Interdisciplinary approach to QCD-like composite dark matter

ECT* Villazzano 1 October 2018

Axions and topology in QCD

Maria Paola Lombardo

INFN Firenze

Phases of strong interactions

Phases of strong interactions

Different entangled topics

QCD phenomenology, hadron spectrum

Axions

History of the Universe - particle cosmology

Phases and Topology of QCD

Calculational tool: Lattice simulations

Different entangled topics

QCD phenomenology, hadron spectrum

History of the Universe - particle cosmology

Phases and Topology of QCD

Calculational tool: Lattice simulations

Plan

Axions Topology in QCD

Results:

Topological Susceptibility Bounds on the QCD axion's mass Beyond Susceptibility - towards the axion's potential Axions 'must' be there (?)

θ term, strong CP problem and topology

Axions 'must' be there: solution to the strong CP problem

 $\theta = 0$

weakly coupled

Temperatures:

150 MeV < T < 500 MeV

..and beyond

$$m_a(T) = \sqrt{\chi(T)}/f_a$$

Quark Gluon Plasma: Topology Expansion and cooling T [MeV] Quark-200 Gluon Plasma Compression 100 Hadron and heating gas baryon density nuclei (n_B=0.14/fm³)

Axion freezout: $3H(T) = m_a(T) = \sqrt{\chi(T)}/f_a$

First numerical study: Berkowitz Buchoff Rinaldi 2015

Axion density at freezout controls axion density today

Cold Dark Matter candidates might have been created after the inflation

Several CDM candidates are highly speculative - but one, the axion, is

Theoretically well motivated in QCD Amenable to quantitative estimates once QCD topological properties are known:

QCD topology and phenomenology

Pseudoscalar light spectrum: eight pseudoGoldstones $SU(3)_L XSU(3)_R \rightarrow SU(3)_V$ χPT predicts $m_{\pi}^2 \propto (m_u + m_d)\Lambda_{QCD}$ $m_K^2 \propto (m_s + m_{u,d})\Lambda_{QCD}$ $m_{\eta}^2 \propto \frac{1}{3}(m_u + m_d + 4m_s)\Lambda_{QCD}$,

Exception!

is too heavy

Particle name	Particle symbol ^{\$}	Antiparticle symbol	Quark content	Rest mass (MeV/c ²) +
Pion ^[6]	π ⁺	π	ud	139.570 18 ±0.000 35
Pion ^[7]	π ⁰	Self	$rac{\mathrm{u} \bar{\mathrm{u}} - \mathrm{d} \bar{\mathrm{d}}}{\sqrt{2}}$ [a]	134.9766 ±0.0006
Eta meson ^[8]	η	Self	$rac{\mathrm{u}ar{\mathrm{u}}+\mathrm{d}ar{\mathrm{d}}-2sar{s}}{\sqrt{6}}$ [a]	547.862 ±0.018
Eta prime meson ^[9]	η′(958)	Self	$rac{\mathrm{u}ar{\mathrm{u}}+\mathrm{d}ar{\mathrm{d}}+\mathrm{s}ar{\mathrm{s}}}{\sqrt{3}}$ [a]	957.78 ±0.06
Kaon ^[12]	K+	ĸ	us	493.677 ±0.016
Kaon ^[13]	K ⁰	κ	ds	497.614 ±0.024

$$U(1)_A$$

should be broken as well producing a 9th Goldstone BUT:

Topology, η' and the $U_A(1)$ problem:

The $U_A(1)$ symmetry $q \rightarrow e^{i \alpha \gamma_5} q$

would be broken by the (spontaneously generated) $\ \ ar q q$:

the candidate Goldstone is the $~\eta^{\prime}$

too heavy!! (900 MeV)

