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Light flavor hadron production from small to 
large systems at LHC energies

A. Kalweit, CERN
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Introduction
This fantastic plot is probably 
the most shown plot at this 
workshop! It seems everything 
can be described in Pb-Pb
collisions. 
• Is there still any open 

question?
• Does this picture break 

down in small systems?
• What are the future

directions?
• What should we measure in 

future?
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Overview
1. The origin and understanding of 

strangeness enhancement.

2. Towards intermediate pT: 
Particle production via recombination of 
strangeness and charm.

3. The (anti-)hyper-triton as the one particle 
which will clarify all questions.

pp 7 TeV
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1. Origin and understanding of strangeness enhancement
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Thermal statistical model fits Pb-Pb 5.02 TeV

àAlso at 5.02 TeV, yields 
of light flavor hadrons 
are qualitatively well 
described by equilibrium 
thermal models over 7 
orders of magnitude.

àFit at 5.02 TeV converges 
to slightly lower Tch than 
at 2.76 TeV (153 w.r.t to 
156 MeV) due to proton 
yield.
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Particle chemistry across system size (1)

àSmooth evolution of particle 
chemistry from small to large 
systems as function of charged 
particle multiplicity 
⇒ common origin in all 
systems?

à Increasing strangeness 
production with increasing 
multiplicity until saturation 
(grand-canonical plateau) is 
reached.

pp
p-Pb Pb-Pb
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Particle chemistry across system size (2)

àSmooth evolution of particle 
chemistry from small to large 
systems as function of charged 
particle multiplicity 
⇒ common origin in all 
systems?

à Increasing strangeness 
production with increasing 
multiplicity until saturation 
(grand-canonical plateau) is 
reached.

àConfirmed with new 
pp √s=13 TeV and Xe-Xe data!

pp
p-Pb Xe-Xe Pb-Pb
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Hadrochemistry and strangeness enhancement (1)
• Smooth evolution of hadrochemistry observed 

from pp to pPb to Pb-Pb collisions as a function 
of charged particle multiplicity.

• Significant enhancement of strange to non-
strange particle production observed in pp 
collisions.

• pp collision data allows to compare to a 
plethora of QCD inspired event generators:
– PYTHIA8 completely misses the behavior of the 

data (independent of switching ON/OFF color 
reconnection)

– DIPSY (color ropes) describes the increase in 
strangeness production qualitatively but fails to 
predict protons correctly in its original version..

– EPOS-LHC (core-corona) only qualitatively describes 
the trend.

S=1

S=1

S=2

S=3
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Hadrochemistry (2)
• Heavy-ion view: the 

thermal-statistical 
hadronisation picture can 
be extended to smaller 
collision systems 
(strangeness canonical 
suppression). 

• Does strangeness 
canonical enhancement 
explain everything? Is 
there any need for a 
microscopic modeling?

[V. Vislavicius, AK, arXiv:1610.03001]
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Hadrochemistry (3)
• Omega baryon is the most sensitive probe 

(needs ~10M events for spectrum and dN/dy
in highest multiplicity class).

• Run 3 and 4 will provide crucial tests:

Is the grand-canonical limit for particle 
production universally respected or is it 
violated in very high multiplicity pp 
collisions?

• Caveats:
– Multiplicity estimators and selection biases.
– Particle production in jets versus bulk
– …
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The Φ meson

Significantly increasing trend of 
ϕ-meson (!!̅) to pion ratio with 
increasing multiplicity

à In contrast to expectation from 
simple strangeness canonical 
suppression: favors non-
equilibrium production of either 
only the ϕ or of all strange 
particles (γs)

à Pivotal role of the ϕ-meson in 
the understanding of strangeness 
production with thermal-statistical, 
core-corona, and MC models.
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The Φ production meson in detail
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Understanding Φ-meson production

[V. Vislavicus, AK, arXiv:1610.03001]

[C. Bierlich (Lund&CPH) at 
Light Up! 2018 workshop]

http://arxiv.org/abs/arXiv:1610.03001
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2. Towards intermediate pT: recombination
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Blast-wave and hydro



