Twelve fold improved measurement of the electron's EDM with ThO

Cris Panda ACME Collaboration ECT Fundamental Symmetries 10/9/2018

EDMs probe TeV scale physics Standard Model • The Standard Model cannot explain • what is dark matter Rule • baryogenesis - why is there more matter 9 b Book than antimatter (τ (\mathcal{V}_{τ}) BIG BANG SCALE Seems to be a big difference

• Permanent EDMs of fundamental particles violate T-symmetry.

- Permanent EDMs of fundamental particles violate T-symmetry.
- EDMs are also not symmetric under parity inversion.

- Permanent EDMs of fundamental particles violate T-symmetry.
- EDMs are also not symmetric under parity inversion.
- CPT Theorem <-> EDMs are also CP-violating <-> baryogenesis.
- No permanent EDMs have yet been observed, despite 60 years of searching^[1].

Electron EDM progress in this millennia

- High effective field.
- Can be easily polarized.
- Low magnetic noise sensitivity.

- High effective field.
- Can be easily polarized.
- Low magnetic noise sensitivity.

- High effective field.
- Can be easily polarized.
- Low magnetic noise sensitivity.

- High effective field.
- Can be easily polarized.
- Low magnetic noise sensitivity.

- High effective field.
- Can be easily polarized.
- Low magnetic noise sensitivity.

Can reverse the direction of $\vec{\mathcal{E}}_{\rm eff}$ either by reversing:

- The lab electric field, E.
- The internal electric field, N.

 $2D\mathcal{E}$

 $\mu \mathcal{B}_z$

 $\mathcal{N} = +1$

'eff

eff

ρfl

- High effective field.
- Can be easily polarized.
- Low magnetic noise sensitivity.

Can reverse the direction of $\vec{\mathcal{E}}_{\rm eff}$ either by reversing:

- The lab electric field, E.
- The internal electric field, N.

Measure EDM energy shift, NE correlated frequency $\omega^{\mathcal{NE}}$.

 $d_e \mathcal{E}_{\text{eff}} = -\hbar \omega^{\mathcal{N}\mathcal{E}}$

molecule source. We are running in pulsed mode (50 Hz).

Prepare initial spin-aligned state L = 22 cm Electric field direction Magnetic field direction **STIRAP** Preparation Refine Read $C \overset{J=1}{M=0}$ ₽1 Stokes 1090 nm Pump 690 nm \hat{x} $2D\mathcal{E}$ J=0

Switches

• EDM is correlated with N,E $\mathcal{I} \mathcal{C} = \mathcal{I} \mathcal{N} \mathcal{E}$

$$d_e \mathcal{E}_{\text{eff}} = -\hbar \omega^{\mathcal{N}}$$

- More switches reject noise and systematic effects, P, L, R.
- In addition, monitor systematics during the dataset.
- Change magnitude of electric, magnetic field.

Schematic of ACME II Measurement

Real ACME II

ACME II, ~400x more signal

Improved signal through:

• Improved state preparation x12.

ACME II, ~400x more signal

Improved signal through:

- Improved state preparation x12.
- Greater used solid angle x7.

ACME II, ~400x more signal

Improved signal through:

- Improved state preparation x12.
- Greater used solid angle x7.
- Better photoelectron detection x5.

Improved signal through:

- Improved state preparation x12.
- Greater used solid angle x7.
- Better photoelectron detection x5.

Systematic effects

• Look for dependence of ω^{NE} on over 40 varied parameters.

