







# Dynamical description of strongly interacting matter at finite temperature and baryon-chemical potential

Elena Bratkovskaya for the PHSD group

(GSI Darmstadt & Uni. Frankfurt)



Observables of Hadronization and the QCD Phase Diagram in the Cross-over Domain, ECT\*, Trento, 15 - 19 October 2018



## The ,holy grail' of heavy-ion physics:



2



## **Theory: Information from lattice QCD**



□ Scalar quark condensate  $\langle q \overline{q} \rangle$  is viewed as an order parameter for the restoration of chiral symmetry:  $\langle \overline{q}q \rangle = \begin{cases} \neq 0 & \text{chiral non-symmetric phase;} \\ = 0 & \text{chiral symmetric phase.} \end{cases}$ 

 $\rightarrow$  both transitions occur at about the same temperature T<sub>c</sub> for low chemical potentials



## **Degrees-of-freedom of QGP**



- weakly interacting system
- massless quarks and gluons



- Thermal QCD
- = QCD at high parton densities:
- strongly interacting system
- massive quarks and gluons
- ➔ quasiparticles
- = effective degrees-of-freedom

#### ✤ How to learn about degrees-of-freedom of QGP ? → HIC experiments



**DQPM** describes **QCD** properties in terms of **,resummed' single-particle Green's functions** (propagators) – in the sense of a two-particle irreducible (2PI) approach:

gluon propagator:  $\Delta^{-1} = P^2 - \Pi$  & quark propagator  $S_a^{-1} = P^2 - \Sigma_a$ 

gluon self-energy:  $\Pi = M_g^2 - i2\gamma_g \omega$  & quark self-energy:  $\Sigma_q = M_q^2 - i2\gamma_q \omega$ 

(scalar approximation)

- the resummed properties are specified by complex (retarded) self-energies:
- the real part of self-energies ( $\Sigma_q$ ,  $\Pi$ ) describes a dynamically generated mass ( $M_q$ ,  $M_g$ );
- the imaginary part describes the interaction width of partons ( $\gamma_q$ ,  $\gamma_g$ )
- Spectral functions :  $A_q \sim ImS_q^{ret}$ ,  $A_g \sim Im\Delta^{ret}$
- Entropy density of interacting bosons and fermions in the quasiparticle limit (2PI) (G. Baym 1998):

$$s^{dqp} = -d_g \int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \frac{\partial n_B}{\partial T} (\operatorname{Im}\ln(-\Delta^{-1}) + \operatorname{Im}\Pi\operatorname{Re}\Delta) \qquad \text{gluons}$$
$$-d_q \int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \frac{\partial n_F((\omega - \mu_q)/T)}{\partial T} (\operatorname{Im}\ln(-S_q^{-1}) + \operatorname{Im}\Sigma_q\operatorname{Re}S_q) \quad \text{quarks}$$
$$-d_{\bar{q}} \int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \frac{\partial n_F((\omega + \mu_q)/T)}{\partial T} (\operatorname{Im}\ln(-S_{\bar{q}}^{-1}) + \operatorname{Im}\Sigma_{\bar{q}}\operatorname{Re}S_{\bar{q}}) \quad \text{antiquarks}$$

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007) 5







## **DQPM(T):** properties of quasiparticles

**<u>Properties</u>** of interacting quasi-particles: massive quarks and gluons (g, q, q<sub>bar</sub>) with Lorentzian spectral functions :

$$egin{aligned} \mathcal{A}(\omega,oldsymbol{p}) &= rac{\gamma}{E} \left( rac{1}{(\omega-E)^2+\gamma^2} - rac{1}{(\omega+E)^2+\gamma^2} 
ight) \ &E^2 &= p^2 + M^2 - \gamma^2 \end{aligned}$$

