SU(2) gauge theory with N_f=2 fundamental flavour: A minimal template for model building ? Vincent Drach

> in collaboration with T. Janowski, S. Prelovsek, C. Pica,...

Interdisciplinary approach to QCD-like composite dark matter

ECT*, Trento, 4th October 2018

The second s

- Introduction
- •Benchmark Results :
 - ★Setup ★Spectrum
- •New Results :

★Scattering properties and resonances width •Summary/Outlook

Introduction

+Dark Matter is essential to our current understanding of the Universe evolution

- + Properties :
 - \star Long-lived
 - ★ Electrically neutral
 - \star Interaction with the Standard Model are suppressed

Why the Lattice ?

 Lattice simulations provide insights in many strongly coupled theories

+The lattice can provide information on the dark sector in isolation:

- ★ Low-lying spectrum
- \star Matrix element relevant for direct detection
- ★ Production cross section ?
- ★ Self interactions ?

Price to pay:

 \star The uv completion needs to be fixed.

Motivations to study SU(2) with Nf=2

- •Our main original motivation: Composite Higgs / Technicolor framework [Cacciapaglia & Sannino 2014]
- +Light asymmetric Dark Matter [Lewis et al.]
- +SIMP mechanism [Hochberg et al.]

$SU(2)_c$ with $N_f=2$ fundamental Dirac flavours

+SU(2) gauge theory with $N_f = 2$ Dirac fermions in the fundamental representation.

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + i\overline{U}\gamma^{\mu}D_{\mu}U + i\overline{D}\gamma^{\mu}D_{\mu}D + \frac{m}{2}Q^T(-i\sigma^2)C EQ + \frac{m}{2}\left(Q^T(-i\sigma^2)C EQ\right)^{\dagger}$$

+ Pseudo-real irrep of SU(2): global flavour symmetry is upgraded to SU(4) :

$$Q \equiv \begin{pmatrix} U_L \\ D_L \\ \widetilde{U}_L \\ \widetilde{D}_L \end{pmatrix} \equiv \begin{pmatrix} U_L \\ D_L \\ -i\sigma_2 C \overline{u}_R^T \\ -i\sigma_2 C \overline{d}_R^T \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

- + Infinitesimal SU(4) transformation : $Q \longrightarrow \left(1 + i \sum_{n=1}^{\infty} \alpha^n T^n\right)$
- Generators that leaves the Lagrangian invariant satisfy : $ET^n + T^{nT}E = 0$
- Chiral symmetry breaking pattern : SU(4) -> Sp(4) (SO(6) -> SO(5))
 (5 Goldtone bosons)
- + Wess-Zumino-Witten term allowed (3->2 vertex in EFT)

•Meson operators:

$$\begin{split} O_{\overline{U}D}^{(\Gamma)} &\equiv \overline{U}(x)\Gamma D(x) ,\\ O_{\overline{D}U}^{(\Gamma)} &\equiv \overline{D}(x)\Gamma U(x) ,\\ O_{\overline{U}U\pm\overline{D}D}^{(\Gamma)} &\equiv \frac{1}{\sqrt{2}} \Big(\overline{U}(x)\Gamma U(x) \pm \overline{D}(x)\Gamma D(x)\Big) , \end{split}$$

+Baryon operators:

$$O_{UD}^{(\Gamma)} \equiv U^{T}(x)(-i\sigma^{2})C\Gamma D(x)$$
$$O_{DU}^{(\Gamma)} \equiv D^{T}(x)(-i\sigma^{2})C\Gamma U(x)$$

+Large euclidean time behaviour :

$$\sum_{\mathbf{x}} \langle O(\mathbf{x}, t) O(\mathbf{0}, 0) \rangle = \sum_{n} \langle 0 | O | n \rangle \langle n | O | 0 \rangle e^{-m_n t}$$

What do we know ?

Most notably : spectrum investigations at non vanishing fermions mass

★Goldstone Bosons

 \star Vector and Axial mesons

★Scalar and Pseudo-scalar mesons

★Pseudo-scalar decay constant

+In this talk :

★Review spectrum predictions

 \star Goldstone Boson scattering and the vector meson resonance

+Can we bring useful constraints in the context of :

- ★Dark pion produced by through Dark vector mesons
- ★SIMP mechanism
- ★Self-interacting DM ?