Blue: limited range of IPV (<10x) Yellow: larger range of IPV (>10x)

part of systematic error bar

Systematic category	Systematic check	Units
Lasers:	Probe: applied pointing	mrad
Pointing	Cleanup: applied pointing	mrad
and position	Cleanup: position	mm
	Cleanup detuning*	MHz
Lasers:	Delta P	MHz
Detuning	Ti Sapph detuning (both cleanup a	MHz
	Delta N*	MHz
	Low probe power	unitless (fraction of typ
Lasers: Power	X,Y beams power asymmetry	unitless (Px-Py)/(Px+f
	I state power asymmetry	unitless (Plp-Plm)/(Plp
	Cleanup ellipticity	S/I
Lasers:	Probe ellipticity	S/I
Polarization	Probe polarization rotation	deg of lambda/2
	E_mag large	V/cm
Electric Field	E_mag small	V/cm
	Floating field plates*	V
	Bz_nr*	mGauss
	Bx_rev	mGauss
Magnetic Field:	By_rev	mGauss
Unsets	Bx_nr*	mGauss
	By_nr*	mGauss
	dBx/dx_nr*	mGauss/cm
	dBy/dy_nr*	mGauss/cm
	dBy/dz nr*	mGauss/cm
Magnetic Field: Gradients	dBy/dx nr*	mGauss/cm
	dBz/dx nr*	mGauss/cm
	dBx/dx_rev	mGauss/cm
	dBy/dx_rev	mGauss/cm
	dBy/dy_rev	mGauss/cm
	dBy/dz rev	mGauss/cm
	dBz/dx rev	mGauss/cm
	dBz/dz rev	mGauss/cm
DAQ parameters	Block switches settling times	fraction of typical
•	Polarization switching frequency	kHz
	Waveplate dither angle	degrees of pol rotation

Systematic effects

- Look for dependence of ω^{NE} on over 40 varied parameters.
- Observed a shift of EDM frequency (ω^{NE}) with large applied dB_{7}/dz .

Blue: limited range of IPV (<10x)	Systematic category	Systematic check	Units
Yellow: larger range of IPV (>10x)	Lacore:	Probe: applied pointing	mrad
* part of systematic error bar	Pointing and position	Cleanup: applied pointing	mrad
1		Cleanup: position	mm
	Lasers: Detuning	Cleanup detuning*	MHz
		Delta P	MHz
varied		Ti Sapph detuning (both cleanup a	MHz
Vulleu		Delta N*	MHz
	Lasers: Power	Low probe power	unitless (fraction of typ
		X,Y beams power asymmetry	unitless (Px-Py)/(Px+f
) with large		I state power asymmetry	unitless (Plp-Plm)/(Plp
/ ••••••		Cleanup ellipticity	S/I
	Lasers: Polarization	Probe ellipticity	S/I
	1 olarization	Probe polarization rotation	deg of lambda/2
		E_mag large	V/cm
	Electric Field	E_mag small	V/cm
		Floating field plates*	V
	Magnetic Field:	Bz_nr*	mGauss
		Bx_rev	mGauss
		By_rev	mGauss
T		Bx_nr*	mGauss
_		By_nr*	mGauss
-		dBx/dx_nr*	mGauss/cm
-		dBy/dy_nr*	mGauss/cm
· · · · · · · T -	Magnetic Field: Gradients	dBy/dz_nr*	mGauss/cm
		dBy/dx_nr*	mGauss/cm
_		dBz/dx_nr*	mGauss/cm
-		dBx/dx_rev	mGauss/cm
_		dBy/dx_rev	mGauss/cm
		dBy/dy_rev	mGauss/cm
		dBy/dz_rev	mGauss/cm
		dBz/dx_rev	mGauss/cm
		dBz/dz_rev	mGauss/cm
	DAQ parameters	Block switches settling times	fraction of typical
m)		Polarization switching frequency	kHz
)		Waveplate dither angle	degrees of pol rotation

• Typical molecule precession.

- Typical molecule precession.
- In a dBz/dz gradient, molecules precess with different amounts depending on their z position.

- Typical molecule precession.
- In a dBz/dz gradient, molecules precess with different amounts depending on their z position.
- A translation along z of the "center of mass", dz, of the molecules can then cause a change in measured phase.