• Modeling of the quark/gluon masses and widths  $\rightarrow$  HTL limit at high T

masses: 
$$m_g^2 = \frac{g^2}{6} \left( N_c + \frac{1}{2} N_f \right) T^2$$
,  $m_q^2 = g^2 \frac{N_c^2 - 1}{8N_c} T^2$   
widths:  $\gamma_g = \frac{1}{3} N_c \frac{g^2 T}{8\pi} \ln\left(\frac{2c}{g^2} + 1\right)$ ,  $\gamma_q = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2 T}{8\pi} \ln\left(\frac{2c}{g^2} + 1\right)$   
• running coupling (pure glue):  
 $\alpha_s(T) = \frac{g^2(T)}{4\pi} = \frac{12\pi}{(11N_c - 2N_f) \ln[\lambda^2(T/T_c - T_s/T_c)^2]}$   
• fit to lattice (IQCD) results (e.g. entropy density)  
with 3 parameters:  $T_s/T_c=0.46$ ; c=28.8;  $\lambda=2.42$  (for pure glue N\_r=0)  
Peshier, Cassing, PRL 94 (2005) 172301;  
Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

7



## **DQPM** at finite T and $\mu_{\alpha}$ =0



8

## Traces of the QGP in observables in high energy heavy-ion collisions





http://theory.gsi.de/~ebratkov/phsd-project/PHSD/index1.html





## **Parton-Hadron-String-Dynamics (PHSD)**

□ Initial A+A collisions : N+N → string formation → decay to pre-hadrons

 □ Formation of QGP stage if ε > ε<sub>critical</sub> : dissolution of pre-hadrons → (DQPM) →
 → massive quarks/gluons + mean-field potential U<sub>q</sub>

#### Partonic stage – QGP : based on the Dynamical Quasi-Particle Model (DQPM)

• (quasi-) elastic collisions:  $q+q \rightarrow q+q$   $g+q \rightarrow g+q$  q-q  $q+\overline{q} \rightarrow q+\overline{q}$   $g+\overline{q} \rightarrow g+\overline{q}$  q-q $\overline{q}+\overline{q} \rightarrow q+\overline{q}$   $g+g \rightarrow g+\overline{q}$  g-q

## • inelastic collisions: $q + \overline{q} \rightarrow g$ $q + \overline{q} \rightarrow g + g$ $g \rightarrow q + \overline{q}$ $g \rightarrow g + g$



LUND string mod



## ■ Hadronization (based on DQPM): $g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ (or 'string ')$ $q + q + q \leftrightarrow baryon \ (or 'string ')$



#### □ Hadronic phase: hadron-hadron interactions – off-shell HSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 11



#### Time evolution of the partonic energy fraction vs energy



□ Strong increase of partonic phase with energy from AGS to RHIC

SPS: Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading partons
 RHIC: Au+Au, 21.3 A TeV: up to 90% - QGP

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 V. Konchakovski et al., Phys. Rev. C 85 (2012) 011902





#### **Central Pb + Pb at SPS energies**

#### **Central Au+Au at RHIC**



■ PHSD gives harder m<sub>T</sub> spectra and works better than HSD (wo QGP) at high energies
– RHIC, SPS (and top FAIR, NICA)

□ however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

## Elliptic flow v<sub>2</sub> vs. collision energy for Au+Au



PHS

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$
$$v_n = \left\langle\cos n(\varphi - \psi_n)\right\rangle, \quad n = 1, 2, 3...,$$



•  $v_2$  in PHSD is larger than in HSD due to the repulsive scalar mean-field potential  $U_s(\rho)$  for partons

