$S U(2)$ gauge theory with $N_{f}=2$ fundamental flavour:
 A minimal template for model building? Vincent Drach

in collaboration with
T. Janowski, S. Prelovsek, C. Pica, ...

Interdisciplinary approach to QCD-like composite dark matter
ECT*, Trento, 4th October 2018

Outline

-Introduction
-Benchmark Results :
\star Setup
\star Spectrum
-New Results :
\star Scattering properties and resonances width
-Summary / Outlook

Introduction

Strongly Interacting Dark Matter

*Dark Matter is essential to our current understanding of the Universe evolution

+ Properties:
\star Long-lived
\star Electrically neutral
\star Interaction with the Standard Model are suppressed

Why the Lattice?

+Lattice simulations provide insights in many strongly coupled theories
+The lattice can provide information on the dark sector in isolation:
\star Low-lying spectrum
\star Matrix element relevant for direct detection
\star Production cross section?
\star Self interactions ?
*Price to pay:
\star The uv completion needs to be fixed.

Motivations to study $\mathrm{SU}(2)$ with $\mathrm{Nf}=2$

+Our main original motivation: Composite Higgs / Technicolor framework [Cacciapaglia \& Sannino 2014]
+Light asymmetric Dark Matter [Lewis et al.]
+SIMP mechanism [Hochberg et al.]

SU(2)c with $\mathrm{N}_{\mathrm{f}}=2$ fundamental Dirac flavours

$+S U(2)$ gauge theory with $N_{f}=2$ Dirac fermions in the fundamental representation.
$\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+i \bar{U} \gamma^{\mu} D_{\mu} U+i \bar{D} \gamma^{\mu} D_{\mu} D+\frac{m}{2} Q^{T}\left(-i \sigma^{2}\right) C E Q+\frac{m}{2}\left(Q^{T}\left(-i \sigma^{2}\right) C E Q\right)^{\dagger}$

+ Pseudo-real irrep of $S U(2)$: global flavour symmetry is upgraded to $\operatorname{SU}(4)$:

$$
Q \equiv\left(\begin{array}{c}
U_{L} \\
D_{L} \\
\widetilde{U}_{L} \\
\widetilde{D}_{L}
\end{array}\right) \equiv\left(\begin{array}{c}
U_{L} \\
D_{L} \\
-i \sigma_{2} C \bar{u}_{R}^{T} \\
-i \sigma_{2} C \bar{d}_{R}^{T}
\end{array}\right), \quad E=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

+ Infinitesimal SU(4) transformation: $\quad Q \longrightarrow\left(1+i \sum_{n=1}^{15} \alpha^{n} T^{n}\right)$
+ Generators that leaves the Lagrangian invariant satisfy: $E T^{n}+T^{n T} E=0$
+ Chiral symmetry breaking pattern : SU(4) ->Sp(4) (SO(6) ->SO(5))
(5 Goldtone bosons)
+ Wess-Zumino-Witten term allowed (3->2 vertex in EFT)

Hadronic operators

+Meson operators:

$$
\begin{aligned}
O_{\bar{U} D}^{(\Gamma)} & \equiv \bar{U}(x) \Gamma D(x), \\
O_{\bar{D} U}^{(\Gamma)} & \equiv \bar{D}(x) \Gamma U(x), \\
O_{\bar{U} U \pm \bar{D} D}^{(\Gamma)} & \equiv \frac{1}{\sqrt{2}}(\bar{U}(x) \Gamma U(x) \pm \bar{D}(x) \Gamma D(x)),
\end{aligned}
$$

+Baryon operators:

$$
\begin{aligned}
& O_{U D}^{(\Gamma)} \equiv U^{T}(x)\left(-i \sigma^{2}\right) C Г D(x) \\
& O_{D U}^{(\Gamma)} \equiv D^{T}(x)\left(-i \sigma^{2}\right) C \Gamma U(x)
\end{aligned}
$$

+Large euclidean time behaviour :

$$
\sum_{\mathbf{x}}\langle O(\mathbf{x}, t) O(\mathbf{0}, 0)\rangle=\sum_{n}\langle 0| O|n\rangle\langle n| O|0\rangle e^{-m_{n} t}
$$

What do we know?

