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Fluctuations/correlations as possible interesting signatures for a CeP or phase transition

From STAR and HADES (preliminary)
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Thermodynamic calculations highlight the importance of nuclear interactions for the proper
description of cumulant ratios at low beam energies.

Van der Waals model for nuclear interaction.
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Thermodynamic calculations highlight the importance of nuclear interactions for the proper
description of cumulant ratios at low beam energies.

Van der Waals model for nuclear interaction. i
180 deconfined phase.

VDW-HRG

Xso/Xoo £Or Ty =165 MeV
Xa /X, for Ty; =165 MeV

Susceptibility Ratios
.
[T ¢

0 d
0O 100 200 300 400 500 600 700 800 900 1000
uB (M eV) 10 100

Vsyy (Gev)
V. Vovchenko, M. |. Gorenstein and H. Stoecker, Phys. Rev. Lett. 118, no. 18,

182301 (2017) 2o17)

T

Including another sharp crossover to a
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Question:

Can we see the effect of nuclear interactions, on the cumulant ratios, also in a transport
simulation?
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Question:

Can we see the effect of nuclear interactions, on the cumulant ratios, also in a transport
simulation?

o Finite size and lifetime.
e Exact and local conservation of all charges (B,S,Q).
o Cascade Mode: Only 24> 2,2+« 1,2 — N and 1 — N interactions allowed.

Scattering according to geometrical interpretation of cross hadronic cross sections.

@ Include nuclear potentials.
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Introducing Potentials

To include nuclear interactions
Each hadron is represented by a Gaussian wave packet in phase space. The time evolution of
the centroids (r; and p;) of the Gaussians obey Hamilton's equations,

. O(H) . OH)
ri = Tpiapi = _Tri' (1)

Here (H) is the total Hamiltonian function of the system, it consists of the kinetic energy of
the particles and the effective interaction potential energy.

0l
U=« <pp0> + B <pp0> + timd 1112[1 + amd(pi - pj)ﬂ%' (2)
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Results for HADES beam energy

@ Run simulations for Au+Au collisions at a
fixed target beam energy of Ei,, = 1.27 A
GeV.
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Results for HADES beam energy

@ Run simulations for Au+Au collisions at a
fixed target beam energy of Ei,, = 1.27 A
GeV.

@ Constrain b=0 to avoid large volume
fluctuations.

@ Use HADES pr acceptance
0.4 < pp < 1.6 GeV.

@ Compare cascade baseline with simulation
with potentials.

@ Results will be shown as function of Ay, a
symmetric rapidity window around the

center of mass rapidity.

JS, Y. Wang, A. Mukherjee, Y. Ye, C. Guo, Q. Li and H. Stoecker,
Phys. Lett. B 785, 40 (2018)
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What to expect as function of beam energy?

@ Just follow the chemical FO curve +.

@ These are GC values. Not directly
comparable with finite acceptance.
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What to expect as function of beam energy?
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What to expect as function of beam energy?

@ Just follow the chemical FO curve +.

@ These are GC values. Not directly
comparable with finite acceptance.

@ Large spread of possible values from the
VdW-HRG model.

@ Caveat: How reliable is the freeze out
curve at such low beam energies?
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Use trajectories from the transport model (JAM)

Trajectories estimates

@ Use the transport models to estimate the
trajectories in the VdW-HRG (Nuclear)
phase diagram.
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Use trajectories from the transport model (JAM)

Trajectories estimates Quaw model
@ Use the transport models to estimate the A e - 10AGeV] |
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Use trajectories from the transport model (JAM)
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Trajectories estimates

@ Use the transport models to estimate the
trajectories in the VdW-HRG (Nuclear)
phase diagram.
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Use trajectories from the transport model (JAM)
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Results from UrQMD and JAM -All baryons

What do the transport models say

@ Only calculate Cy/Cy and C3/C5 due to
limited statistics.

@ Small rapidity window to avoid effects
from conservation.
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Results from UrQMD and JAM -All baryons

What do the transport models say

@ Only calculate C5/Cy and C3/C5 due to S e
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@ A clear peak shows up in 'All Baryons’ at .
500 MeV.
. . %03 0.1 1 10
@ Small model dependence in peak position E.[A GeV]
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Results from UrQMD and JAM -All baryons
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Results from UrQMD and JAM -Protons
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Discussion

o Effect of clusters need to ba taken into account (can remove the signal), or all protons
need to be counted
@ Since it is a finite size system it is not really the critical point, but maybe a remnant.

@ Cancellation of attractive and repulsive forces.
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Discussion

o Effect of clusters need to ba taken into account (can remove the signal), or all protons
need to be counted

@ Since it is a finite size system it is not really the critical point, but maybe a remnant.

@ Cancellation of attractive and repulsive forces.

@ Same energy as maximum of squeeze-out — soft EoS?

@ Food for thought.
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Backup

] 2Evolution of cumulant ratios for all baryons (Jy,|<0.1)
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