#### v<sub>2</sub> grows with bombarding energy due to the increase of the parton fraction

V. Konchakovski, E. Bratkovskaya, W. Cassing, V. Toneev, V. Voronyuk, Phys. Rev. C 85 (2012) 011902

X

# Extended DQPM (T, µ<sub>q</sub>)





## **DQPM** at finite (T, $\mu_q$ ): scaling hypothesis

 $\kappa_{DOPM} \approx 0.0122$ 

□ Scaling hypothesis for the effective temperature T\*

for  $N_f = N_c = 3$  $\mu_u = \mu_d = \mu_s = \mu_q$ 

$$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$

**Coupling constant:** 

 $g(T/T_c(\mu=0)) \longrightarrow g(T^*/T_c(\mu))$ 

□ Critical temperature  $T_c(\mu_q)$ : obtained by requiring a constant energy density  $\varepsilon$ for the system at  $T=T_c(\mu_q)$  where  $\varepsilon$  at  $T_c(\mu_q=0)=158$  GeV is fixed by IQCD at  $\mu_q=0$ 

$$\frac{T_c(\mu_q)}{T_c(\mu_q=0)} = \sqrt{1-\alpha \ \mu_q^2} \approx 1-\alpha/2 \ \mu_q^2 + \cdots$$



Jana Guenther

 $\alpha \approx 8.79 \text{ GeV}^{-2}$ 

**!** Consistent with lattice QCD:

IQCD: C. Bonati et al., PRC90 (2014) 114025

 $\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \cdots$ 

**IQCD**  $\kappa = 0.013(2)$  -

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

### From the talk of Christian Schmidt

Curvature of the crossover line is small ....

• 
$$\frac{T_c(\mu_B)}{T_0} = 1 - \kappa_2 \left(\frac{\mu_B}{T_0}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_0}\right)^4 + \mathcal{O}(\mu_B^6)$$

• 
$$\kappa_2 = 0.0123 \pm 0.003$$

• 
$$\kappa_4 = 0.000131 \pm 0.0041$$

ightarrow No indication for critical point, limit:  $\mu_B^{
m CEP} > 400 {
m MeV}$ 



# **DQPM** at finite (T, $\mu_q$ ): quasiparticle masses and widths

#### **Coupling constant:**

$$g^{2}(T^{\star}/T_{c}(\mu_{q})) = \frac{48\pi^{2}}{(11N_{c}-2N_{f})\ln\left(\lambda^{2}(\frac{T^{\star}}{T_{c}(\mu_{q})}-\frac{T_{s}}{T_{c}(\mu_{q})})^{2}\right)}$$

#### Quark and gluon masses:

$$M_g^2(T^*,\mu_q) = \frac{g^2(T^*/T_c(\mu_q))}{6} (N_c + \frac{1}{2}N_f) T^{*2},$$
$$M_q^2(T^*,\mu_q) = \frac{N_c^2 - 1}{8N_c} g^2(T^*/T_c(\mu_q)) T^{*2},$$

#### **Quark and gluon widths:**

$$\gamma_g(T,\mu_q) = \frac{1}{3} N_c \frac{g^2(T^*/T_c(\mu_q))}{8\pi} T \ln\left(\frac{2c}{g^2(T^*/T_c(\mu_q))} + 1\right),$$
  
$$\gamma_q(T,\mu_q) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T^*/T_c(\mu_q))}{8\pi} T \ln\left(\frac{2c}{g^2(T^*/T_c(\mu_q))} + 1\right)$$





#### Entropy density, energy density, pressure at finite T



19



## DQPM: q, qbar, g elastic/inelastic scattering (leading order)



## Leading order cross sections in DQPM(Τ, μ<sub>q</sub>)



• Off-shell effects of the partons are important!

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,



□ Interaction rates of partons, *i* =q, qbar, g

by Pierre Moreau

$$\Gamma_{i}(T,\mu_{q}) = \frac{1}{n_{i}^{\text{off}}(T,\mu_{q})} \int_{0}^{\infty} \frac{4\pi \ p_{i}^{2} \ dp_{i}}{(2\pi)^{3}} \int_{0}^{\infty} \frac{d\omega_{i}}{2\pi} \ 2\omega_{i} \ \rho_{i} \ g_{i} \ f_{i} \ \Gamma_{i}(\omega_{i},p_{i},T,\mu_{q}).$$