+ Most notably : spectrum investigations at non vanishing fermions mass
„Goldstone Bosons
\star Vector and Axial mesons
\star Scalar and Pseudo-scalar mesons
\star Pseudo-scalar decay constant
+In this talk:
\star Review spectrum predictions
\star Goldstone Boson scattering and the vector meson resonance
+Can we bring useful constraints in the context of :
\star Dark pion produced by through Dark vector mesons
\star SIMP mechanism
\star Self-interacting DM ?

Benchmark results

The setup

R. Lewis, C. Pica, F. Sannino, Phys.Rev. D85 (2012) 014504 [arXiv:1109.3513] A. Hietanen, C. Pica, R. Lewis, F. Sannino, JHEP 1407 (2014) 116 [arXiv:1404.2794] A. Hietanen, C. Pica, R. Lewis, F. Sannino [arXiv:1308.4130] R. Arthur, V.D, A. Hietanen, M. Hansen, C. Pica, F. Sannino [arXiv:1602.06559]

+ Plaquette action + dynamical Wilson Fermions
+ Several volumes V=L³xT
+ 4 lattice spacings : a
+ Several fermion masses $\mathrm{m}_{\mathrm{f}} \longleftrightarrow \mathrm{m}_{\mathrm{Ps}}{ }^{2}$
+ Non-perturbative renormalisation
+ HiRep code
L. Del Debbio, A. Patella, C. Pica, Phys.Rev. D81 (2010) 094503

Chiral behavior : GB sector

+ Continuum XPT:

$$
\begin{array}{rlrl}
\frac{m_{\mathrm{ps}}^{2}}{m_{\mathrm{f}}} & =2 B\left[1+\frac{3}{4} x \log \frac{2 B m_{\mathrm{f}}}{\mu^{2}}+b_{M} x+\mathcal{O}\left(x^{2}\right)\right] \\
f & =F\left[1-x \log \frac{2 B m_{\mathrm{f}}}{\mu^{2}}+b_{F} x+\mathcal{O}\left(x^{2}\right)\right] & x=\frac{2 B m_{\mathrm{f}}}{(4 \pi F)^{2}}
\end{array}
$$

+ Range of applicability: unknown a priori
- In terms of $\tilde{x}=\frac{m_{\mathrm{ps}}^{2}}{(4 \pi F)^{2}}$ the expressions are unchanged at NLO
+Assess discretisation effects:
* Strategy I:
- modelling the discretisation effects and doing a global fit:

$$
\begin{aligned}
& \frac{m_{\mathrm{ps}}^{2}}{m_{\mathrm{f}}}=2 B\left[1-a_{M} \tilde{x} \log \frac{m_{\mathrm{ps}}^{2}}{\mu^{2}}+b_{M} \tilde{x}+\delta_{M} \frac{a}{w_{0}^{\chi}}+\gamma_{M} m_{\mathrm{ps}}^{2} \frac{a}{w_{0}^{\chi}}\right] \\
& F_{\mathrm{ps}}=F\left[1-a_{F} \tilde{x} \log \frac{m_{\mathrm{ps}}^{2}}{\mu^{2}}+b_{F} \tilde{x}+\delta_{F} \frac{a}{w_{0}^{\chi}}+\gamma_{F} m_{\mathrm{ps}}^{2} \frac{a}{w_{0}^{\chi}}\right]
\end{aligned}
$$

- Define four data subsets to control fit stability
* Strategy II:
- set $\delta_{M, F} \& \gamma_{M, F}$ to zero
- fit each lattice spacings independently
- study fit parameters as a function of the lattice spacing