16/OCT/18Trento  | | 16

Baryon to meson ratios in pp and p-Pb collisions

àRemarkable similarities of baryon to meson ratio in the charm 
sector with light flavor results.
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Φ meson
• Also here the Φ has a special as it is often argued that it is a meson with the 

same mass as the proton (a baryon) and thus should be flat in the hydro 
picture, but is this a coincidence? 
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4. The hyper-triton
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Light (anti-)nuclei

n p
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Object size and wave function

B. Donigus, August  2017

See EMMI workshop,  
https://indico.gsi.de/event/6301/session/2/contribution/4/material/slides/
0.pdf

p
Λ
n

pn
n

https://indico.gsi.de/event/6301/session/2/contribution/4/material/slides/0.pdf
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Hyper-triton lifetime
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(anti-)hyper-triton in Pb-Pb collisions at 5.02 TeV
anti-hyper-tritonn

à Yields of heavy and fragile objects 
such as (anti-)(hyper-)nuclei in 
agreement with thermal-statistical 
model predictions at chemical freeze-
out.

à No re-scattering of anti-nuclei in 
hadronic phase despite large 
dissociation cross-section.

à Final-state coalescence after kinetic 
freeze-out requires more detailed 
modeling: naive coalescence 
(S3 ≈ 1) does not describe data.S. Trogolo, Tue 16:00

Λ p
ppn anti-3He

S3 =

3
⇤H / 3

He

⇤ / p



16/OCT/18Trento  | | 24

Production models in a nutshell
Thermal production at chemical freeze-out/phase boundary
• Key parameters are mass and chemical freeze-out temperature:  dN/dy ~ exp (-m/Tch)
• Model provides yields but no pT spectra (no dynamics) 
à works in Pb-Pb collisionsà but how can loosely bound states survive? 

Coalescence of nucleons at kinetic freeze-out
• Key parameters are nuclear wave functions, size of the (hyper)nucleus
• Production probability quantified by coalescence parameter BA 

• Model provides spectra
à works in small systems à but how can ‘’large’’ objects be created in a small system?

Production in the hadronic phase

à Are they in contrast? Up to which extent?
à For which system(s) do they provide a valid description?
à Can they describe all ’’objects’’ in their scope of validity? 
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The (anti-)nuclei riddle
• Fragile objects such as anti-nuclei should not be produced in thermal 

equilibrium at 156 MeV together with the non-composite objects, but why are 
they in perfect agreement with the model?

• Is it just a coincidence? Can coalescence models explain this? In my opinion, 
there is no convincing calculation on the market at the moment.

• N.B.: production rates in quantum mechanical coalescence models depend 
crucially on the size of the object with respect to the system size!

• Are multi-quark bags the way out (see [A. Andronic et al., arXiv:1710.09425])?
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Full canonical calculations

Vovchenko, Donigus, Stoecker, arXiv:1808.05245

?

http://arxiv.org/abs/arXiv:1808.05245
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Coalescence parameters BA

• (anti-)nuclei production by coalescence of (anti-)protons and (anti-)neutrons 
which are close by in momentum and position space. Roughly speaking:
“deuteron ∝ proton x neutron => deuteron ∝ proton2”

• Spherical approximation: maximum momentum difference (coalescence 
momentum p0) is approx. 100 MeV (5.3 MeV kinetic energy of a nucleon in 
the rest frame of the other).

à Can be implemented as an afterburner to standard event generators.

n
p d
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Coalescence models in heavy-ion (1)
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à Very strong dependence 
of B2 on collision geometry.

pp, p-Pb
Pb-Pb

n
p d

n
p

à Two production regimes 
observed:
(a.) system size < deuteron size

(b.) system size > deuteron size

28
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Fermi momentum and uncertainty principle
• “Close in phase-space” <-> “Close in configuration 

and momentum space” sounds nice, but is quantum-
mechanically ill defined due to the uncertainty 
principle!

• Imagine a point-like emission source (pp): phase-
space reduces to momentum space and the 
coalescence momentum, becomes equal to the 
momentum of the nucleons in the bound nucleus 
(the “Fermi momentum” in large nuclei).

• Quantum-mechanically correct treatment: overlap of 
the source function with the Wigner-function of the 
nucleus.

E. Wigner
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Properties of (hyper-)nuclei for A≤4

“Fragile” 
objects!!!    