$$\underline{\Gamma_{i}(E_{i},p_{i},T,\mu_{q})} = \frac{1}{2E_{i}} \sum_{j=q,\bar{q},g} \int \frac{d^{4}p_{j}}{(2\pi)^{4}} \ g_{j} \ f_{j} \ \theta(\omega_{j}) \ \rho_{j} \int \frac{d^{4}p_{3}}{(2\pi)^{4}} \ \theta(\omega_{3}) \ \rho_{3} \int \frac{d^{4}p_{4}}{(2\pi)^{4}} \ \theta(\omega_{4}) \ \rho_{4}$$

$$(1 \pm f_{3})(1 \pm f_{4}) \ |\overline{\mathcal{M}}|^{2}(p_{i},p_{j},p_{3},p_{4}) \ (2\pi)^{4}\delta^{(4)}(p_{i}+p_{j}-p_{3}-p_{4}), \quad (B.34)$$

$$= \sum_{j=q,\bar{q},g} \int \frac{d^{4}p_{j}}{(2\pi)^{4}} \ g_{j} \ f_{j} \ \theta(\omega_{j}) \ \rho_{j} \ v_{\text{rel}} \int d\sigma_{ij\rightarrow 44}^{\text{off}} (1 \pm f_{3})(1 \pm f_{4}), \quad (B.35)$$
Example: gluons
$$n_{i}^{\text{off}}(T,\mu_{q}) = \int_{0}^{\infty} \frac{4\pi \ p_{i}^{2} \ dp_{i}}{(2\pi)^{3}} \int_{0}^{\infty} \frac{d\omega_{i}}{2\pi} \ 2\omega_{i} \ \rho_{i} \ g_{i} \ f_{i}$$
the initial width is recovered !
$$\Rightarrow \text{DQPM is already self-consistent!}$$



#### **Baryon number density** $n_B$ , susceptibilities $\chi_q$ at finite (T, $\mu$ )

$$\chi_q(T) = \frac{\partial n_q}{\partial \mu_q}\Big|_{\mu_q=0}; \qquad \chi_q(T,\mu_q) = \frac{1}{9} \frac{\partial n_B}{\partial \mu_B}.$$

for 3 flavours with  $\mu_u = \mu_d = \mu_s = \mu_q$ 

$$\chi_2(T) = \frac{1}{9} \left. \frac{1}{T^2} \frac{\partial n_q(T, \mu_q)}{\partial \mu_q} \right|_{\mu_q = 0} = \frac{1}{9} \left. \frac{\chi_q(T)}{T^2} \right|_{\mu_q = 0}$$

1.75 B=400 MeV, IQCD 0.30 1.50 =400 MeV, DOPM B=100 MeV, IQCD 0.25  $\mu_B = 100 \text{ MeV}, \text{ DQPM}$ 1.25 ∿ູµ<sub>Β</sub> =400 ΜἀV μ<sub>B</sub> =0 0.20  $n_B/T^3$ X2 0.15 0.75 IQCD,  $N_f=3$ DQPM,  $N_f=3$ 0.10 0.50  $\mu_B = 100 \text{ MeV}$ 0.05 0.25  $\substack{0.00-\\100}$ 0.00 150 250 300 350 400 200 200 300 450 100 400 500 T [MeV] T [MeV]

 $_{\odot}$  Comparison to IQCD :  $n_{B},\,\chi_{q}$  from DQPM is lower then IQCD data

o Quarks / gluons from DQPM are too heavy?

