Dark matter self-interactions: Galactic rotation curves and composite asymmetric dark matter

Ayuki Kamada (IBS-CTPU)

Based on <u>AK</u>, Manoj Kaplinghat, Andrew B. Pace, and Hai-bo Yu, PRL, 2017 Masahiro Ibe, <u>AK</u>, Shin Kobayashi, and Wakutaka Nakano, arXiv: 1805.06876

Oct. 5, 2018 @ ECT*

Dark matter

Accumulated evidences from observations of the Universe

Known properties

- long-lived over the age of the Universe
- accounting for about 30% of the present energy density of the Universe $\Omega_{\rm dm}h^2 \simeq 5\Omega_{\rm baryon}h^2 \simeq 0.12$
- feebly-interacting with photon and baryon
- not too hot to smear out primordial density contrast

No SM particle satisfies the properties

→ long-standing mystery in cosmology and particle physics

Particle dark matter

Why is a dark matter particle long-lived?

- new \mathbb{Z}_2 symmetry
 - -e.g., matter parity: $U(1)_{B-L} \rightarrow (-1)^{3(B-L)}$
 - thermal freeze-out $\rightarrow \Omega_{\rm dm} h^2 \simeq 0.12$

→ WIMP

- new accidental $U(1)_{B'}$ (like $U(1)_B$ for proton)
 - decay operator: non-renormalizable $\Lambda_{\rm QCD'}/M_* \ll 1$
 - B' number asymmetry cogenesis $Y_{\Delta B'} \sim Y_{\Delta B}$

 $m_{N'} \sim \Lambda_{\text{QCD}'} = \mathcal{O}(1) \text{ GeV} \rightarrow \Omega_{\text{dm}} h^2 \simeq 5\Omega_{\text{baryon}} h^2 \simeq 0.12$

→ composite asymmetric dark matter

Asymmetric dark matter

Portal operator

$$\mathscr{L}_{\text{portal}} = \frac{1}{M_*^n} \mathscr{O}_{\text{SM}} \mathscr{O}_D : \text{n+4 dim.} \qquad \begin{array}{l} * \text{ if no particle charged} \\ \text{under both gauge groups} \\ \mathscr{O}_{\text{SM}(D)} : \text{SM (D) gauge neutral, but } U(1)_{B-L} (U(1)_{B'}) \text{ charged} \\ \rightarrow \text{ at high energy (temperature)} U(1) \qquad \subset U(1) \qquad \times U(1) \end{array}$$

→ at high energy (temperature) $U(1)_{B-L+\alpha B'} \subset U(1)_{B-L} \times U(1)_{B'}$

Thermal history outline

SM dark $Y_{\Delta(B-L)} \sim Y_{\Delta B'}$ portal operator decoupled $T \sim M_*(M_*/M_{\text{pl}})^{1/(2n-1)}$ $U(1)_{B-L} Y_{\Delta(B-L)}$ $U(1)_{B'} Y_{\Delta B'}$

Thermal history continued

SM

sphaleron process decoupled $T \sim 100 \text{ GeV}$ $U(1)_B \times U(1)_L \quad Y_{\Delta B} \quad Y_{\Delta L}$

QCD phase transition

$$T \sim \Lambda_{\rm QCD}$$

pair annihilation of nucleons into pions

$$\rightarrow \Omega_{\rm baryon} h^2 \propto \Lambda_{\rm QCD} Y_{\Delta B}$$

Composite DM naturally features efficient annihilation of the symmetric component $(\sigma v) \sim 4\pi/\Lambda_{\rm QCI}^2$