Benchmark results

R. Lewis, C. Pica, F. Sannino, Phys.Rev. D85 (2012) 014504 [arXiv:1109.3513] A. Hietanen, C. Pica, R. Lewis, F. Sannino, JHEP 1407 (2014) 116 [arXiv:1404.2794] A. Hietanen, C. Pica, R. Lewis, F. Sannino [arXiv:1308.4130] R. Arthur, V.D, A. Hietanen, M. Hansen, C. Pica, F. Sannino [arXiv:1602.06559]

- Plaquette action + dynamical Wilson Fermions
- Several volumes V=L³xT
- + 4 lattice spacings : a
- Several fermion masses m_f ←→m_{PS²}
- Non-perturbative renormalisation
- + HiRep code

L. Del Debbio, A. Patella, C. Pica, Phys.Rev. D81 (2010) 094503

- \Rightarrow extrapolate to infinite volume
- \Rightarrow extrapolate to the continuum limit
- \Rightarrow extrapolate to the chiral limit

Chiral behavior : GB sector

J. Bijnens and J. Lu, JHEP 11 (2009) 116, [arXiv:0910.5424]

Continuum
$$\chi$$
PT:

$$\frac{m_{\rm ps}^2}{m_{\rm f}} = 2B \left[1 + \frac{3}{4} x \log \frac{2Bm_{\rm f}}{\mu^2} + b_M x + \mathcal{O}(x^2) \right]$$

$$x = \frac{2Bm_{\rm f}}{(4\pi F)^2}$$

+ Range of applicability: unknown a priori

+ In terms of $\tilde{x} = \frac{m_{ps}^2}{(4\pi F)^2}$ the expressions are unchanged at NLO

- Assess discretisation effects:
 - * Strategy I:

modelling the discretisation effects and doing a global fit:

$$\frac{m_{\rm ps}^2}{m_{\rm f}} = 2B \left[1 - a_M \tilde{x} \log \frac{m_{\rm ps}^2}{\mu^2} + b_M \tilde{x} + \delta_M \frac{a}{w_0^{\chi}} + \gamma_M m_{\rm ps}^2 \frac{a}{w_0^{\chi}} \right]$$
$$F_{\rm ps} = F \left[1 - a_F \tilde{x} \log \frac{m_{\rm ps}^2}{\mu^2} + b_F \tilde{x} + \delta_F \frac{a}{w_0^{\chi}} + \gamma_F m_{\rm ps}^2 \frac{a}{w_0^{\chi}} \right]$$

- Define four data subsets to control fit stability
- * Strategy II:
- set $\delta_{M,F}$ & $\gamma_{M,F}$ to zero
- fit each lattice spacings independently
- study fit parameters as a function of the lattice spacing

Goldstone bosons : mass and decay constant

R. Arthur, VD, A. Hietanen, C. Pica, F. Sannino [arXiv:1602.06559]

Large cut-off effects

Vector meson

R. Arthur, VD, A. Hietanen, C. Pica, F Sannino [arXiv:1602.06559]

Axial meson

R. Arthur, VD, A. Hietanen, C. Pica, F Sannino [arXiv:1602.06559]

- Axial meson stable in the regime of our simulations (m_A < 2 m_{PS})
- Significant cut-off effects
- m_A=14.5(3.6) F_{PS}

- Scalar sector might be the way to discover new physics
- + In the real world :
 - $m_{\sigma}/f_{\rm PS} \sim 5$ and width is large
 - The ratio depends a lot on the quark mass
- + Here :
- 0++ is not light because of symmetry reasons
- \odot N_c dependence is not know
- Technical issues :
 - Rigorous treatment of resonances on the lattice is expensive and difficult (see later)
 - Disconnected contributions are noisy

Very challenging !

Masses (II)

Forgetting about the fact that the σ is unstable

- Simplest fermionic interpolating field : $J = \bar{u}u + \bar{d}d$ (iso-singlet, σ)
- Correlator : $C_{2pts}(t) = \sum_{\vec{x}} \langle J(t, \vec{x}) \overline{J}(0) \rangle$
- + After integration over the \vec{x} fermions :

=connected contribution =disconnected contribution « infinitely many gluons » exchanged

+ connected contribution : two-point function $J = \bar{u}u - \bar{d}d$ (iso-vector, a_0)

Masses (II)

- Disconnected contribution estimated using stochastic estimators (64 volume sources/conf.)
- + Same calculation can be used to compute η'
- + Interpolating field $J = \bar{u}\gamma_5 u + \bar{d}\gamma_5 d$ (iso-scalar)

+ *not* a GB because of the $U(1)_A$ anomaly

results on 3 new states of the theory : σ , a_0 , η'