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

# **DQPM\* (Τ**, μ<sub>q</sub>,**p**)



## **DQPM\*** at finite (T, $\mu_{q}$ , p): quasiparticle masses and widths

Momentum-dependent Lorentzian spectral function : H. Berrehrah et al, PRC 93 (2016) 044914, arXiv:1512.06909; Int.J.Mod.Phys. E25 (2016) 1642003, arXiv:1605.02371

$$\begin{split} \rho_i(\omega, \boldsymbol{p}) &= \frac{\gamma_i(\boldsymbol{p})}{\tilde{E}_i(\boldsymbol{p})} \left( \frac{1}{(\omega - \tilde{E}_i(\boldsymbol{p}))^2 + \gamma_i^2(\boldsymbol{p})} - \frac{1}{(\omega + \tilde{E}_i(\boldsymbol{p}))^2 + \gamma_i^2(\boldsymbol{p})} \right) \\ \tilde{E}_i^2(\boldsymbol{p}) &= \boldsymbol{p}^2 + M_i^2(\boldsymbol{p}) - \gamma_i^2(\boldsymbol{p}) \text{ for } i \in [g, q, \bar{q}]. \end{split}$$

#### $\square$ *p* dependence of $m_{q, q}$ inspired by Dyson-Schwinger results



## **DQPM\*** at finite (T, $\mu_{q}$ , p): quasiparticle masses and widths

#### Quark and gluon masses:

H. Berrehrah et al, PRC 93 (2016) 044914, arXiv:1512.06909; Int.J.Mod.Phys. E25 (2016) 1642003, arXiv:1605.02371

$$M_{g}(T,\mu_{q},p) = \left(\frac{3}{2}\right) \left[\frac{g^{2}(T^{\star}/T_{c}(\mu_{q}))}{6} \left[\left(N_{c} + \frac{N_{f}}{2}\right)T^{2} + \frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right]\right]^{1/2} \times \underline{h(\Lambda_{g},p)} + m_{\chi g},$$

$$M_{q,\bar{q}}(T,\mu_{q},p) = \left[\frac{N_{c}^{2} - 1}{8N_{c}}g^{2}(T^{\star}/T_{c}(\mu_{q}))\left[T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right]\right]^{1/2} \times \underline{h(\Lambda_{q},p)} + m_{\chi q},$$

$$h(\Lambda,p) = \left[\frac{1}{1 + \Lambda(T_{c}(\mu_{q})/T^{\star})p^{2}}\right]$$

#### **Quark and gluon widths:**

$$\gamma_g(T,\mu_q,p) = N_c \frac{g^2(T^*/T_c(\mu_q))}{8\pi} T \ln\left(\frac{2c}{g^2(T^*/T_c(\mu_q))} + 1.1\right)^{3/4} \times \underline{h(\Lambda_q,p)},$$
  
$$\gamma_{q,\bar{q}}(T,\mu_q,p) = \frac{N_c^2 - 1}{2N_c} \frac{g^2(T^*/T_c(\mu_q))}{8\pi} T \ln\left(\frac{2c}{g^2(T^*/T_c(\mu_q))} + 1.1\right)^{3/4} \times \underline{h(\Lambda_q,p)},$$

$$\Lambda_g(T_c(\mu_q)/T^*) = 5 \ (T_c(\mu_q)/T^*)^2 \ \text{GeV}^{-2}$$
$$\Lambda_g(T_c(\mu_q)/T^*) = 12 \ (T_c(\mu_q)/T^*)^2 \ \text{GeV}^{-2}$$

The final quark masses for the limits  $p \to 0$  and T = 0 or for  $p \to \infty$   $m_{\chi q} = 0.003 \text{ GeV}$  for u, d quarks and  $m_{\chi q} = 0.06 \text{ GeV}$  for s quarks The gluon condensate:  $m_{\chi g} = 0.5 \text{ GeV}$ 

#### **Effective temperature T**<sup>\*</sup> for $N_f = N_c = 3$ (as in extended DQPM)

$$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$

## **DQPM\*** at finite (T, $\mu_q$ ,p): quasiparticle masses and widths



- With increasing *p* momenta:  $M_{q,g}$  and  $\gamma_{q,g}$  decrease at *T*,  $\mu_q$
- $\mu_q = 0 \rightarrow$  finite  $\mu_q$ : decrease of  $M_{q,g}$  and  $\gamma_{q,g}$



