DARK MATTER IN COMPOSITE HIGGS MODELS

ADRIAN CARMONA BERMUDEZ PRISMA CLUSTER OF EXCELLENCE MAINZ INSTITUTE FOR THEORETICAL PHYSICS

INTERDISCIPLINARY APPROACH TO QCD - LIKE COMPOSITE DARK MATTER. ECT* TRENTO

October 4, 2018 Slide 1/35

TRENTO ISTITUTO NAZIONALE PER L'ASSICURAZIONE CONTRO GLI INFORTUNI SUL LAVORO

COMPOSITE HIGGS

- * One interesting solution to the hierarchy problem is making the Higgs composite, the remnant of some new strong dynamics KAPLAN GEORGI '84
- $\star\,$ It is particularly compelling when the Higgs is the pNGB of some new strong interaction. Something like pions in QCD

AGASHE, CONTINO, POMAROL '04

They can naturally lead to a light Higgs $m_\pi^2 = m_h^2 \sim g_{\rm el}^2 \Lambda^2 / 16 \pi^2$

COMPOSITE HIGGS

- * One interesting solution to the hierarchy problem is making the Higgs composite, the remnant of some new strong dynamics KAPLAN GEORGI '84
- $\star\,$ It is particularly compelling when the Higgs is the pNGB of some new strong interaction. Something like pions in QCD

AGASHE, CONTINO, POMAROL '04

They can naturally lead to a light Higgs $m_\pi^2 = m_h^2 \sim g_{\rm el}^2 \Lambda^2 / 16 \pi^2$

COMPOSITE HIGGS

- The gauge contribution is aligned in the direction that preserves the gauge symmetry WITTEN '83
- * However, the linear mixings $\lambda_L^q \bar{q}_{\alpha L} (\Delta_q^\alpha)^I (\mathcal{O}_L^q)_I + \lambda_R^t \bar{t}_R \Delta_t^I (\mathcal{O}_R^t)_I + h.c.$ needed to generate the fermion masses

break the NGB symmetry and will be also responsible for EWSB

A LOW ENERGY THEORY

Strongly interacting physics is tough but we can learn a big deal of what happens to the pNGBs with the help of

- \star the CCWZ construction
- \star a spurion analysis

If
$$U = \exp(i\Pi^a X^a/f)$$
 and $\omega_\mu = -iU^{-1}D_\mu U = d^a_\mu X^a + E^i_\mu T^i$,

$$\mathcal{L}_{\Pi} = \frac{1}{2} \mathbf{f}^{2} \mathrm{Tr}\left(\mathbf{d}_{\mu} \mathbf{d}^{\mu}\right) + \mathcal{O}(\partial^{4}) + \mathbf{V}_{\mathrm{gauge}}(\Pi) + \mathbf{V}_{\mathrm{ferm}}(\Pi) + \mathcal{L}_{\mathrm{Yuk}}(\Pi, \psi_{i})$$

where

*
$$V(\Pi) = V_{\mathsf{ferm}}(\Pi) + V_{\mathsf{gauge}}(\Pi)$$
 is loop induced

* $\mathcal{L}_{\mathsf{Yuk}}(\Pi, \psi_i)$ is tree level

and both are dictated by the breaking of the global symmetry

A LOW ENERGY THEORY

We can make some spurion analysis using the dressed spurions

$$\Delta_{qD}^{\alpha}(\Pi) = U^{-1} \Delta_{q}^{\alpha} U = \bigoplus_{m} \Delta_{q}^{\alpha m}(\Pi), \qquad \dots$$

and some naive dimensional analysis

$$V_{\rm ferm}(\Pi) \sim m_*^4 rac{N_c}{16\pi^2} \left[\left(rac{\lambda}{g_*}
ight)^2 \sum_j c_j V_j(\Pi) + \left(rac{\lambda}{g_*}
ight)^4 \sum_k c'_k V'_k(\Pi)
ight] + \dots$$

with $m_* \sim g_* \mathit{f}$, and

$$V_{j_0}(\Pi) \propto \Delta_q^{\alpha j_0 \dagger}(\Pi) \Delta_q^{\alpha j_0}(\Pi), \qquad \dots$$

Similarly,

$$\mathcal{L}_{\mathsf{Yuk}} \supset \sum_{m} y_{m} \bar{q}_{\alpha L} \Delta_{q}^{\alpha m}(\Pi) t_{R}$$

