Standard Model tests with rare hadrons and leptons decays

Michał Silarski Jagiellonian University

- 1. Stadard model test with rare decays of neutral and charged kaons
- 2. Invisible decays of mesons
- 3. Positronium as a probe for New Physcics

Discrete Symmetries in Particle, Nuclear and Atomic Physics and implications for our Universe, 8-12 October 2018, ECT* - Villa Tambosi, Trento * The neutral kaons system

Time evolution of the $K^0 \leftrightarrow \overline{K^0}$ system in the rest frame:

$$i\frac{\partial}{\partial t}\left(\frac{|K^{0}\rangle}{|K^{0}\rangle}\right) = \mathbf{H}\left(\frac{|K^{0}\rangle}{|K^{0}\rangle}\right) = \left[\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right]\left(\frac{|K^{0}\rangle}{|K^{0}\rangle}\right)$$

In the basis of the CP operator:

$$|K_{1} \rangle = \frac{1}{\sqrt{2}} (|K^{0} \rangle + |\overline{K^{0}} \rangle) \qquad (CP = 1)$$

$$|K_{2} \rangle = \frac{1}{\sqrt{2}} (|K^{0} \rangle - |\overline{K^{0}} \rangle) \qquad (CP = -1)$$

> The eigenstates of **H**:

 $|K_{S} > (\tau = 0.9 \cdot 10^{-10} \text{ s}; \text{ ct} = 2.68 \text{ cm})$ $|K_{L} > (\tau = 5.1 \cdot 10^{-8} \text{ s}; \text{ ct} = 15.5 \text{ m})$

The main hadronic decay modes:

 $|K_S > \to \pi^+ \pi^-$ $|K_S > \to 2\pi^0$ (CP = 1) $|K_L > \to \pi^0 \pi^+ \pi^-$ $...) |K_L > \to 3\pi^0$ (CP = -1 for I=0, 2, ...) (CP = -1)

 $\mathbf{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}$ $\mathbf{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$

* The neutral kaons system

> But K_s and K_L are not CP eigenstates:

 $\begin{array}{l} BR(K_L \to \pi^+\pi^-) = 1.97 \cdot 10^{-3} \\ BR(K_L \pi^0\pi^0) = 8.64 \cdot 10^{-4} \\ \mbox{[M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)]} \end{array}$

> CP violation in mixing (Δ S=2):

$$|K_{S}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{S}|^{2}}} (|K_{1}\rangle + \varepsilon_{S}|K_{2}\rangle) \quad \varepsilon_{s} \neq \varepsilon_{L} \Rightarrow 0$$
$$|K_{L}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{L}|^{2}}} (|K_{2}\rangle + \varepsilon_{L}|K_{1}\rangle)$$

> CP violation directly in the decay (Δ S=1):

 $|K_1 \rangle \rightarrow 2\pi, \quad |K_2 \rangle \rightarrow 3\pi$

* Standard Model tests with the $K_s \rightarrow 3\pi^0$ decay

• $K_s \rightarrow \pi^0 \pi^0 \pi^0$: unambiguous sign of CP violation • $K_s \rightarrow \pi^+ \pi^- \pi^0$: CPV for for L=0,2, but contains also conserving amplitude

$$\eta_{000} = \frac{\langle \pi^0 \pi^0 \pi^0 | H | K_S \rangle}{\langle \pi^0 \pi^0 \pi^0 | H | K_L \rangle} = \varepsilon + \varepsilon'_{000} \qquad \qquad \eta_{+-0} = \frac{\langle \pi^+ \pi^- \pi^0 | H | K_S \rangle}{\langle \pi^+ \pi^- \pi^0 | H | K_L \rangle} = \varepsilon + \varepsilon'_{+-0}$$

♦ In the lowest order of the xPT: $\varepsilon'_{000} = \varepsilon'_{+-0} = -2\varepsilon'$

 $Im(\eta_{+-0}) = -0.002 \pm 0.009;$ $Im(\eta_{000}) = (-0.1 \pm 1.6) \cdot 10^{-2}$

***** KLOE set the best upper limit on $|\eta_{000}|$:

$$BR(K_S \to 3\pi^0) < 2.6 \cdot 10^{-8} \Rightarrow |\eta_{000}| = \sqrt{\frac{\tau_L BR(K_S \to 3\pi^0)}{\tau_S BR(K_L \to 3\pi^0)}} \le 0.0088 @ 90\% C.L.$$

D. Babusci et al., Phys. Lett. B 723 (2013) 54

- * The Standard Model prediction on BR ($K_s \rightarrow 3\pi^0$) is at the level of 10⁻⁹
- ★ Current experimental accuracy on BR($K_S \rightarrow \pi^+\pi^-\pi^0$) amounts to ~30% (CPLEAR, NA48 and E621)
- ✤ First direct search for K_S → π⁺π⁻π⁰ is ongoing with the old KLOE data set (with expected accuracy lower than 20 %)
- With KLOE-2 data we expect to improve sensitivity for both branching ratios