Particle name	Particle symbol ^{\$}	Antiparticle symbol	Quark content	Rest mass (MeV/c ²)
Pion ^[6]	π ⁺	π	ud	139.570 18 ±0.000 35
Pion ^[7]	π ⁰	Self	$rac{\mathrm{u} ar{\mathrm{u}} - \mathrm{d} ar{\mathrm{d}}}{\sqrt{2}}$ [a]	134.9766 ±0.0006
Eta meson ^[8]	η	Self	$rac{uar{u}+dar{d}-2sar{s}}{\sqrt{6}}$ [a]	547.862 ±0.018
Eta prime meson ^[9]	η ' (958)	Self	$rac{\mathrm{u}ar{\mathrm{u}}+\mathrm{d}ar{\mathrm{d}}+\mathrm{s}ar{\mathrm{s}}}{\sqrt{3}}$ [a]	957.78 ±0.06
Kaon ^[12]	K ⁺	ĸ	us	493.677 ±0.016
Kaon ^[13]	K ⁰	ĸ	ds	497.614 ±0.024

BUT:

the divergence of the current $j_5^{\mu} = \bar{q}\gamma_5\gamma_{\mu}q$, contains a mass independent term

$$\partial_{\mu}j^{\mu}_{5} = m\bar{q}\gamma_{5}q + rac{1}{32\pi^{2}}F\tilde{F}.$$

IF
$$\frac{1}{32\pi^2}\int d^4x F\tilde{F} \neq 0$$

The $U_A(1)$ symmetry is **explicitly** broken

Topology, η' and the $U_A(1)$ problem:

It can be proven that

 $F ilde{F}$

and

 $\frac{1}{32\pi^2}\int d^4x F\tilde{F} = Q$

Gluonic definition

 $Q = n_+ - n_-$

Fermionic definition

Topology,
$$\eta'$$
 and the $U_A(1)$ problem:
It can be proven that
and
 $\frac{1}{32\pi^2}\int d^4xF\tilde{F} = Q$ Gluonic definition
 $Q = n_+ - n_-$ Fermionic definition
The η' mass may now be computed from the decay of the correlation
 $\langle \partial_\mu j_5^\mu(x) \partial_\mu j_5^\mu(y) \rangle \propto \frac{1}{N^2} \langle F(x)\tilde{F}(x)F(y)\tilde{F}(y) \rangle$
which at leading order gives the Witten-Veneziano formula
 $m_{\eta'}^2 = \frac{2N_f}{F_\pi^2} \chi_t^{qu}$

Topology,
$$\eta'$$
 and the $U_A(1)$ problem:
It can be proven that
and

$$\frac{1}{32\pi^2} \int d^4 x F \tilde{F} = Q \quad \text{Gluonic definition}$$

$$Q = n_+ - n_- \quad \text{Fermionic definition}$$
The η' mass may now be computed from the decay of the correlation
 $\langle \partial_\mu j_5^\mu(x) \partial_\mu j_5^\mu(y) \rangle \propto \frac{1}{N^2} \langle F(x) \tilde{F}(x) F(y) \tilde{F}(y) \rangle$
which at leading order gives the Witten-Veneziano formula

$$m_{\eta'}^2 = \frac{2N_f}{F_\pi^2} \chi_t^{qu}$$

Results

Topology on a lattice

... It is difficult to identify different topological sectors

..and large temperatures require huge statistics..

QCD topology, long standing focus of strong interaction:

-learning about: fundamental symmetries, η' mass, strongCP problem —> axions

-hampered by technical difficulties

Recent developments:

-first results for dynamical fermions at high temperature:

Trunin *et al.* J.Phys.Conf.Ser. 668 (2016) no.1, 012123 Bonati *et al.* JHEP 1603 (2016) 155 Borsany *et al.* Nature 539 (2016) no.7627, 69 Petreczky *et al.* Phys.Lett. B762 (2016) 498 Burger *et al.* Nucl.Phys. A967 (2017) 880 Taniguchi *et al.* Phys.Rev. D95 (2017) no.5, 054502 Burger *et al.* arXiv 180506001