Effective mass : scalar channel

R. Arthur, VD, A. Hietanen, C. Pica, F. Sannino [arXiv:1607.06654]

No need to consider the resonance analysis for the σ

Effective mass : pseudoscalar channel

R. Arthur, VD, A. Hietanen, C. Pica, F. Sannino [arXiv:1607.06654]

σ resonance : $O(0^+)$

- σ stable in our simulation
- including 2 lattice spacing * Polynomial global fit
- $m_{\sigma} = 21.7(10.8) F_{PS}$

- 2 lattice spacings
- m_η > m_{ps} only at our lightest fermion masses.
- no cutoff effects are seen.
- $m_{\eta} = 14.6(4.7) F_{PS}$

Summary and comparison with $N_c=3$

- Shifted upward compared to QCD ?
- Neglects the decay of resonances

New Results: improved setup

- In the TC framework the Goldstone boson equivalence theorem : at large energies, external vector bosons states equivalent to Goldstone Boson states
- + e.g : $\rho \rightarrow \pi^+ \pi^-$ corresponds to vector resonance in W+W- scattering

+Effective Lagrangian $\mathcal{L}_{eff} = g_{\rho\pi\pi} \rho^{\mu}_{[ij]} \partial_{\mu} \pi_{i} \pi_{j}$

Wilson Clover fermions + Symanzik improved gauge

26

b	m0	L	Т	Blk_size	stat	ampac	dampac	amps	damps	afps	dafps	amV	damV
1.25	-0.6000	16	32	100	6500	0.2851	0.0004	1.303	0.002	0.233	0.0024	1.468	0.007
1.30	-0.6000	16	32	100	6500	0.2321	0.0005	1.154	0.002	0.203	0.0025	1.324	0.009
1.35	-0.6000	16	32	100	6500	0.1701	0.0006	0.956	0.003	0.168	0.0025	1.129	0.013
1.35	-0.7000	16	32	10	1666	0.0357	0.0009	0.423	0.006	0.105	0.0035	0.655	0.081
1.40	-0.6000	16	32	10	1500	0.0984	0.0006	0.686	0.003	0.124	0.0022	0.862	0.020
1 40	-0 6100	16	32	10	1392	0.0846	0.0008	0.632	0.005	0 1 1 8	0.0032	0.808	0.031
1 40	-0.6200	16	32	10	1218	0.0696	0.0009	0.567	0.006	0.110	0.0034	0.748	0.039
1.40	-0.6300	16	32	10	1621	0.0050 0.0552	0.0005	0.501	0.000	0.105	0.0004	0.740	0.000
1.40	0.6400	16	32 32	10	1021 1705	0.0002 0.0413	0.0007	0.000	0.005	0.102	0.0024	0.719	0.040
1.40	0.6500	16	32 30	10	1595	0.0410	0.0007	0.400	0.005	0.095	0.0025	0.700	0.010
1.40	-0.0500	16	02 20	10	1000	0.0200 0.0127	0.0010	0.040	0.010	0.067	0.0040	0.591	0.062
1.40	-0.0570	10	ა∠ ეე	10	2119	0.0137	0.0006	0.202	0.010	0.007	0.0030	0.529	0.000
1.45	-0.5500	10	32 20	10	2000 4150	0.0898	0.0005	0.019	0.003	0.105	0.0010	0.709	0.012
1.45	-0.5700	10	32	20	4150	0.0031	0.0005	0.510	0.003	0.093	0.0013	0.073	0.017
1.45	-0.5800	10	32	10	1791	0.0493	0.0007	0.445	0.005	0.085	0.0019	0.616	0.028
1.45	-0.5900	16	32	10	1602	0.0346	0.0009	0.376	0.007	0.077	0.0027	0.587	0.058
1.45	-0.6000	16	32	10	1766	0.0197	0.0010	0.286	0.010	0.064	0.0033	0.517	0.076