* KLOE (K LOng Experiment)

Large cylindrical drift chamber

- Uniform tracking and vertexing in all volume
- □ Helium based gas mixture (90% He – 10% IsoC₄H₁₀)
- □ Stereo wire geometry

```
\sigma_{\rm p}/{\rm p} = 0.4 %
```

```
\sigma_{xy} = 150 µm; \sigma_z = 2 mm
```

```
\sigma_{\rm vtx} \sim 3 \text{ mm}
```

```
\sigma(M_{\pi\pi}) \sim 1 \text{ MeV}
```

Lead/scintillating-fiber calorimeter

- □ Hermetical coverage
- High efficiency for low energy photons

 $\sigma_{\rm E}/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma_{\rm t} = 54 / \sqrt{E(GeV)} \oplus 100 \text{ ps}$

Superconducting coil B = 0.52 TCOIL S.C. Crvosta Barrel EMC DRIFT CHAMBER 7 \mathbf{m} e⁻ e^+ 6 m

* Standard Model tests with the $K_s \rightarrow 3\pi^0$ decay at KLOE

SIGNAL

BACKGROUND

 $K_S \ \rightarrow 3\pi^0 \rightarrow 6\gamma$

 $K_S \rightarrow 2\pi^0$ + accidental/splitted clusters $K_L \rightarrow 3\pi, \ K_S \rightarrow \pi^+ \pi^-$ ("fake $K_L^-crash"$)

* Search for the $K_{\perp} \rightarrow \pi^{0} x \overline{x}$ and $K^{+} \rightarrow \pi^{+} x \overline{x}$

CP violating decays with short distance contribution dominated by Z penguin and W box diagrams

- **\diamond** Clean theoreticaly \Rightarrow sensitive to BSM physics
- Standard Model predictions:

 $BR(K_{L} \rightarrow \pi^{0} \nu \overline{\nu}) = (3.4 \pm 0.6) \cdot 10^{-11}$ BR(K⁺ $\rightarrow \pi^{+} \nu \overline{\nu}) = (8.4 \pm 1.0) \cdot 10^{-11}$

Experimental status:

BR($K_L \rightarrow \pi^0 \nu \overline{\nu}$) < 3.0 ·10⁻¹⁰ (KOTO, preliminary) BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) = (1.7 ± 1.1)·10⁻¹⁰ (E787/E949 @ BNL)

* Search for the $K_{\perp} \rightarrow \pi^0 v \bar{v}$ and $K^+ \rightarrow \pi^+ v \bar{v}$

- - 2γ + nothing
 - * π^0 transverse momentum
 - + decay vertex
 - Background:
 - $K_L \rightarrow 2\pi/3\pi$ (particles missing in the forward direction)
 - Halo neutrons (π⁰ production & direct interaction in the forward calorimeter)

- * Search for the $K^+ \rightarrow \pi^+ \chi \overline{\chi}$
- ✓ ~10¹² K⁺ decays aquired
- No signal so far (with ~5% of the statistics)
- Identification based on the missing mass

$$m_{miss}^{2} = \left(p_{K^{+}}^{GTK} - p_{\pi^{+}}^{STRAW}\right)^{2}$$
$$m_{miss}^{2}(RICH) = \left(p_{K^{+}}^{GTK} - p_{\pi^{+}}^{RICH}\right)^{2}$$

Hadron Beam 800 MHz

Kaon identification

In CEDAR

GTK

Measure Kaon:

•Time

Angles
Momentum

* Search for the invisible decays of neutral hadrons

• According to the Standard Model: $\Gamma(M^0 \to \nu \bar{\nu}) \sim \left(\frac{m_{\nu}}{m_{M^0}}\right)^2 < 10^{16}$

Channel	SM expectation	Experimental limit	Experiment		
BR(K _s →invisible)	< 10 ⁻¹⁷	None	KLOE/KLOE-2 (?)		
BR(K _L →invisible)	< 10 ⁻¹⁷	None	KLOE/KLOE-2 (?)		
$BR(\eta \rightarrow invisible)$	< 4·10 ⁻¹²	< 1·10 ⁻⁴	BES		
$BR(\phi \rightarrow invisible)$	< 10 ⁻⁸	< 3.4·10 ⁻⁴	BESIII		
$BR(\omega \rightarrow invisible)$	< 10 ⁻⁸	< 8.1·10 ⁻⁵	BESIII		
$BR(\pi^0 \rightarrow invisible)$	< 5·10 ⁻¹⁰	< 2.7·10 ⁻⁷	E949		
$BR(\eta' \rightarrow invisible)$	< 4·10 ⁻¹²	< 5.2·10 ⁻⁴	BES		

 Observation of any of these decays at the level higher that he SM prediction would be a sign of BSM physics

* Search for the invisible decays of neutral hadrons

- Measurement principle (based on the BES results):
 - * J/ Ψ decay: tagging one meson with the decay of the other

 - * Main ackgrounds for the $\phi~$ and ω decays search: $J/\psi \to V~\eta$ with the V meson decaying into purely neutral final states

 Decays into invisible states were studied also for J/ψ and Y(1S) (BES II & BABAR)

- Still no limits measured for neutral kaons
- Would it be fissilbe to do the measurement at KLOE-2 ?