QCD' phase transition $T \sim \Lambda_{\rm QCD'}$

dark

pair annihilation of nucleon's

$$\rightarrow \Omega_{\rm DM'} h^2 \propto \Lambda_{\rm QCD'} Y_{\Delta B'}$$

What I will address

Part 1: Simple model

Model setup: QCD×QED-like confinement sector

- dark nucleons as DM

 $p' \sim u'u'd' \quad n \sim u'd'd'$

- * discussion applies to isospin quartet DM
- small quark mass term

$$\mathscr{L}_{\text{mass}} = m_{u'}u'\overline{u}' + m_{d'}d'\overline{d'}$$

→ dark pions

$$\pi^{'+} \sim u' \overline{d'} \qquad \pi^{'0} \sim u' \overline{u'} - d' \overline{d'}$$
$$\pi^{'-} \sim d' \overline{u'}$$

	$SU(3)_D$	$U(1)_{D}$	$U(1)_{B-L+B}$
u'	3	2/3	1/3
$\overline{\mathcal{U}}'$	3	-2/3	-1/3
ď	3	-1/3	1/3
$\overline{d'}$	3	1/3	-1/3

* naturalness → chiral theory
 - SM copy
 → harmful neutrino's

Generation and transfer of asymmetry

 $U(1)_{B-L+B'} \to (-1)^{3(B-L+B')}$

Right-handed neutrinos \overline{N} w/ soft breaking mass M_R

- thermal leptogenesis $\rightarrow B L$ asymmetry $T \sim M_R > 10^9 \,\text{GeV}$
- thermal leptogeneous $\overline{}_{-}$ = $\overline{}_{-}$ $\overline{}_{$
- generation of the portal operator

 $\begin{array}{c|c} SU(3)_D & U(1)_D & U(1)_{B-L+B'} \\ \hline \widetilde{d'} & \mathbf{3} & -1/3 & 1/3 \end{array}$ Scalar quark $\widetilde{d'}$ w/ mass M_C

Entropy transfer

$$U(1)_D$$
 breaking scalar \widetilde{e}' $\mathscr{L}_{A'} = \frac{\epsilon}{2} F_{\mu\nu} F^{\prime\mu\nu} + \frac{m_{\gamma'}}{2} A^{\prime}_{\mu} A^{\prime\mu}$

Dark pions annihilate/decay into dark photon $m_{\gamma'} < m_{\pi'}$

$$\rightarrow \quad \Gamma_{\gamma' \to e\bar{e}} = 0.3 \text{ s} \times \left(\frac{\epsilon}{10^{-10}}\right)^2 \left(\frac{m_{\gamma'}}{100 \text{ MeV}}\right)$$

- decay after neutrino decoupling $T \sim 1 \text{ MeV} \leftrightarrow t \sim 1 \text{ s}$

 \rightarrow transferred entropy heating only *e* and γ

 \rightarrow lower bound on $\Gamma_{\gamma' \rightarrow e\bar{e}}$

- decay before neutrino decoupling

 \rightarrow thermalized dark photon heating only *e* and γ

 \rightarrow lower bound on $m_{\gamma'}$

DM direct detection

$$p' \sim_{\epsilon} p' = p$$
 interaction
- DM direct detection \rightarrow upper bound on ϵ
- DM mass: $\frac{1}{M_C^2 M_R} \overline{u'} \overline{d'} \overline{d'} LH \rightarrow m_{DM} \simeq 8.5 \,\text{GeV}$ Weinberg, "Cosmology"
- $Y_{p'}/Y_{n'}$: freezes out at decoupling of conversion processes
 $Y_{p'}/Y_{n'} = e^{(m_{n'}-m_{p'})/T}$ $T \sim m_{\pi'}/20-30 \leftrightarrow \text{dark pion decoupling}$
 $m_{n'} - m_{p'} = \mathcal{O}(m_{u'/d'})$ $m_{\pi'}^2 = \mathcal{O}\left(m_{u'/d'}\Lambda_{\text{QCD'}}\right) \rightarrow Y_{p'}/Y_{n'} \sim 1$
 $m_n - m_p \simeq 1.2 \,\text{MeV}$ $m_\pi \simeq 140 \,\text{MeV}$ for reference
* $m_{\eta'} < B_{d'} \rightarrow \text{dark nucleosynthesis proceeds}$ Krnjaic and Sigurdson,
PLB, 2015...