1.45	-0.6050	16	32	10	2371	0.0110	0.0011	0.236	0.013	0.051	0.0049	0.520	0.090
1.45	-0.6100	16	32	20	3424			0.195	0.015			0.541	0.083
1.50	-0.5000	16	32	10	1500	0.0869	0.0006	0.575	0.004	0.091	0.0019	0.703	0.013
1.50	-0.5100	16	32	10	1500	0.0731	0.0007	0.521	0.005	0.084	0.0019	0.650	0.017
1.50	-0.5200	16	32	10	1513	0.0600	0.0007	0.468	0.005	0.078	0.0018	0.611	0.019
1.50	-0.5300	16	32	10	1500	0.0459	0.0008	0.407	0.006	0.072	0.0019	0.557	0.027
1.50	-0.5400	16	32	10	1325	0.0330	0.0010	0.354	0.009	0.062	0.0026	0.545	0.058
1.50	-0.5500	16	32	10	1750	0.0190	0.0010	0.272	0.013	0.050	0.0028	0.453	0.048
1.50	-0.5525	16	32	10	2214	0.0141	0.0010	0.256	0.012	0.041	0.0028	0.555	0.115
1.50	-0.5550	16	32	20	4117	0.0120	0.0011	0.238	0.017	0.038	0.0035	0.465	0.066
1.60	-0.4000	16	32	10	1500	0.0993	0.0005	0.546	0.004	0.071	0.0012	0.617	0.008
1.60	-0.4500	16	32	10	1810	0.0407	0.0007	0.357	0.007	0.048	0.0013	0.480	0.014
1.60	-0.4700	16	32	10	2432	0.0162	0.0011	0.320	0.015	0.022	0.0015	0.502	0.023
1.60	-0.4800	16	32	10	2106	0.0018	0.0016	0.304	0.027	0.002	0.0020	0.501	0.046
1.60	-0 4900	16	32	10	2866	-0.0163	0.0006	0.290	0.012	-0.033	0.0020	0.322	0.021
1.80	-0.2500	16	32	5	500	0 1393	0.0004	0.566	0.004	0.053	0.0009	0.602	0.005
1.80	-0.3000	16	32	5	500	0.1893	0.0004	0.501	0.001	0.000	0.0000	0.548	0.007
1.00	-0.3500	16	32	10	2500	0.0000	0.0004	0.001 0.451	0.000	0.040	0.0010	0.040	0.001
1.80	-0.3300	16	32 32	10	1017	0.0000	0.0005	0.401	0.000	0.015	0.0003	0.404	0.000
2.00	0.3030	16	32 32	5	500	-0.0002 0.1266	0.0005	0.425 0.533	0.007	-0.004	0.0000	0.401	0.001
2.00	-0.2000	16	02 20	5	500	0.1200 0.0757	0.0002	0.000	0.004	0.040	0.0009	0.076	0.004
2.00	-0.2000	10	ა∠ ეე	5 E	500	0.0757	0.0005	0.331	0.000	0.030	0.0011	0.300	0.000
2.00	-0.5000	10	32 49		1000	0.0200	0.0000	0.234	0.015	0.034	0.0014	0.314	0.020
1.45	-0.5500	24	48	10	1828	0.0899	0.0003	0.021	0.002	0.100	0.0010	0.781	0.025
1.45	-0.5700	24	48	10	1084	0.0628	0.0004	0.509	0.002	0.093	0.0018	0.697	0.052
1.45	-0.5800	24	48	10	1485	0.0487	0.0004	0.444	0.003	0.085	0.0023	0.627	0.088
1.45	-0.5900	24	48	10	1020	0.0340	0.0009	0.369	0.007	0.078	0.0044	0.643	0.081
1.50	-0.5200	24	48	10	1225	0.0603	0.0005	0.465	0.004	0.079	0.0023	0.599	0.040
1.50	-0.5560	24	48	10	1673	0.0100	0.0007	0.188	0.009	0.048	0.0029	0.428	0.096
1.60	-0.4500	24	48	10	2693	0.0404	0.0002	0.319	0.002	0.051	0.0008	0.414	0.010
1.60	-0.4700	24	48	10	1991	0.0151	0.0005	0.195	0.007	0.036	0.0012	0.331	0.043
1.60	-0.4800	24	48	10	1758			0.134	0.012			0.367	0.085