THE QUESTION OF DM

- $\star\,$ One way to have a DM candidate is to add some pNGB which are stable via some parity of the strong sector
- * One typically uses the fact that for a symmetric coset, $[X^a, X^b] = i f_{abk} T^k$ and therefore,

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} [\Pi, \partial_{\mu} \Pi]_X - \frac{1}{6f^3} [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \frac{1}{24f^4} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \dots,$$

and

$$\mathcal{L}_{\sigma} = \frac{1}{2} \mathbf{f}^{2} \operatorname{Tr} \left(\mathbf{d}_{\mu} \mathbf{d}^{\mu} \right) + \mathcal{O}(\partial^{4}) \sim 1 + \frac{1}{\mathbf{f}^{2}} + \frac{1}{\mathbf{f}^{4}} + \ldots + \mathcal{O}(\partial^{4})$$

THE QUESTION OF DM

- $\star\,$ One way to have a DM candidate is to add some pNGB which are stable via some parity of the strong sector
- * One typically uses the fact that for a symmetric coset, $[X^a, X^b] = i f_{abk} T^k$ and therefore,

$$\begin{aligned} d_{\mu} &= \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} [\Pi, \partial_{\mu} \Pi]_{X} - \frac{1}{6f^3} [\Pi, [\Pi, \partial_{\mu} \Pi]]_{X} \\ &+ \frac{1}{24f^4} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]]_{X} + \dots, \end{aligned}$$

and

$$\mathcal{L}_{\sigma} = \frac{1}{2} \mathbf{f}^{2} \operatorname{Tr} \left(\mathbf{d}_{\mu} \mathbf{d}^{\mu} \right) + \mathcal{O}(\partial^{4}) \sim 1 + \frac{1}{\mathbf{f}^{2}} + \frac{1}{\mathbf{f}^{4}} + \ldots + \mathcal{O}(\partial^{4})$$

THE QUESTION OF DM

★ We can then promote the accidental \mathbb{Z}_2 symmetry of Tr($d_\mu d^\mu$) to a symmetry of the strong sector under which some pNGBs will be odd

$$H \rightarrow H \qquad \Phi \rightarrow -\Phi$$

★ One needs to be sure that this parity is respected by the fermion linear mixings

 $\mathcal{L}_{\text{mix}} \sim \lambda_q \bar{q}_{\alpha L} (\Delta_q^{\alpha})^I (\mathcal{O}_q)_I + \lambda_u \bar{u}_R (\Delta_u)^I (\mathcal{O}_u)_I + \lambda_d \bar{d}_R (\Delta_d)^I (\mathcal{O}_d)_I + \text{h.c.} .$

and therefore by $V(\Pi)$ and $\mathcal{L}_{Yuk}(\Pi, \psi_i)$

 \star Then the lightest $\mathbb{Z}_2\text{-odd}$ scalar will be stable and a DM candidate!

COMPOSITE DARK MATTER SOME RELEVANT EXAMPLES

- \star $SO(6)/SO(5)\cong$ $SU(4)/Sp(4)\Rightarrow$ $4\oplus 1$ gripaids et al '09 frigerio et al '12
- $\star \ \textit{SO}(7)/\textit{SO}(6) \Rightarrow \textbf{4} \oplus \textbf{1} \oplus \textbf{1}$

DM singlet and real singlet responsible for EW PT CHALA ET AL '16 Complex DM singlet BALKIN ET AL '17

 \star $SO(7)/G_2 \Rightarrow {f 4} \oplus {f 3}$ not symmetric! Chala. AC. BALLESTEROS '17

DM EW triplet

DM singlet plus a charged scalar

- \star SO(6) imes SO(4) imes SO(2): $\mathbf{4} \oplus \mathbf{4}$ mrazek et al 11
- \star SU(7)/[SU(6) imes U(1)]: complex $\mathbf{2}\oplus\mathbf{2}\oplus\mathbf{1}\oplus\mathbf{1}$ no SO(4) barnard et al 17
- \star SU(4) imes SU(4)/SU(4): $\mathbf{4} \oplus \mathbf{4} \oplus \mathbf{1} \oplus \mathbf{3} \oplus \mathbf{3}$ we et al 17