- impacting DM direct detection

Dark photon parameter plot

Part 2: Self-interacting dark matter

SM nucleon elastic scattering cross section

- diminishing w/ increasing velocity

Self-interacting dark matter

DM self-scattering cross section indicated by small-scale puzzles

Diversity of inner rotation curves

Prediction: inner circular velocity is almost uniquely determined by outer circular velocity

 $V_{\rm max} = 80-100 \, \rm km/s$ 100 \leftrightarrow observations 80 show diversity 60 Oman *et al.*, MNRAS, 2015 40 UGC 5721 UGC 11707 circular velocity DMO sims: LG-MR + EAGLE-HR DMO sims: LG-MR + EAGLE-HR, $V_{\rm max} = 89 \text{ km s}^{-1} \pm 10\%$ [113] 20 $V_{\rm max} = 101 \ {\rm km \ s^{-1}} \ \pm 10\%$ [73] $V_{
m circ}~[
m km~
m s^{-1}$ Hydro sims: LG-MR + EAGLE-HR Hydro sims: LG-MR + EAGLE-HR, $V_{\rm max} = 89 \ {\rm km \ s^{-1}} \pm 10\%$ [113] $V_{\rm max} = 101 \ {\rm km \ s^{-1}} \pm 10\%$ [73] \mathbf{C} 80 60 * unique prediction 40 LSB F583-1 IC 2574 is related with the DMO sims: LG-MR + EAGLE-HR DMO sims: LG-MR + EAGLE-HR, $V_{\rm max} = 88 \text{ km s}^{-1} \pm 10\%$ [120] $V_{\rm max} = 80 \ {\rm km \ s^{-1}} \pm 10\%$ [149] 20 Hydro sims: LG-MR + EAGLE-HR Hydro sims: LG-MR + EAGLE-HR, concentration-mass $V_{\rm max} = 88 \ {\rm km \ s^{-1}} \pm 10\%$ [120] $V_{\rm max} =$ 80 km s⁻¹ ±10% [149] 12 2 12 relation 2 8 10 0 6 8 10 0 6 14 Radius [kpc]

Key observation

Self-scattering leads to thermalization of DM halos at $r < r_1$ where self-scattering happens at least one time until now

 $\sigma/m \rho(r_1) v(r_1) t_{\text{age}} = 1$

$$\rho_{\rm DM}(\vec{x}) = \rho_{\rm DM}^0 \exp(-\phi(\vec{x})/\sigma^2)$$
$$\Delta \phi = 4\pi G(\rho_{\rm DM} + \rho_{\rm baryon})$$

 inner profile is exponentially sensitive to baryon distribution

Baryons form complex objects, which show a large diversity

 \rightarrow SIDM particles, redistributed according to formed baryonic objects, can show a diversity

 * do not rely on unconstrained subgrid astrophysical processes take into account observed baryon distribution

Demonstration with stellar disks

Impacts in observed galaxies

 Observed stellar disk makes SIDM inner circular velocity ~ 3 times higher

→ reproducing flat
 circular velocity at
 10-20 kpc

Radius (kpc)

Diversity in stellar distribution

Similar outer circular velocity and stellar mass, but different stellar distribution

- compact → redistribute SIDM significantly
- extended → unchange SIDM distribution

Intrinsic scatter

90

80

70

60

50 [x] 50

 $V_{\rm circ}^{\rm Circ}$

20

Oman et al., MNRAS, 2015

Hydro sims: LG-MR + EAGLE-HR,

 $V_{\rm max} =$ 77 km s⁻¹ ±10% [165] DMO sims: LG-MR + EAGLE-HR,

 $V_{\rm max} \!=\! {\bf 77} \ {
m km} \ {
m s}^{-1} \ \pm {\bf 10\%}$ [165]