* K_s and K_L tagging @ KLOE-2

 K_s tagged by K_L interaction in EmC Efficiency ~ 30% K_s angular resolution: ~ 1°(0.3° in φ) K_s momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

- * Positronium as a probe for physics beyond Standard Model
- The lightest purely leptonic object
- Eigenstate of the CP operator: e⁺e⁻ state (C eigenstate) bound by a central potential (P eigenstate)

Ps state	τ [ns]	L	S	J	J _z	Ρ	С	СР
¹ S ₀ (para-Ps)	0.125	0	0	0	0	-	+	-
³ S ₁ (ortho-Ps)	142	0	1	1	-1,0,1	-	-	+

$$P|Ps >= (-1)^{L}|Ps >$$
$$C|Ps >= (-1)^{L+S}|Ps >$$

- Effects due the weak interaction can lead to the violation at the order of 10⁻¹⁴.
 [M. Sozzi, Discrete Symmetries and CP Violation, Oxford University Press (2008)]
- No charged particles in the final state (radiative corrections very small 2.10⁻¹⁰)
 [B. K. Arbic et al., Phys. Rev. A 37, 3189 (1988); W. Bernreuther et al., Z. Phys. C 41, 143 (1988)]

C tests: search for decays to forbidden decays: [A. Pokraka, A. Czarnecki, Phys. Rev. D 96, 093002 (2017)]

 $\begin{array}{l} {\rm BR}({\rm oPs} \to 4\gamma/{\rm oPs} \to 3\gamma) < 2.6 \cdot 10^{-6} \mbox{ at } 90\% \mbox{ C. L.} \\ {\rm BR}({\rm pPs} \to 3\gamma/{\rm pPs} \to 2\gamma) < 2.8 \cdot 10^{-6} \mbox{ at } 68\% \mbox{ C. L.} \\ {\rm BR}({\rm pPs} \to 5\gamma/{\rm pPs} \to 2\gamma) < 2.7 \cdot 10^{-7} \mbox{ at } 90\% \mbox{ C. L.} \end{array}$ [J. Yang et al., Phys. Rev. A54, 1952 (1996), A.P. Mills, S. Berko, Phys. Rev. Lett. 18, 420 (1967), P.A. Vetter, S.J. Freedman, Phys. Rev. A66, 052505 (2002)]

Jagiellonian PET Jagiellonian PET

192 detection modules arranged in 3 layers (19x7x500 mm³ EJ-230 scintillator strips + Hamamatsu R9800 photomultipliers)

Annihilation gamma quanta hit time measurement: σ_t(0.511 MeV) ~ 125 ps [P. Moskal et al., Nucl.Instrum.Meth. A775 (2015) 54-62]

Gamma quanta energy loss resolution: $\sigma_E/E = 0.044/\sqrt{E(MeV)}$ [P. Moskal et al. Nucl.Instrum.Meth. A764 (2014) 317]

Novel digital front-end electronics probing signals at multiple thresholds [M. Pałka et al., JINST 12 (2017) no.08, P08001] [G. Korcyl et al., IEEE Transactions on Medical Imaging, in press]

o-ps spin and photon polarization measurement

Resolution of photons relative angles measurement ~ 1°

* **Discrete symmetries tests with the J-PET detector**

- Positrons source:
 ²²Na β⁺ decay (parity violation)
- Target around the source
 e⁺ thermalization + o-Ps formation

Signal signature:

- 3/4γ quanta with common vertex reconstructed in the target
- Deexcitation photon identyfication based on the TOT measurement
- Early/late decay with respect to the registration of the deexcitation photon

[P. Moskal et. al., Acta Phys.Polon. B47 (2016) 509]

* Summary and outlook

- Rare decays consitute an important part of the Standard Model test and search for the New Physics
- The new exciting test in the kaon sector are about to finish in few years
- There is still a lot to be done for the invisible decays of neutral mesons, in particular neutral kaons
- Positronium constitutes a powerfull probe for physics beyond Standard Model search
- New measurements of the positronium decays are under way (e.g. J-PET, AEGIS)

THANK YOU FOR ATTENTION