THE CASE OF THE SINGLET GRIPAIOS, POMAROL, RIVA, SERRA 09, FRIGERIO, POMAROL, RIVA, URBANO

Let's study first the singlet case. Then

$$\mathcal{L}_{\sigma} = |D_{\mu}H|^{2} \left[1 - \frac{S^{2}}{3f^{2}}\right] + \frac{1}{2} (\partial_{\mu}S)^{2} \left[1 - 2\frac{|H|^{2}}{3f^{2}}\right] + \frac{1}{3f^{2}} \partial_{\mu}|H|^{2} (S\partial_{\mu}S) + \cdots$$

plus

$$V(H,S) \supset \mu_S^2 S^2 + \lambda S^2 |H|^2, \quad \mathcal{L}_{\mathsf{Yuk}} \supset \frac{S^2}{t^2} \left(c_t y_t \bar{q}_L \tilde{H} t_R + c_b y_b \bar{q}_L H b_R + \text{h.c.} \right)$$

- \star The derivative interactions come with $\mathcal{O}(1)$ numbers fixed by the coset
- $\star~c_t, c_b, \mu_S^2$ and λ depend on the specific details of the global symmetry breaking

$$\lambda \lesssim \mu_{\rm S}^2/{\rm f}^2 \Rightarrow {\rm m}_{\rm s}^2 = \mu_{\rm s}^2 + \lambda {\rm v}^2 \approx \mu_{\rm s}^2$$

THE CASE OF THE SINGLET

GRIPAIOS, POMAROL, RIVA, SERRA O9 FRIGERIO, POMAROL, RIVA, URBANO 12

We can consider three main cases

 \star *S* shift symmetry is broken by the top quark:

$$c_t \sim 1, \quad \lambda \approx \frac{N_c}{16\pi^2} cy_t^2 g_\rho^2 \lesssim \lambda_h, \qquad m_s \sim f \gg m_h$$

 \star S shift symmetry is broken by the bottom quark

$$c_t = 0, \quad c_b \sim 1, \quad \lambda \approx \frac{N_c}{16\pi^2} \bar{c} y_b^2 g_\rho^2 \ll \lambda_h, \quad m_s \approx c' \sqrt{\frac{N_c}{16\pi^2}} \lambda_{b_R} m_
ho$$

 \star S shift symmetry is preserved by the SM fermions LATER

THE CASE OF THE SINGLET DIREC DETECTION

The derivative coupling is irrelevant for direct detection, so one should only care of the portal coupling $\lambda S^2 |{\cal H}|^2$

 \star In the top driven case, there is a $m_S^2\mbox{-suppressed}$ tree-level contribution proportional to λ

 \star In the bottom driven case, direct detection goes via the S²bb vertex

$$\int_{b}^{S} \sigma = \frac{m_{N}^{4} \tilde{f}_{N}^{2}}{4\pi f^{4} m_{S}^{2}} \sim 10^{-47} cm^{2} \left(\frac{1 \,\mathrm{TeV}}{f}\right)^{4} \left(\frac{100 \,\mathrm{GeV}}{m_{S}}\right)^{2}$$

RELIC ABUNDANCE

if

The singlet S can provide the DM relic abundance via the usual freezout mechanism

$$\Omega h^{2} \sim \frac{3 \times 10^{-27}}{\langle \sigma v \rangle} \,\mathrm{cm \, s^{-1}} \,,$$
if $\Omega h^{2} \sim [\Omega h^{2}]_{\mathrm{DM}} \sim 0.11$, it
must have
$$\langle \sigma v \rangle \sim 3 \times 10^{-26} \,\mathrm{cm \, s^{-1}}$$

x=m/T (time \rightarrow)

RELIC ABUNDANCE

Dominant anihilation channels

- ★ At large mass,
 - $t\bar{t}$ via $1/f \times (v/f)$ contact interaction.
 - hh, WW, ZZ via $1/f^2(S\partial_\mu S)\partial^\mu |H|^2$ Goldstone equivalence theorem
- \star At very small mass, $b\bar{b}$

Antiproton spectrum (e.g. PAMELA)

MARZOCCA, URBANO, 14

Bounds from WW decay from DM annihilation in the center of the Milky Way (HESS and projected CTA) can also be important