Goldstone bosons : mass and decay constant

R. Arthur, VD, A. Hietanen, C. Pica, F. Sannino [arXiv:1602.06559]

- Large cut-off effects

Vector meson

R. Arthur, VD, A. Hietanen, C. Pica, F Sannino [arXiv:1602.06559]

- Vector meson stable in the regime of our simulations ($\mathrm{mv}<2 \mathrm{mps}$)
- All 4 lattice spacings are consistent
- $m v=13.1(2.2) \mathrm{FPS}$

$$
w_{0}^{\chi} m_{X}=w_{0}^{\chi} m_{X}^{\chi}+A\left(w_{0}^{\chi} m_{\mathrm{ps}}\right)^{2}+B\left(w_{0}^{\chi} m_{\mathrm{ps}}\right)^{4}+C \frac{a}{w_{0}}
$$

Axial meson

R. Arthur, VD, A. Hietanen, C. Pica, F Sannino [arXiv:1602.06559]

- Axial meson stable in the regime of our simulations ($\mathrm{m}_{\mathrm{A}}<2 \mathrm{mPS}$)
- Significant cut-off effects
- $m_{A}=14.5(3.6) \mathrm{F}_{\mathrm{PS}}$

General remarks

+ Scalar sector might be the way to discover new physics
+ In the real world :
- $m_{\sigma} / f_{\text {PS }} \sim 5$ and width is large
- The ratio depends a lot on the quark mass
+ Here :
- 0++ is not light because of symmetry reasons
- N_{c} dependence is not know
+ Technical issues :
- Rigorous treatment of resonances on the lattice is expensive and difficult (see later)
- Disconnected contributions are noisy

Very challenging!

Masses (II)

Forgetting about the fact that the σ is unstable

+ Simplest fermionic interpolating field : $J=\bar{u} u+\bar{d} d$ (iso-singlet, σ)
+ Correlator: $\quad C_{2 \text { pts }}(t)=\sum_{\vec{x}}\langle J(t, \vec{x}) \bar{J}(0)\rangle$
+ After integration over the ${ }^{x}$ fermions :

$$
\begin{aligned}
& C_{2 \mathrm{pts}}(t)= \sum_{\vec{x}} \operatorname{tr}\{\mathrm{~S}(\mathrm{x}, 0) \mathrm{S}(0, \mathrm{x})\}+\mathrm{N}_{\mathrm{f}} \sum_{\tilde{\mathrm{x}}} \operatorname{tr}\{\mathrm{~S}(\mathrm{x}, \mathrm{x})\} \operatorname{tr}\{\mathrm{S}(0,0)\} \\
&=\text { connected contribution } \\
&=\text { =disconnected contribution }
\end{aligned}
$$ « infinitely many gluons» exchanged

+ connected contribution : two-point function $J=\bar{u} u-\bar{d} d$ (iso-vector, a_{0})

Masses (II)

+ Disconnected contribution estimated using stochastic estimators (64 volume sources/conf.)
+ Same calculation can be used to compute η '
+ Interpolating field $J=\bar{u} \gamma_{5} u+\bar{d} \gamma_{5} d$ (iso-scalar)
+ not a GB because of the $\mathrm{U}(1)_{\mathrm{A}}$ anomaly

Effective mass : scalar channel

R. Arthur, VD, A. Hietanen, C. Pica, F. Sannino [arXiv:1607.06654]

- Most chiral run: $\beta=2.0$, $m=-0.958, V=32^{4}$
- σ is stable in our setup
- $m_{\sigma \sim M_{P S}}$!

No need to consider the resonance analysis for the σ

Effective mass : pseudoscalar channel

R. Arthur, VD, A. Hietanen, C. Pica, F. Sannino [arXiv:1607.06654]

- Most chiral run: $\beta=2.0$, $m=-0.958, V=32^{4}$
- n’ signal

Contribution from the disconnected diagrams is sizeable only for our lightest masses

o resonance : 0(0+)

- σ stable in our simulation
- Polynomial global fit including 2 lattice spacing ${ }^{\text {sion }}$

$$
w_{0}^{\chi} m_{X}=w_{0}^{\chi} m_{X}^{\chi}+A\left(w_{0}^{\chi} m_{\mathrm{ps}}\right)^{2}+B\left(w_{0}^{\chi} m_{\mathrm{ps}}\right)^{4}+C \frac{a}{w_{0}}
$$