Different size parameters!!!
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• Nuclei form by coalescence of nucleons close enough in phase-space
• Density matrix approach used to calculate the coalescence probability

– The source is rapidly expanding under radial flow (hydrodynamics) 
– The coalescence process is governed by the same correlation volume which can be extracted from HBT 

interferometry
– For the source,                       is assumed
– Gaussian wave-functions (size parameter = rA) for nuclei are assumed à see next slides

• The size of the source enters in the BA and in the quantum-mechanical correction factor, ⟨CA⟩
• ⟨CA⟩ accounts for the size of the object being produced (rA) à see next slides

Coalescence
R. Scheibl, U. Heinz, (1999) PRC 59 (1999) 1585-1602

K. Blum et al., PRD 96 (2017) 103021

Length scale defined by the size of the 
object relative to the size of the system

https://arxiv.org/abs/nucl-th/9809092
https://arxiv.org/abs/1704.05431
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Deuteron case
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Coalescence model: 
- analytic expression for BA
- explicit dependence on R, rA, mT

Thermal model + blast-wave:
- Spectral shape of (hyper-)(anti-)nuclei and p from BW
- Normalization of spectra from thermal model
- Multiplicity à radius mapping from parameterization

Data:
- BA from measured (Hyper-)(anti-)nuclei and p spectra  
- Multiplicity à radius mapping from parameterization
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BA vs R

1. Thermal+BW and 
coalescence are fully
consistent only for d and R > 
1.6 fm, where they are also
reproducing data

2. Difference between data and 
coalescence worsens for 3He 
and 3LH
- Wave function

assumption?
- Two-steps coalescence?
- Excited state of the 3LH?

3. 3
LH suppressed by about 2 

orders of magnitude wrt 3He 
in pp!
- Size of 3LH?
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It would be nice to see this for hyper-triton!

D. Ollichenko, Hot Quarks 2018 and respective publication.
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Mass (GeV/c2) Decay channel (B.R.) dN/dy (SHM)
3ΛH 2.991 3ΛH → 3He + π- (25% [1])

3ΛH → d + p + π- (41% [1])
1 x 10-4

4ΛH 3.931 4ΛH → 4He + π- (50% [1]) 2 x 10-7

4ΛHe 3.929 4ΛHe → 3He + p + π- (32% [2]) 2 x 10-7

Hyper-nuclei yield reach in Run 3+4 
- High statistics sample of min bias Pb-Pb
- Improved tracking resolution from the ALICE ITS 

upgrade
- 3ΛH reconstruction feasible in 2-body and 3-body 

decay with charged products
- Lower background but also lower B.R. for 2-body

- B.R. not well known [1,2]
- precise evaluation of absorption cross section of 3ΛH 

and 3He is needed

[1] H. Kamada et al., PRC 57, 1595 (1998),      [2]H. Outa et al., NPA 639 (1998) 251-260

ALICE ITS upgrade TDR,
CERN-LHCC-2013-024
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Outlook to LHC Run 3 and 4

The measurement of the coalescence parameters for 
composite objects with different sizes studied as a function of 
the multiplicity can be used to compare the light (anti-)(hyper-
)nuclei production scenarios

Physics case for Run3&4:
à Measure centrality dependence of the hypertriton in Pb-Pb
à Can we produce at all the hypertriton in pp collisions?
à Go more differential for A = 3
à Measure B4 for 4He, 4 LH, 4 LHe
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Possibilities at FAIR
• Largest production probability of hyper-nuclei is at FAIR energies.
• See excellent talk of I. Vassiliev at EMMI Torino workshop:

https://indico.gsi.de/event/6301/session/2/contribution/5/material/slides/0.pptx

A. Andronic et al: 
Phys.Lett. B697 (2011) 203-207
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Summary and conclusions
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Summary and conclusions
• ALICE has measured a wealth of results on the production of light favor 

hadron production.

• Beautiful picture established in central heavy-ion collisions, but there is still a 
lot to do and to understand at several frontiers:

– Anti- and hyper-nuclei production

– Small systems and the phi meson

– Intermediate pT
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Thank 
you!



16/OCT/18Trento  | | 42

Proton-to-pion ratio