COLLIDER SEARCHES

\star EWPT: modification of *hVV* coupling

$$R_{hVV} = \frac{g_{hVV}}{g_{hVV}^{SM}} = \sqrt{1 - v^2/f^2} \quad \Rightarrow \quad f \gtrsim 900 \text{ GeV}$$

GHOSH, SALVAREZZA, SENIA 15

 $\star\,$ Modification of Higgs production and decay

$$R_{\gamma} = \frac{\sigma(gg \to h) \times BR(h \to \gamma\gamma)}{\sigma_{\mathsf{SM}}(gg \to h) \times BR_{\mathsf{SM}}(h \to \gamma\gamma)} \sim 1 + \mathcal{O}\left(\frac{v^2}{f^2}\right) \Rightarrow f \gtrsim 800 \text{ GeV}$$

- * Monojet searches are not competitive
- \star Invisible Higgs decay: If $m_S < m_h/2$ the Higgs can decay into SS

$$\Gamma_{\rm inv}(h\to SS)\approx \frac{m_h^3 {\rm v}^2}{32\pi f^4(1-{\rm v}^2/f^2)}\sqrt{1-\frac{4m_{\rm S}^2}{m_h^2}}, \qquad {\rm BR}_{\rm inv}=\frac{\Gamma_{\rm inv}}{\Gamma_{\rm SM}^\xi+\Gamma_{\rm inv}}$$

 $BR_{inv} < 0.24$ @ 95 C.L.

COLLIDER SEARCHES

The presence of light top partners $m_\Psi < m_* = g_* f$ is a natural expectation in these models. Assuming they come in a 5 of SO(5) SERRA 15

$$\begin{split} &\mathsf{BR}(\mathit{T}, \mathit{X}_{2/3} \to \mathit{ht}) \sim \mathsf{BR}(\mathit{T}, \mathit{X}_{2/3} \to \mathit{Zt}) \sim 0.5 \\ &\mathsf{BR}(\mathit{B} \to \mathit{W}^- \mathit{t}) \sim \mathsf{BR}(\mathit{X}_{5/3} \to \mathit{W}^+ \mathit{t}) \sim \mathsf{BR}(\mathit{T}' \to \mathit{St}) \sim 1 \end{split}$$

ANOMALOUS COUPLINGS

 \star In principle, SO(6)/SO(5) admits a Wess-Zumino-Witten term

- * The specific value of c_W will depend on its UV completion but known examples lead to $c_W \neq 0$ FERRETI 16
- \star There are other cosets like $SO(7)/SO(6), SO(7)/G_2, \ldots$ which are not anomalous

BALKIN, RUHDORFER, SALVIONI, WEILER 17

- \star The unbroken SO(6) subgroup of the coset SO(7)/SO(6) contains a SO(2) symmetry exchanging S and a new scalar singlet S'
- * Contrary to the previous cases, $SO(2) \cong U(1)_S$ is not external to the algebra, so no further assumptions of the strong sector are required
- * One only needs to assure that the fermion linear mixings respect such subgroup!
- * It can even be gauged! BALKIN, RUHDORFER, SALVIONI, WEILER 17

BALKIN, RUHDORFER, SALVIONI, WEILER 18

* We make $SO(2) \cong U(1)_D$ gauge, and embed all fermions in such a way that they preserve the shift symmetry. Then

$$m_{\mathbb{S}} \sim g_D f \approx 100 \,\mathrm{GeV}\left(\frac{\alpha_D}{10^{-3}}\right)^{1/2} \left(\frac{m_{
ho}}{5 \,\mathrm{TeV}}\right), \qquad \lambda = 0 \,\,(\mathrm{at \,\,one \,\,loop})$$

 Kinetic mixing can be forbidden with the help of an accidental symmetry

$$|(\partial^{\mu} - ig_{D}A^{\mu}_{D})\mathbb{S}|^{2} - \frac{1}{4}\textit{F}_{D}^{\mu\nu}\textit{F}_{D\mu\nu} + \frac{1}{2}m_{\gamma_{D}}^{2}\textit{A}_{D\mu}A^{\mu}_{D}$$

★ This implies that the dark photon is stable if $m_{\gamma_D} < 2m_{S}$ (m_{γ_D} Stückelberg mass)