- Typical molecule precession.
- In a dBz/dz gradient, molecules precess with different amounts depending on their z position.
- A translation along z of the "center of mass", dz, of the molecules can then cause a change in measured phase.
- Such a translation can occur due to a z-dependent state preparation efficiency, from a detuning δ_z of the STIRAP resonance.

- Typical molecule precession.
- In a dBz/dz gradient, molecules precess with different amounts depending on their z position.
- A translation along z of the "center of mass", dz, of the molecules can then cause a change in measured phase.
- Such a translation can occur due to a z-dependent state preparation efficiency, from a detuning δ_z of the STIRAP resonance.
- For the translation to be EDM-like (NE- correlated), d^{NE}, we need the detuning to also be NE-correlated, δ_z^{NE} . A gradient in the non-reversing electric field dE^{nr}/dz causes such δ_z^{NE} .

Non-reversing E-field, E^{nr} , causes δ^{NE}

Confirm, minimize, monitor. • Confirm, by looking at dependence on δ . • Confirm, by looking at dependence on δ .

-0.6 -0.4 -0.2 0.0 0.2 STIRAP 2-photon detuning δ (MHz)

Confirm, minimize, monitor.

- Confirm, by looking at dependence on δ .
- Minimize, by tuning and carefully controlling δ =0.

Confirm, minimize, monitor.

- Confirm, by looking at dependence on δ .
- Minimize, by tuning and carefully controlling $\delta=0$.
- Measure the size of the imperfections, such as the E^{nr} gradient.
- "Keep an eye" on slope, imperfections during the ACME dataset

- 2 months of data, ~45 days, 350 hours of EDM, 150 hours of systematic monitoring.
 Bootstrap M-estimator analysis to account for more points in the tails.

- 2 months of data, ~45 days, 350 hours of EDM, 150 hours of systematic monitoring.
- Bootstrap M-estimator analysis to account for more points in the tails.
- ACME II uncertainty a factor of 12 smaller than ACME I.

Parameter	Shift	Uncertainty
$\mathcal{E}^{\mathrm{nr}}$ correction	-56	140
$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$ corrections	77	125
$\partial \mathcal{B}_z / \partial z$ and $\partial \mathcal{B}_z / \partial y$ corrections	7	59
$\omega_{\rm ST}^{\mathcal{NE}}$ correction	0	1
$\phi^{\mathcal{E}}$ -correction	1	1
Other \mathcal{B} -field gradients total (4)		134
$P_{\mathrm{ref}}^{\mathcal{NE}}$		109
Non-Reversing \mathcal{B} -field (\mathcal{B}_z^{nr})		106
Transverse \mathcal{B} -fields $(\mathcal{B}_x^{\mathrm{nr}}, \mathcal{B}_y^{\mathrm{nr}})$		92
Refinement/readout laser detunings		76
$\tilde{\mathcal{N}}$ -correlated detunings		48
Total Systematic	29	310
Statistical		373
Total Uncertainty		486

- 2 months of data, ~45 days, 350 hours of EDM, 150 hours of systematic monitoring.
- Bootstrap M-estimator analysis to account for more points in the tails.
- ACME II uncertainty a factor of 12 smaller than ACME I.
- ACME II blinded result:

Parameter	Shift	Uncertainty
$\mathcal{E}^{\mathrm{nr}}$ correction	-56	140
$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$ corrections	77	125
$\partial \mathcal{B}_z / \partial z$ and $\partial \mathcal{B}_z / \partial y$ corrections	7	59
$\omega_{\rm ST}^{\mathcal{NE}}$ correction	0	1
$\phi^{\mathcal{E}}$ -correction	1	1
Other \mathcal{B} -field gradients total (4)		134
$P_{ m ref}^{\mathcal{NE}}$		109
Non-Reversing \mathcal{B} -field $(\mathcal{B}_z^{\mathrm{nr}})$		106
Transverse \mathcal{B} -fields $(\mathcal{B}_x^{\mathrm{nr}}, \mathcal{B}_y^{\mathrm{nr}})$		92
Refinement/readout laser detunings		76
$\tilde{\mathcal{N}}$ -correlated detunings		48
Total Systematic	29	310
Statistical		373
Total Uncertainty		486