The Hot Twisted Mass project

Chiral observables_and topology in hot QCD with two families of quarks A. Trunin, F. Burger, E. M. Ilgenfritz, M. P. Lombardo arXiv:1805.06001

Topology (and axion's properties) from lattice QCD with a dynamical charm

A. Trunin, F. Burger, E. M. Ilgenfritz, M. P. Lombardo and M. Müller-Preussker. Nucl.Phys. A967 (2017) 880-883

Topological susceptibility from $N_f = 2 + 1 + 1$ lattice QCD at nonzero temperature A. Trunin, F. Burger, E. M. Ilgenfritz, M. P. Lombardo and M. Müller-Preussker. J. Phys. Conf. Ser. 668, no. 1, 012123 (2016)

Towards the quark-gluon plasma Equation of State with dynamical strange and charm quarks F. Burger, E. M. Ilgenfritz, M. P. Lombardo, M. Müller-Preussker and A. Trunin. J. Phys. Conf. Ser. 668, no. 1, 012092 (2016)

Equation of state of quark-gluon matter from lattice QCD with two flavors of twisted mass Wilson F. Burger *et al.* [tmfT Collaboration]. Phys. Rev. D **91**, no. 7, 074504 (2015)

Towards thermodynamics with $N_f = 2 + 1 + 1$ twisted mass quarks F. Burger, G. Hotzel, M. Müller-Preussker, E. M. Ilgenfritz and M. P. Lombardo. PoS Lattice 2013, 153 (2013)

Thermal QCD transition with two flavors of twisted mass fermions F. Burger *et al.* [tmfT Collaboration]. Phys. Rev. D 87, no. 7, 074508 (2013)

Phase structure of thermal lattice QCD with $N_f = 2$ twisted mass Wilson fermions E.-M. Ilgenfritz, K. Jansen, M. P. Lombardo, M. Müller-Preussker, M. Petschlies, O. Philipsen and L. Zeidlewicz. Phys. Rev. D 80, 094502 (2009)

Why Nf = 2 +1 +1 ?

Quark Gluon Plasma @ Colliders

Analytic studies suggest that a dynamical charm becomes relevant above 400 MeV, well within the reach of LHC

Laine Schroeder 2006

Nf = 2+1+1 Wilson fermions with a twisted mass term

Frezzotti Rossi 2003

'twisted' mass terms in flavor space:

 $i\mu\tau_3\gamma_5$ for two degenerate light flavors $i\mu_{\sigma}\tau_1\gamma_5 + \tau_3\mu_{\delta}$ for two heavy flavors

are added to the standard Wilson Lagrangian

Consequences:

-simplified renormalization properties
-automatic O(a) improvement
-control on unphysical zero modes

Successful phenomenology at T=0

ETMC collaboration 2003—

Fixed varying scale	For each lattice spacing we explore a range of	Nf = 2 + 1 + 1 Setup						
	temperatures	T = 0 (ETMC) nomenclature	β	a [fm] [6]	N_{σ}^3	N_{τ}	$T [{ m MeV}]$	# confs.
	MeV by varying Nt					5 6 7	$ \begin{array}{r} 422(17) \\ 351(14) \\ 301(12) \end{array} $	585 1370 341
	We repeat this for three different lattice spacings following ETMC T=0	A60.24	1.90	0.0936(38)	24^{3} 32^{3}	$ \begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array} $	$263(11) \\ 234(10) \\ 211(9) \\ 192(8) \\ 176(7) \\ 162(7) \\ 151(6)$	970 577 525 227 1052 294 1988
Four pion masses $M_{\pi^{\pm}}$	Advantages: we rely on the setup of ETMC T=0 simulations. Scale is set once for all.	B55.32	1.95	0.0823(37)	32 ³	$ \begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $	$\begin{array}{r} 479(22) \\ 400(18) \\ 342(15) \\ 300(13) \\ 266(12) \\ 240(11) \\ 218(10) \\ 200(9) \\ 184(8) \\ 171(8) \\ 160(7) \\ 150(7) \end{array}$	$\begin{array}{c} 595\\ 345\\ 327\\ 233\\ 453\\ 295\\ 667\\ 1102\\ 308\\ 1304\\ 456\\ 823\\ \end{array}$
$N_{f} = 2 + 1 + 1 \qquad \begin{array}{c} 210 \\ 260 \\ 370 \\ 470 \end{array}$ $N_{f} = 2 \qquad \begin{array}{c} 360 \\ 430 \end{array}$	Disadvantages: mismatch of temperatures - need interpolation before taking the	D45.32	2.10	0.0646(26)	32^3 40^3 48^3	$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ \end{array} $	$509(20) \\ 436(18) \\ 382(15) \\ 305(12) \\ 255(10) \\ 218(9) \\ 191(8) \\ 170(7) \\ 153(6)$	$\begin{array}{c} 403 \\ 412 \\ 416 \\ 420 \\ 380 \\ 793 \\ 626 \\ 599 \\ 582 \end{array}$