BALKIN, RUHDORFER, SALVIONI, WEILER 18

$m_{\gamma_D} < 6 \times 10^{-4} \; \mathrm{eV}$	$\checkmark/\operatorname{X}$	γ_D is dark radiation today,
		strong constraints from SE of $\chi\chi^*\to {\rm SM}$
$6 \times 10^{-4} \text{ eV} < m_{\gamma_D} \lesssim 3m_{\chi}/25$	х	γ_D is relativistic at freeze-out,
		ruled out by warm DM bounds/overabundant
$3m_\chi/25 < m_{\gamma_D} < m_\chi$	х	γ_D is non-relativistic at freeze-out, overabundant
$m_\chi \lesssim m_{\gamma_D} < 2m_\chi$	\checkmark	both γ_D and χ are cold DM
$2m_\chi < m_{\gamma_D}$	\checkmark	γ_D is unstable

- * The group is non-anomalous but $SO(7)/G_2$ is not symmetric!
- \star It delivers a 7 of G_2 , that decomposes under $SU(2) \times SU(2) \subset G_2$ as

$$7 = (2, 2) \oplus (3, 1)$$

 \star Depending on which SU(2) is weakly gauged, it means that

$$\mathbf{7} = \mathbf{2}_{\pm 1/2} + \mathbf{3}_0$$
 or $\mathbf{7} = \mathbf{2}_{\pm 1/2} + \mathbf{1}_{\pm 1} + \mathbf{1}_0$

under the EW group

 \star If the \mathbb{Z}_2 is successfully enforced it will provide a natural version of Higgs portal DM or the Inert Triplet Model

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} [\Pi, \partial_{\mu} \Pi]_X - \frac{1}{6f^3} [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \frac{1}{24f^4} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \dots$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

with $c_{1,2} \lesssim 1$ numbers encoding the details of the UV dynamics

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi + \frac{1}{f^2} g(\Pi/f) \left[\Pi, \partial_{\mu} \Pi\right]_{X} + \frac{1}{f^3} h(\Pi/f) \left[\Pi, [\Pi, \partial_{\mu} \Pi]\right]_{X}$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

with $c_{1,2} \lesssim 1$ numbers encoding the details of the UV dynamics

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi + \frac{1}{f^2} g(\Pi/f) \left[\Pi, \partial_{\mu} \Pi \right]_{X} + \frac{1}{f^3} h(\Pi/f) \left[\Pi, [\Pi, \partial_{\mu} \Pi] \right]_{X}$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

with $c_{1,2} \lesssim 1$ numbers encoding the details of the UV dynamics

A NATURAL INERT TRIPLET MODEL

CO - ANNIHILATIONS

 $\star\,$ EW gauge bosons induce a radiative splitting between the neutral and the charged components

$$\Delta m_{\Phi} = g m_W \sin^2 \theta_W / 2 \sim 166 \, \text{MeV}$$

 \star The coannihilation is dominated by gauge interactions

 \star Sommerfeld enhancement and bound state production are important! $gm_{\Phi}/m_W\gg 1$ CIRELLI ET AL 07

A NATURAL INERT TRIPLET MODEL

CO - ANNIHILATIONS RECAST OF CIRELLI ET AL 07

A NATURAL INERT TRIPLET MODEL

A NATURAL INERT TRIPLET MODEL DIRECT DETECTION

 $\star\,$ There is a $m_{\Phi}^2\text{-suppressed}$ tree-level contribution proportional to $\lambda_{H\Phi}$

 \star But there are also m_{Φ} -independent loop induced contributions

They were computed in the heavy WIMP effective theory HILL. SOLLON_13

$$\sigma(\eta N \to \eta N)_{\rm HWET} = 1.3^{+0.4+0.4}_{-0.5-0.3} \times 10^{-2} \, {\rm zb}$$

A NATURAL INERT TRIPLET MODEL DIRECT DETECTION

A COMPOSITE 2HDM

MA, CACCIAPAGLIA 15; WU, MA, ZHANG, CACCIAPAGLIA 17

 $\star~{\it SU(N)_{TC}}$ with 4 flavors, leading to ${\it SU(4)}\times{\it SU(4)}\rightarrow{\it SU(4)_D}$

	SU(N)	$SU(2)_L$	$U(1)_Y$
$\psi_L = \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array}\right)$		2	0
$\psi_{R} = \left(\begin{array}{c} \psi_{2} \\ \psi_{3} \\ \psi_{4} \end{array}\right)$		1 1	1/2 -1/2

