Fluctuations Lattice meets experiment

A. Bzdak, VK, N. Strodthoff: arXiv:1607.07375 A. Bzdak, VK: arXiv:1707.02640

A. Bzdak, VK: arXiv:1810.01913

Phase diagram

Cumulants and phase structure

What we always see....

What it really means....

"T_c" ~ 160 MeV

Derivatives

How to measure derivatives

At
$$\mu = 0$$
:

$$Z = tr e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

$$\langle E \rangle = \frac{1}{Z} tr \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1/T} \ln(Z)$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left(-\frac{\partial}{\partial 1/T}\right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T}\right) \langle E \rangle$$

$$\langle (\delta E)^n \rangle = \left(-\frac{\partial}{\partial 1/T}\right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Simple model

Close to µ=0

$$F = F(r), \quad r = \sqrt{T^2 + a\mu^2}$$

a ~ curvature of critical line

$$\frac{\partial^2}{\partial \mu^2} F(T,\mu)|_{\mu=0} = \frac{a}{T} \frac{\partial}{\partial T} F(T,\mu=0) \sim \langle E \rangle$$
$$\frac{\partial^3}{\partial \mu^3} F(T,\mu)|_{\mu=0} = 3 \frac{a^3}{T} \left(T \frac{\partial^2}{\partial T^2} - \frac{\partial}{\partial T} \right) F(T,\mu=0)$$

Needs higher order cumulants (derivatives) at $\mu \sim 0$

Compare Data with Lattice QCD

Compare Data with Lattice QCD

Protons vs Baryons

Kitazawa and Asakawa, PRC85, 021901 (2012)

Possible to relate proton cumulants to baryon cumulants if fast isospin equilibration

$$\langle N_{\rm B}^{\rm (net)} \rangle = 2 \langle N_p^{\rm (net)} \rangle,$$
 (9)

$$\left\langle \left(\delta N_{\rm B}^{\rm (net)}\right)^2 \right\rangle = 4 \left\langle \left(\delta N_p^{\rm (net)}\right)^2 \right\rangle - 2 \left\langle N_p^{\rm (tot)} \right\rangle,\tag{10}$$

$$\left\langle \left(\delta N_{\rm B}^{\rm (net)}\right)^3 \right\rangle = 8 \left\langle \left(\delta N_p^{\rm (net)}\right)^3 \right\rangle - 12 \left\langle \delta N_p^{\rm (net)} \delta N_p^{\rm (tot)} \right\rangle + 6 \left\langle N_p^{\rm (net)} \right\rangle,$$
(11)

$$\langle \left(\delta N_{\rm B}^{\rm (net)}\right)^4 \rangle_c = 16 \langle \left(\delta N_p^{\rm (net)}\right)^4 \rangle_c - 48 \langle \left(\delta N_p^{\rm (net)}\right)^2 \delta N_p^{\rm (tot)} \rangle + 48 \langle \left(\delta N_p^{\rm (net)}\right)^2 \rangle + 12 \langle \left(\delta N_p^{\rm (tot)}\right)^2 \rangle - 26 \langle N_p^{\rm (tot)} \rangle,$$

$$(12)$$

Doable but in general

$$\frac{K_m^{(net-p)}}{K_n^{(net-p)}} \neq \frac{K_m^{(net-B)}}{K_n^{(net-B)}}$$

Compare Data with Lattice QCD

Example: "Charge" susceptibility

$$\chi_Q = \int d^3x < \rho(x)\rho(0) > = \int d^3p < \tilde{\rho}(p)\tilde{\rho}(0) >$$

Equivalence of *Integrated* coordinate space and momentum space correlation function

Experiment almost never integrates ALL of momentum space!

Lattice (hopefully) does integrate over all coordinate space

Correlations: Lattice vs Data

$$\langle n(y_1)(n(y_2)-\delta(y_1-y_2))\rangle = \langle n(y_1)\rangle\langle n(y_2)\rangle(1+C(y_1,y_2))$$

 $C(y_1, y_2) \sim \exp(\frac{-(y_1 - y_2)^2}{2\sigma^2})$

$$\frac{\langle (\delta N)^2 \rangle}{\langle N \rangle} = 1 + \langle N \rangle \int_{\Delta/2}^{\Delta/2} C(y 1, y 2) dy 1 dy_2$$

"Lattice result"

Any comparison of Lattice to Data needs to assure that cumulants reach asymptotic value in experiment.

So far this has NOT ben established for proton cumulants

Long range correlations

Large correlation length ($\sigma_Y >> \Delta Y=1$): $K_n = K_n (\langle N \rangle)$

STAR data at 7.7 GeV consistent with $\sigma_Y >> 1$

Net-baryon multiplicity distribution

Utilize of cluster expansion model of Vovchenko et al arXiv:1711.01261

Virial expansion:

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln(Z) = \sum_{k=0}^{\infty} p_k(T) \cosh(k\hat{\mu}_B)$$

$$p_k = f(p_1, p_2); \ k > 2$$

Cluster model: Lattice QCD:

Vovchenko et al, arXiv:1708.02852

Net-baryon multiplicity distribution

Virial expansion:
$$\frac{P}{T^4} = \frac{1}{VT^3} \ln(Z) = \sum_{k=0}^{\infty} p_k(T) \cosh(k\hat{\mu}_B)$$

$$Z = \exp\left[VT^3 \sum_{k=0}^{\infty} p_k(T) \cosh(k\hat{\mu}_B)\right] = z_0 + 2\sum_{\mathcal{N}=1}^{\infty} z_{\mathcal{N}} \cosh(\mathcal{N}\hat{\mu}_B)$$

Multiplicity distribution:

$$P(\mathcal{N}) = \frac{z_{\mathcal{N}} e^{\hat{\mu}_B \mathcal{N}}}{Z}$$

 $\hat{\mu}_B \to i\bar{\mu}_B$

$$P(\mathcal{N}) = \frac{1}{\pi} \int_0^{\pi} d\bar{\mu}_B \, \cos(\mathcal{N}\bar{\mu}_B) \, \frac{\exp\left[VT^3 \sum_{k=1}^{\infty} p_k(T) \cos\left(k\bar{\mu}_B\right)\right]}{\exp\left[VT^3 \sum_{k=1}^{\infty} p_k(T)\right]} \qquad \hat{\mu}_B = 0$$

LHC

Summary

- Fluctuations sensitive to phase structure: - measure "derivatives" of EOS
- Cumulants contain information about correlations
- Comparison with Lattice require some care
- Net-baryon number distribution consistent with lattice
 - Deviation from Skellam is very small!
 - Measuring chiral criticality likely difficult

Thank You

Cumulants of (Baryon) Number

$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N - \langle N \rangle \rangle^3$$

Cumulants scale with volume (extensive): $K_n \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios:
$$\frac{K_2}{\langle N \rangle}, \frac{K_3}{K_2}, \frac{K_4}{K_2}$$

Preliminary Star data are consistent with long range correlations

7.7 GeV central 19.6 GeV central