- 2 lattice spacings
- $m_{n}>m_{p s}$ only at our lightest fermion masses.
- no cutoff effects are seen.
- $m_{n}=14.6(4.7) \mathrm{F}_{\mathrm{PS}}$

Summary and comparison with $\mathrm{N}_{\mathrm{c}}=3$

- Shifted upward compared to QCD ?
- Neglects the decay of resonances

New Results: improved setup

Scattering

+ In the TC framework the Goldstone boson equivalence theorem : at large energies, external vector bosons states equivalent to Goldstone Boson states
+ e.g: $\rho \rightarrow \pi^{+} \pi^{-}$corresponds to vector resonance in W+W- scattering
*Effective Lagrangian

$$
\mathcal{L}_{e f f}=g_{\rho \pi \pi} \rho_{[i j]}^{\mu} \partial_{\mu} \pi_{i} \pi_{j}
$$

Wilson Clover fermions + Symanzik improved gauge

- Reduce cutoff effects
- Or simulate at coarser lattice spacing with larger physical volumes.

Phase diagram: bare parameters

Decaying vector meson !

$\pi \pi$ scattering

+ Consider the process :

$$
\pi^{a} \pi^{b} \longrightarrow \pi^{c} \pi^{d}
$$

+ In (2 flavour) QCD pion's belong to "3", and the two pion operators can be classified according to :

$$
3 \times 3=1+3+5
$$

+In our case GB belong to "5" dimensional irrep of SP(4):

$$
5 \times 5=1+10+14
$$

+ There are still 3 channels

Phase shift \& cross section

+ Differential cross-section in terms of scattering amplitude:

$$
\frac{d \sigma}{d \Omega}=|A(p, \Omega)|^{2}
$$

+Partial wave decomposition:

$$
A(p, \Omega)=\sum_{l, m} 4 \pi A_{l}(p) Y_{l m}^{*}\left(\theta_{p}, \phi_{p}\right) Y_{l m}(\theta, \phi)
$$

+Phase shift definition: $\quad A_{l}(p)=\frac{e^{2 i \delta_{l}(p)}-1}{2 i p}=\frac{e^{i \delta_{l}(p)} \sin \delta_{l}(p)}{p}$
*Relation with effective coupling and width

$$
\begin{gathered}
\tan \delta_{1}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{E_{C M}\left(m_{\rho}^{2}-E_{C M}^{2}\right)}, p=\sqrt{E_{C M}^{2} / 4-m_{\pi}^{2}} \\
\Gamma_{\rho}=\left.\Gamma_{R}(s)\right|_{s=m_{\rho}^{2}}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p_{\rho}^{3}}{m_{\rho}^{2}}, \quad p_{\rho}=\sqrt{m_{\rho}^{2} / 4-m_{\pi}^{2}} .
\end{gathered}
$$

Lattice calculation in a nutshell

+ Non interacting pions with momenta \mathbf{p} and $\mathbf{0}$:

$$
\begin{aligned}
& E_{1}^{0}=\sqrt{m_{\mathrm{PS}}^{2}+\mathbf{p}^{2}}+m_{\mathrm{PS}} \\
& E_{2}^{0}=\sqrt{m_{\mathrm{V}}^{2}+\mathbf{p}^{2}}
\end{aligned}
$$

+In a finite box the energy levels are shifted by the interaction. The energy shift is related to the two-pion scattering phase shift δ in infinite volume.

