Freeze-out parameters reachable in a rapidity scan in the AFTER@LHC project

Viktor Begun

Warsaw University of Technology, Poland

based on the paper by

V.B., Kikoła, Vovchenko, Wielanek,

arXiv:1806.01303, PRC (2018)

The $I(\mu_B)$ phase diagram

 $http://personal pages.to.infn.it/\sim alberico/QGP2008/becattini/becattini1.pdf$

Cleymans, Oeschler, Redlich, Wheaton, PRC (2006): EPJ (2015)

ullet Hadron-Resonance Gas model allows to obtain QCD phase diagram $T(\mu_B)$.

Temperature in A+A (GCE, sCE) and p+p (CE) collisions

- The temperature in A+A follows the common freeze-out line, except for the LHC
- The **temperature** in **p+p** was found **high**, with **unclear** behavior **at** the **SPS** energies

The surprise from the low energy p+p data

The temperatures in p+p and A+A are very close!

V.B., Vovchenko, Gorenstein, PRC (2016)

• Therefore a **system size scan** should give the **same temperature**, but **different radius**.

The $I(\mu_B)$ in the system size scan by NA61 could look like below

Early expectation

Our analysis of A+A and p+p data

Gazdzicki, Seyboth, arXiv:1506.08141

V.B., Vovchenko, Gorenstein, PRC (2016), arXiv:1609.04827

- The available range of parameters is squeezed and shifted compared to expectations.
- The **p+p** line **crosses** the **A+A** line in the **vicinity** of the K^+/π^+ horn.

The ϕ can not be described in CE... GCE is better for p+p at SPS!?

V.B., Vovchenko, Gorenstein, Stoecker, arXiv:1805.01901

• The need of 'centrality' selection for p+p by NA61?

Motivation for AFTER@LHC: system properties change with rapidity

Net-proton distributions from AGS to top RHIC energies.

Videbaek (BRAHMS Collaboration), NPA (2009), arXiv:0907.4742 (nucl-ex).

The beam rapidity y_B at each energy is indicated by the dashed lines.

Motivation for AFTER@LHC: system properties change with rapidity

(Left) Rapidity distributions for pions and kaons in central Au+Au collisions at 200 GeV. (Right) Net-proton rapidity distributions in p+p scaled to the beam rapidity.

Videbaek (BRAHMS Collaboration), NPA (2009), arXiv:0907.4742 (nucl-ex).

The arrows indicate the position of mid-rapidity for 200, 62.4 and 17.2 GeV, (left to right).

- Mesons are produced at mid-rapidity.
- Baryon charge is growing towards forward rapidity.

Comparison of the kinematic coverages for the existing detectors

The `Full PID Det.' label indicates detector with particle identification capabilities,
`E-M Det.' - an electromagnetic calorimeter, `Muon Det.' - a muon detector.

Can we change T and μ_B by changing rapidity instead of energy?

Becattini, Cleymans, JPG (2007), arXiv:hep-ph/0701029.

Particle multiplicities per event generated in the UrQMD model

Particle labels are sorted according to their abundance at y = 0 (left), and at 2 < y < 2.5.

V.B., Kikoła, Vovchenko, Wielanek, arXiv:1806.01303, Phys.Rev. C (2018)

- A strong rapidity dependence for all particles.
- Proton and Λ are relatively more abundant at forward rapidity.

7 and μ_B as a function of rapidity and of a particle set

V.B., Kikoła, Vovchenko, Wielanek, arXiv:1806.01303, Phys.Rev. C (2018)

- ullet Approximately **constant 7**, **growing** μ_B with y.
- Some uncertainty at large rapidity.

7 and χ^2/DoF as a function of rapidity and of a particle set

V.B., Kikoła, Vovchenko, Wielanek, arXiv:1806.01303, Phys.Rev. C (2018)

- ullet The **temperature changes** correlate with a fast increase in $\chi^2/{\sf DoF}$ at y>3.
- The uncertainties of the HRG parameters result from the assumed 10% systematic uncertainties of the input multiplicities from the UrQMD.

Strangeness saturation $\gamma_{\mathcal{S}}$ and the system radius **R** as a function of **y**

V.B., Kikoła, Vovchenko, Wielanek, arXiv:1806.01303, Phys.Rev. C (2018)

- The matter contains less strangeness at forward rapidities than at mid-rapidities.
- The radius (volume) for the most forward rapidity bin is still much larger than in p+p.

A single thermal source at rest and a $\gamma_{\it S}$

Schnedermann, Sollfrank, Heinz, PRC (1993).

V.B., Kikoła, Vovchenko, Wielanek, Phys.Rev. C (2018)

• A fit of a single thermal source in different rapidity intervals gives different results.

V.B., Kikoła, Vovchenko, Wielanek, arXiv:1806.01303, Phys.Rev. C (2018)

The rapidity scan covers almost the same $I(\mu_B)$ range as the energy scan at y=0.

Conclusions

- The **rapidity scan** with Pb+Pb collisions at $\sqrt{s_{NN}}=72$ GeV can be used to study systems which have **similar temperatures**, but at least a factor **2.5 larger** μ_B in forward rapidity compared to midrapidity.
- ullet The rapidity scan at the AFTER@LHC covers the majority of the μ_B range accessible in the RHIC Beam Energy Scan program.
- Such a dN/dy study in the AFTER@LHC project will provide a complementary approach to the QCD phase diagram studies, with all the benefits of a high-luminosity fixed-target experiment at the LHC.