* $\mathbf{15} = (\mathbf{2}, \mathbf{2}) + (\mathbf{2}, \mathbf{2}) + (\mathbf{3}, \mathbf{1}) + (\mathbf{1}, \mathbf{3}) + (\mathbf{1}, \mathbf{1})$ NGBs parametrized as

$$\Sigma = \exp\left(i\Pi/f\right) \qquad \Pi = \frac{1}{2} \left(\begin{array}{cc} \sigma_i \Delta^i + s/\sqrt{2} & -i\Phi_H \\ i\Phi_H^\dagger & \sigma_i N^i - s/\sqrt{2} \end{array} \right)$$

 \star There is a parity symmetry

$$\Sigma \to P \Sigma^T P, \qquad P = \begin{pmatrix} \sigma_2 & 0 \\ 0 & -\sigma_2 \end{pmatrix}, \quad \begin{cases} s \to s, H_1 \to H_1 \\ H_2 \to -H_2, \Delta \to -\Delta, N \to -N \end{cases}$$

A COMPOSITE 2HDM

WU, MA, ZHANG, CACCIAPAGLIA 17

 \star Four main parameters: $\sin^2 \theta,$ the top Yukawa $Y_t,~Y_0$ and

$$\delta = \frac{m_{\psi_L} - m_{\psi_R}}{m_{\psi_L} + m_{\psi_R}},$$

 $\star\,$ The $Z_2\text{-odd}$ states mix to each other, for

- $-\delta > 0$: DM is roughly the neutral component of the $(\mathbf{1},\mathbf{3})$
- $-~\delta < 0:$ DM is roughly the neutral component of $({\bf 2},{\bf 2})$ & $({\bf 3},{\bf 1})$
- * The mass splitting is small so co-annihilation is important

$$\langle \sigma_{ab} v_{rel}^{ab} \rangle = \langle \sigma v \rangle_{\pi_a \pi_b \to VV} + \langle \sigma v \rangle_{\pi_a \pi_b \to Vh_1} + \langle \sigma v \rangle_{\pi_a \pi_b \to Vs} + \langle \sigma v \rangle_{\pi_a \pi_b \to h_1} \frac{1}{h_1} + \langle \sigma v \rangle_{\pi_a \pi_b \to ss} + \langle \sigma v \rangle_{\pi_a \pi_b \to h_1} s$$

A COMPOSITE 2HDM RELIC ABUNDANCE

Main annihilation channels:

- ★ tīt
- ★ VV, hh
- \star and maybe $t\bar{b}$

OTHER UV COMPLETIONS

	ψ	X	G/H	
SO(N _{HC})	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$\frac{SU(5)}{SO(5)}\frac{SU(6)}{SO(6)}$	
SO(N _{HC})	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$		
$Sp(2N_{\rm HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$\frac{SU(5)}{SO(5)}\frac{SU(6)}{Sp(6)}$	
SU(N _{HC})	$5 \times \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$\frac{SU(5)}{SO(5)} \frac{SU(3) \times SU(3)'}{SU(3)_D}$	
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$\frac{SU(4)}{Sp(4)} \frac{SU(6)}{SO(6)}$	
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$		
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$\frac{SU(4) \times SU(4)'}{SU(4)_D} \frac{SU(6)}{SO(6)}$	
SU(N _{HC})	$4 \times (\overline{\mathbf{F}}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$		
SU(N _{HC})	$4 \times (\overline{\mathbf{F}}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$\frac{SU(4) \times SU(4)'}{SU(4)_{D}} \frac{SU(3) \times SU(3)'}{SU(3)_{D}}$	

Some caveats:

- ★ custodial symmetry
- $\star\,$ hyper-color singlets as top partners

CONCLUSIONS

- \star CHMs can naturally provide DM candidates with masses \sim few hundred GeV and suppressed DM direct detection
- \star They offer a nice complementarity with collider searches
- $\star\,$ There is a large set of models but they exhibit some robust features
- $\star\,$ There is still work to do charting possible UV completions with stable dark pions
- The dark pion mass required by relic abundance can mek custodial symmetry not necessary

THANKS!

EXTRA STUFF

A COMPLEX DM CANDIDATE MASSLESS DARK PHOTON

MASSLESS DARK PHOTON

MASSLESS DARK PHOTON