H. Berrehrah et al, PRC 93 (2016) 044914, arXiv:1512.06909; Int.J.Mod.Phys. E25 (2016) 1642003, arXiv:1605.02371



#### **EoS from DQPM\*** at finite (T, μ<sub>B</sub>)

Nf=3; IQCD, Sz. Borsanyi et al., JHEP08(2012)053



• High T (T>1.2  $T_c(\mu)$ ): very good agreement with the lattice data

○ Low T (T<1.2 T<sub>c</sub>( $\mu$ )): some deviations → additional hadronic d.o.f. in the crossover region ? → Additional hadronic d.o.f.

H. Berrehrah et al, PRC 93 (2016) 044914, arXiv:1512.06909; Int.J.Mod.Phys. E25 (2016) 1642003, arXiv:1605.02371 28



#### $\hfill\square$ $n_B$ , $\chi_q$ at finite (T, $\mu_B)$

$$\chi_q(T) = \frac{\partial n_q}{\partial \mu_q}\Big|_{\mu_q=0}; \quad \chi_q(T,\mu_q) = \frac{1}{9} \frac{\partial n_B}{\partial \mu_B}.$$

$$\chi_2(T) = \frac{1}{9} \left. \frac{1}{T^2} \frac{\partial n_q(T, \mu_q)}{\partial \mu_q} \right|_{\mu_q = 0} = \frac{1}{9} \left. \frac{\chi_q(T)}{T^2} \right|_{\mu_q = 0}$$

for 3 flavours with  $\mu_u = \mu_d = \mu_s = \mu_q$ 



- DQPM\* describes n<sub>B</sub>, quark susceptibility and entropy/pressure...
- p dependence of partonic masses allows DQPM\* to meet IQCD

## Thermodynamical consistency of DQPM\* (T, $\mu_q$ ,p)

DQPM\* at finite temperature and chemical potential (T, μ<sub>B</sub>) determined by thermodynamic consistency:



- Leading order in  $n_B = \chi_q * \mu_B$
- Scaling relation :  $\frac{T_c(\mu_q)}{T_c(\mu_q=0)} = \sqrt{1-\alpha \, \mu_q^2} \approx 1-\alpha/2 \, \mu_q^2 + \cdots$
- New Scaling:  $\alpha$  is determined by Maxwell relation

http://geb.uni-giessen.de/geb/volltexte/2018/13621/

PhD Thesis (Giessen, 2018)

from T. Steinert

# **DQPM \*(T,** $\mu_q$ ,**p**): transport properties at finite (T, $\mu_q$ )

## (based on relaxation time approximation - RTA)

## **DQPM\*: transport properties at finite (T,** $\mu_q$ ) : $\eta$ /s

#### Shear viscosity $\eta$ /s at finite T



#### Shear viscosity $\eta$ /s at finite (T, $\mu_q$ )



#### η/s: $\mu_q = 0 \rightarrow \text{finite } \mu_q$ : smooth increase as a function of (T, $\mu_q$ )

H. Berrehrah et al, PRC 93 (2016) 044914, arXiv:1512.06909; Int.J.Mod.Phys. E25 (2016) 1642003, arXiv:1605.02371

PHSD in a box: V. Ozvenchuk et al., PRC 87 (2013) 064903 Hydro: Bayesian analysis, S. Bass et al., 1704.07671