+ Total momentum: $P=\frac{2 \pi}{L} \mathbf{e}_{\mathbf{z}}$

$$
\tan \delta_{1}\left(E_{C M}\right)=\frac{\gamma \pi^{3 / 2} q}{\mathcal{Z}_{00}^{\mathrm{d}}\left(1 ; q^{2}\right)+\left(2 q^{-2} / \sqrt{5}\right) \mathcal{Z}_{20}^{\mathrm{d}}\left(1 ; q^{2}\right)} \quad E_{C M}=2 \sqrt{m^{2}+\mathbf{p}^{* 2}} \quad \mathbf{p}^{* 2} \equiv\left(q \frac{2 \pi}{L}\right)^{2}
$$

Lattice calculation in a nutshell

+ Lattice approach, compute:

$$
C(t)=\left(\begin{array}{ll}
\langle 0|(\pi \pi)^{\dagger}(t)(\pi \pi)\left(t_{S}\right)|0\rangle & \langle 0|(\pi \pi)^{\dagger}(t) \rho_{3}\left(t_{S}\right)|0\rangle \\
\langle 0| \rho_{3}^{\dagger}(t)(\pi \pi)\left(t_{s}\right)|0\rangle & \langle 0| \rho_{3}^{\dagger}(t) \rho_{3}\left(t_{S}\right)|0\rangle
\end{array}\right)
$$

with $\quad(\pi \pi)(t)=\frac{1}{\sqrt{2}}\left(\pi^{-}(\mathbf{p}, t) \pi^{+}(\mathbf{0}, t)-\pi^{+}(\mathbf{p}, t) \pi^{-}(\mathbf{0}, t)\right)$
+Large time behaviour:

$$
C_{i j}(t) \equiv\langle 0| O_{i}^{\dagger}(t) O_{j}(0)|0\rangle=\sum_{n, m}\langle 0| O_{i}^{\dagger}|n\rangle\left(e^{-E_{n} t} \delta_{m n}\right)\langle m| O_{j}|0\rangle
$$

+Solve the generalised eigenvalue problem:

$$
C_{i j}^{-1}\left(t_{0}\right) C_{j k}(t)=V_{i n}^{-1} \operatorname{diag}\left(e^{-E_{n}\left(t-t_{0}\right)}\right)_{n m} V_{m j}
$$

Wick contractions

$C_{12}(t)=-C_{21}^{*}(t)=$

Benchmark ensemble

β	1.45
m_{0}	-0.6050
$c_{s w}$	1.0
$a m_{\pi}$	$0.2114(8)$
$a m_{\rho}^{\text {naive }}$	$0.444(9)$
$a m_{p c a c}^{0}$	$0.01110(7)$
$a f_{\pi}$	$0.0564(3)$
\# trajectories	1600
\# analysed	140

+ For the time being, we use $p=\frac{2 \pi}{L} \mathbf{e}_{\mathbf{z}}$
+ We plan two use one or two more moving frames

Energy levels

Eigenvalue $\lambda_{i}(t)=\exp \left(-E_{i}\left(t-t_{0}\right)\right), t_{0}=10$. Effective mass $E_{i}(t)=\ln \lambda_{i}(t) / \lambda_{i}(t+1)$

Preliminary: phase shift

Fitting central values only (for now) PRELIMINARY:

$$
\begin{aligned}
g_{\rho \pi \pi} & =5.527 \\
M_{\rho} & =0.440
\end{aligned}
$$

Summary \& Conclusions

-Lattice as a laboratory to explore non-perturbative dynamics of gauge theories

- Prediction of the spectrum for a range of underlying fermion mass
- Decay channels are often closed for kinematic reasons (scalar, vector, axial are stable in most of our simulations)
-Benchmark predictions in the chiral limit for spin-1 resonances:

$$
\star m_{V} / F_{\mathrm{PS}}=13.1(2.2) ; m_{A} / F_{\mathrm{PS}}=14.5(3.6)
$$

- Preliminary results in the spin-0 sector :

$$
\begin{aligned}
& \star m_{\sigma} / F_{\mathrm{PS}}=21.7(10.8) \\
& \star m_{\eta} / F_{\mathrm{PS}}=14.6(4.7)
\end{aligned}
$$

- Ongoing/Outlook :
\star Update results on the spectrum
\star Preliminary results on the vector meson resonance
\star Generalisation to other resonances?