- Reduce cutoff effects
- Or simulate at coarser lattice spacing with larger physical volumes...

Phase diagram: bare parameters

β

Decaying vector meson !

• Consider the process : $\pi^a \pi^b \longrightarrow \pi^c \pi^d$

 In (2 flavour) QCD pion's belong to "3", and the two pion operators can be classified according to :

$$3 \times 3 = 1 + 3 + 5$$

+In our case GB belong to "5" dimensional irrep of SP(4) :

 $5 \times 5 = 1 + 10 + 14$

There are still 3 channels

Phase shift & cross section

+ Differential cross-section in terms of scattering amplitude:

$$\frac{d\sigma}{d\Omega} = |A(p,\Omega)|^2$$

+Partial wave decomposition:

$$A(p,\Omega) = \sum_{l,m} 4\pi A_l(p) Y_{lm}^*(\theta_p,\phi_p) Y_{lm}(\theta,\phi)$$

+ Phase shift definition:
$$A_l(p) = \frac{e^{2i\delta_l(p)} - 1}{2ip} = \frac{e^{i\delta_l(p)} \sin \delta_l(p)}{p}$$

+Relation with effective coupling and width

$$\tan \delta_1 = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{p^3}{E_{CM}(m_{\rho}^2 - E_{CM}^2)}, \ p = \sqrt{E_{CM}^2/4 - m_{\pi}^2}$$
$$\Gamma_{\rho} = \Gamma_R(s) \Big|_{s=m_{\rho}^2} = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{p_{\rho}^3}{m_{\rho}^2}, \quad p_{\rho} = \sqrt{m_{\rho}^2/4 - m_{\pi}^2}$$

Lattice calculation in a nutshell

t

• Non interacting pions with momenta **p** and **0**:

$$E_{1}^{0} = \sqrt{m_{\rm PS}^{2} + \mathbf{p}^{2}} + m_{\rm PS}$$
$$E_{2}^{0} = \sqrt{m_{\rm V}^{2} + \mathbf{p}^{2}}$$

+In a finite box the energy levels are shifted by the interaction. The energy shift is related to the two-pion scattering phase shift δ in infinite volume.

•Total momentum:
$$P = \frac{2\pi}{L} \mathbf{e}_{\mathbf{z}}$$

an $\delta_1(E_{CM}) = \frac{\gamma \pi^{3/2} q}{\mathcal{Z}_{00}^{\mathbf{d}}(1;q^2) + (2q^{-2}/\sqrt{5})\mathcal{Z}_{20}^{\mathbf{d}}(1;q^2)}$ $E_{CM} = 2\sqrt{m^2 + \mathbf{p}^{*2}}$ $\mathbf{p}^{*2} \equiv \left(q\frac{2\pi}{L}\right)^2$

Lattice calculation in a nutshell

+ Lattice approach, compute:

$$C(t) = \begin{pmatrix} \langle 0 | (\pi\pi)^{\dagger}(t) (\pi\pi)(t_{S}) | 0 \rangle & \langle 0 | (\pi\pi)^{\dagger}(t) \rho_{3}(t_{S}) | 0 \rangle \\ \langle 0 | \rho_{3}^{\dagger}(t) (\pi\pi)(t_{S}) | 0 \rangle & \langle 0 | \rho_{3}^{\dagger}(t) \rho_{3}(t_{S}) | 0 \rangle \end{pmatrix}$$

with $(\pi\pi)(t) = \frac{1}{\sqrt{2}} \Big(\pi^{-}(\mathbf{p}, t)\pi^{+}(\mathbf{0}, t) - \pi^{+}(\mathbf{p}, t)\pi^{-}(\mathbf{0}, t) \Big)$

+Large time behaviour:

$$C_{ij}(t) \equiv \langle 0 | O_i^{\dagger}(t) O_j(0) | 0 \rangle = \sum_{n,m} \langle 0 | O_i^{\dagger} | n \rangle (e^{-E_n t} \delta_{mn}) \langle m | O_j | 0 \rangle$$

+Solve the generalised eigenvalue problem:

$$C_{ij}^{-1}(t_0)C_{jk}(t) = V_{in}^{-1}diag\left(e^{-E_n(t-t_0)}\right)_{nm}V_{mj}$$

Wick contractions

Benchmark ensemble

eta	1.45
m_0	-0.6050
C _{SW}	1.0
am_π	0.2114(8)
$am_{ ho}^{naive}$	0.444(9)
am ^{'0} _{pcac}	0.01110(7)
af_{π}	0.0564(3)
# trajectories	1600
# analysed	140

+ For the time being, we use $p = \frac{2\pi}{L} \mathbf{e_z}$

We plan two use one or two more moving frames

Energy levels

Eigenvalue $\lambda_i(t) = \exp(-E_i(t-t_0)), t_0 = 10.$ Effective mass $E_i(t) = \ln \lambda_i(t)/\lambda_i(t+1)$

Preliminary: phase shift

$$g_{
ho\pi\pi}=5.527$$

 $M_
ho=0.440$

Summary & Conclusions

•Lattice as a laboratory to explore non-perturbative dynamics of gauge theories

- Prediction of the spectrum for a range of underlying fermion mass
- Decay channels are often closed for kinematic reasons (scalar, vector, axial are stable in most of our simulations)
- •Benchmark predictions in the chiral limit for spin-1 resonances:

 $\star m_V/F_{\rm PS} = 13.1(2.2)$; $m_A/F_{\rm PS} = 14.5(3.6)$

• Preliminary results in the spin-0 sector :

 $\star m_{\sigma}/F_{\rm PS} = 21.7(10.8)$

 $\star m_{\eta}/F_{\rm PS} = 14.6(4.7)$

• Ongoing/Outlook :

★Update results on the spectrum

★Preliminary results on the vector meson resonance

★Generalisation to other resonances?