 $d_e = (_ \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \times 10^{-30} \ e \cdot \text{cm}$

- 2 months of data, ~45 days, 350 hours of EDM, 150 hours of systematic monitoring.
- Bootstrap M-estimator analysis to account for more points in the tails.
- ACME II uncertainty a factor of 12 smaller than ACME I.
- ACME II result:

Parameter	Shift	Uncertainty
$\mathcal{E}^{\mathrm{nr}}$ correction	-56	140
$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$ corrections	77	125
$\partial \dot{\mathcal{B}}_z / \partial z$ and $\partial \mathcal{B}_z / \partial y$ corrections	7	59
$\omega_{\rm ST}^{\mathcal{N}\dot{\mathcal{E}}}$ correction	0	1
$\phi^{\mathcal{E}}$ -correction	1	1
Other \mathcal{B} -field gradients total (4)		134
$P_{ m ref}^{\mathcal{NE}}$		109
Non-Reversing \mathcal{B} -field (\mathcal{B}_z^{nr})		106
Transverse \mathcal{B} -fields $(\mathcal{B}_x^{\mathrm{nr}}, \mathcal{B}_y^{\mathrm{nr}})$		92
Refinement/readout laser detunings		76
$\tilde{\mathcal{N}}$ -correlated detunings		48
Total Systematic	29	310
Statistical		373
Total Uncertainty		486

$$d_e = (4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \times 10^{-30} \ e \cdot \text{cm}$$

- 2 months of data, ~45 days, 350 hours of EDM, 150 hours of systematic monitoring.
- Bootstrap M-estimator analysis to account for more points in the tails.
- ACME II uncertainty a factor of 12 smaller than ACME I.
- ACME II result:

Parameter	Shift	Uncertainty
$\mathcal{E}^{\mathrm{nr}}$ correction	-56	140
$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$ corrections	77	125
$\partial \mathcal{B}_z / \partial z$ and $\partial \mathcal{B}_z / \partial y$ corrections	7	59
$\omega_{\rm ST}^{N\dot{\mathcal{E}}}$ correction	0	1
$\phi^{\mathcal{E}}$ -correction	1	1
Other \mathcal{B} -field gradients total (4)		134
$P_{\rm rof}^{\mathcal{NE}}$		109
Non-Reversing \mathcal{B} -field (\mathcal{B}_z^{nr})		106
Transverse \mathcal{B} -fields $(\mathcal{B}_x^{nr}, \mathcal{B}_u^{nr})$		92
Refinement/readout laser detunings		76
$\tilde{\mathcal{N}}$ -correlated detunings		48
Total Systematic	29	310
Statistical		373
Total Uncertainty		486

$$d_e = (4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \times 10^{-30} \ e \cdot \text{cm}$$

 $d_e | < 1.1 \times 10^{-29} \ e \cdot \text{cm}$ (90% confidence interval)

Electron EDM progress in this millennia

Feng, Naturalness and the Status of Supersymmetry. Annual Review of Nuclear and Particle Science (2013)

ACME III

- Progress underway for more ACME technique upgrades.
- Already understood and suppressed source of excess noise in ACME II dataset, which corresponds to factor of ~3 in signal (~1.7 in EDM sensitivity).
- Electrostatic/magnetic lens could increase molecular flux by up to factor of x10.
- Currently detecting 5% of molecules. Optical cycling could give us 20x photons per molecule, which would make us molecule shot-noise

ACME Collaboration

Pl's (left to right) David DeMille John Doyle Gerald Gabrielse

Graduate students (left to right) Cris Panda Cole Meisenhelder Zack Lasner Daniel Ang Xing Wu Jonathan Haefner (right upper corner) Adam West Brendon O'Leary Vitaly Andreev Elizabeth Petrik Nick Hutzler