## **DQPM\*: transport properties at finite (T,** $\mu_q$ ): $\sigma_e/T$

#### Electric conductivity $\sigma_{\text{e}}/\text{T}$ at finite T



#### Electric conductivity $\sigma_e/T$ at finite (T, $\mu_q$ )



# $σ_e/T : μ_q=0 → finite μ_q:$ smooth variation as a function of (T, μ<sub>q</sub>)

H. Berrehrah et al, PRC 93 (2016) 044914, arXiv:1512.06909; Int.J.Mod.Phys. E25 (2016) 1642003, arXiv:1605.02371

PHSD in a box: V. Ozvenchuk et al., PRC 87 (2013) 064903



- Extension of the DQPM to finite μ<sub>q</sub> using a scaling hypothesis for the effective temperature T\*
- □ Check of self-consistency of the DQPM
- **DQPM is consistent with Maxwell relations**
- $\square \mu_q=0 \rightarrow finite \mu_q:$
- variations in the QGP transport coefficients
- smooth dependence on (T, μ<sub>q</sub>)
- $\eta$ /s,  $\zeta$ /s,  $\sigma_e$ /T, D<sub>s</sub> show minima around T<sub>C</sub> at  $\mu_q$ =0 and finite  $\mu_q$
- additional p dependence of masses allows DQPM\* to meet IQCD: DQPM\* describes n<sub>B</sub>, quark susceptibility and entropy/pressure...

## Work in progress:

Implementation into PHSD: from DQPM(T)  $\rightarrow$  DQPM(T,  $\mu_q$ )



# Traces of the QGP at finite $\mu_q$ in observables in high energy heavy-ion collisions





## **PHSD with DQPM(T**, $\mu_q$ )

**Extraction of T and \mu\_q from PHSD:** 



\* The scale corresponds to the number of cells (with  $\epsilon$  >0.1 GeV/fm³) per PHSD event counted in the considered bin in T -  $\mu_B$ 

by Pierre Moreau



## **PHSD with DQPM(T**, $\mu_q$ )



Very small effect on observables when including μ<sub>q</sub> dependence of parton masses and partonic cross sections in the PHSD

## **Thermodynamics of strangeness in HIC**

Which parts of the phase diagram in the (T,  $\mu_B$ )-plane are probed by heavy-ion collisions via the strangeness production?



\* T here corresponds to the pion, nucleon gas, i.e. the real T is smaller!

#### $\rightarrow$ the spread in T and $\mu_B$ is very large !

A. Palmese et al., PRC94 (2016) 044912 , arXiv:1607.04073



#### □ IQCD (Christian Schmidt):

➡ No indication for critical point, limit:  $\mu_B^{\text{CEP}} > 400 \text{MeV}$ 

#### **PHSD** with the **DQPM** (T, $\mu_q$ ) [with IQCD EoS $\rightarrow$ crossover]:

- very small effect on observables when including μ<sub>q</sub> dependence of parton masses and partonic cross sections in the PHSD
- Iarge μ<sub>q</sub> region (where the critical point is possibly located) is accessible at low bombarding energies E<sub>kin</sub>, however, the fraction of QGP decreases strongly with decreasing E<sub>kin</sub>
- → Very difficult experimentally to observe a critical point /1<sup>st</sup> order phase transition!



## **Thanks to:**

# 

GOETHE UNIVERSITÄT FRANKFURT AM MAIN



FIAS Frankfurt Institute for Advanced Studies



HGS-HIRe for FAIR Helmholtz Graduate School for Hadron and Ion Research



Bundesministerium für Bildung und Forschung

DAAD CRC-TR 211



## PHSD group - 2018

GSI & Frankfurt University Elena Bratkovskaya Pierre Moreau Lucia Oliva Olga Soloveva

> Thanks to Olena Linnyk Volodya Konchakovski Hamza Berrehrah

Thorsten Steinert Alessia Palmese Eduard Seifert

**Giessen University** 

**Wolfgang Cassing** 

**Taesoo Song** 

#### **External Collaborations**

SUBATECH, Nantes University: Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Marlene Nahrgang

> Texas A&M University: Che-Ming Ko

JINR, Dubna: Viacheslav Toneev Vadim Voronyuk Viktor Kireev

Valencia University: Daniel Cabrera

Barcelona University: Laura Tolos

> Duke University: Steffen Bass











Universitat Autònomal de Barcelona

