Li I =Li⁰ absorption line i.e., neutral Li atoms

But: in stellar atmospheres, mostly Li II =Li+1

Infer: $\frac{\text{Li}}{\text{H}} = \frac{\text{Li}^0 + \text{Li}^{+1}}{\text{H}} = \frac{\text{Li}^0 + \text{Li}^{+1}}{\text{Li}^0} \frac{\text{Li}^0}{\text{H}}$ ionization correction $\frac{\text{Li}^0 + \text{Li}^{+1}}{\text{Li}^0} \sim e^{\Phi(\text{Li}^+)/T_{eff}}$ exponentially sensitive to temperature $\textbf{T}_{eff} \text{ critical!}$

Needed error in stellar T scale ~500 K: large!

maybe possible: Melendez & Ramirez 04; BDF, Olive, Vangioni-Flam 05

but maybe not: Hosford et al 2009