Summary

Asymmetric composite DM is a plausible framework

- DM stability: dark baryon number
- DM relic abundance: co-genesis

Simple QCD×QED-like dark sector as a working example

- right-handed neutrino: see-saw mechanisms, thermal leptogenesis, generating portal operator
- dark photon decay: transferring dark sector entropy to SM sector
- kinetic mixing: mediating dark proton-proton scattering

Summary

DM nucleons can realize a velocity-dependent self-scattering cross section indicated by small-scale puzzles

- $\sigma/m \gtrsim 1 \text{cm}^2/\text{g}$ for $v \sim 10\text{-}100 \text{ km/s}$
- $\sigma/m \lesssim 0.1 \text{cm}^2/\text{g}$ for $v \sim 1000 \text{ km/s}$

New puzzle: diversity of inner rotation curves

- SIDM can explain diversity by changing its distribution according to formed baryon structure (disks)

Thank you for your attention

Explaining tiny kinetic mixing

 $\mathbf{OT} \mathbf{I} (\mathbf{A})$

Origin of tiny kinetic mixing $\epsilon \sim 10^{-10}$?

Ibe, <u>AK</u>, Kobayashi, Kuwahara and Nakano, work in progress

Grand unifications in both SM and dark sectors

$$SU(5) \quad SU(4)$$

$$6: (u', \overline{u}') \quad 4: (d', e')$$

$$\overline{4}: (\overline{d'}, \overline{e'}) \quad \widetilde{4}: (\overline{d'}, \widetilde{e'})$$

$$\mathscr{L}_{\text{mix}} \sim \frac{1}{M_{\text{pl}}^2} \text{Tr} \left(F_{\text{GUT}\mu\nu} \Sigma_{\text{GUT}} \right) \text{Tr} \left(F_{\text{GUT}'}^{\mu\nu} \Sigma_{\text{GUT}'} \right) \quad \Sigma: \text{ adjoint scalar}$$

$$\rightarrow 10^{-10} \left(\frac{v_{24}}{10^{16} \,\text{GeV}} \right) \left(\frac{v_{15}}{10^{10} \,\text{GeV}} \right) F_{\mu\nu} F'^{\mu\nu}$$

$$\sim m_C > M_R > 10^9 \,\text{GeV}$$

OTI(P)

Charge of breaking scalar

Ibe, <u>AK</u>, Kobayashi, Kuwahara and Nakano, work in progress

 $U(1)_D$ charge determines $\pi' - \widetilde{e}$ mixing

$$SU(4) \qquad \qquad SU(3)_D \quad U(1)_D \quad U(1)_{B-L+B'}$$

$$\widetilde{e} \qquad 1 \qquad -1 \qquad 0$$

 \rightarrow Yukawa interactions $\widetilde{e}' u' \overline{d}' \quad \widetilde{e}'^{\dagger} \overline{u}' d'$

- entropy transfer through π' - \widetilde{e} mixing + Higgs portal $|\widetilde{e}'|^2 |H|^2$
- DM direct detection through Higgs portal?

Small scale crisis I

When *N*-body simulations in the ACDM model and observations are compared, problems appear at (sub-)galactic scales: **small scale crisis**

Small scale crisis II

cusp vs core problem

N-body (DM-only) simulations in the ΛCDM model \rightarrow common DM profile independent of halo size: NFW profile

Small scale crisis III

N-body (DM-only) simulations in ∧CDM model → ~10 subhalos with deepest potential wells in Milky Way-size halos do not host observed counterparts (dwarf spheroidal galaxies)

Concentration-mass relation

Dark matter self-interaction

SIDM structure formation starts with the same linear (initial) matter power spectra as CDM, but self-interactions become important as structure formation proceeds $\leftrightarrow \rho$ increases

SIDM halo - velocity dispersion

SIDM halo - mass density