HotQCD, 2012 $\chi_{top} = <Q_{top}^2 > /V = m_l^2 \chi_{5,disc} \qquad \begin{array}{c} \text{From:} \\ m \int d^4 x \bar{\psi} \gamma_5 \psi = Q_{top} \end{array}$ $\chi_{5,con} \quad \pi: \bar{\mathbf{q}} \gamma_5 \frac{\tau}{2} \mathbf{q} \stackrel{\mathbf{x} SU(2)}{\longleftarrow} \sigma: \bar{\mathbf{q}} \mathbf{q} \qquad \chi_{con} + \chi_{disc}$ U(1)_A δ: q^τ/₂ q \neg η: $\bar{\mathbf{q}}$ γ_{5} q $\chi_{5,con} - \chi_{5,disc}$ χ_{con} for $T \ge T_c$, $m_l \to 0$ $\chi_{\pi} - \chi_{\delta} = \chi_{\text{disc}} = \chi_{5,\text{disc}}$

Topological and chiral susceptibility

Kogut, Lagae, Sinclair 1999

$$\chi_{top} = \langle Q_{top}^2 \rangle / V = m_l^2 \chi_{disc}$$

Chiral susceptibility

Within errors, no discernable spacing dependence

Effective exponent d(T):

 $\chi_{top}^{1/4} = aT^{-d(T)}$

Comparisons with other results :

Continuum limit (details)

the B ensemble is indeed representative of continuum

Continuum limit (details)

dotted lines to guide the eye

Results for physical pion mass

Rescaled according to

$$\chi_{
m top} = m_l^2 \chi_{ar{\psi}\psi}^{
m disc} = \sum_{n=0} a_n m_\pi^{4(n+1)}.$$

Using the B ensemble as representative of continuum $\chi_{ m top}\simeq A\,T^{-d}$

$$d = (6.26, 6.88, 7.52, 7.48)$$
$$m_{\pi} = (470, 370, 260, 210) \text{ MeV}$$

..towards the axion's potential

$$\begin{split} Z_{QCD}(\theta,T) &= \int [dA] [d\psi] [d\bar{\psi}] \exp\left(-T \sum_{t} d^{3}x \ \mathcal{L}_{QCD}(\theta)\right) = \exp[-VF(\theta,T)] \\ & \text{Axion potential} \\ m_{a}^{2}(T) f_{a}^{2} &= \left. \frac{\partial^{2} F(\theta,T)}{\partial \theta^{2}} \right|_{\theta=0} \equiv \chi(T), \quad \begin{array}{c} f_{A} \gtrsim 4 \times 10^{8} \ \text{GeV} \\ & \text{weakly coupled} \end{array} \end{split}$$

Distribution of the topological charge P(Q)cluster around integers as cooling proceeds (results for a = 0.06 fm)

Gradient flow

Evolve the link variables in a fictitious flow time:

$$\dot{V}_{x,\mu}(t) = -g_0^2 \Big[\partial_{x,\mu} S_{\text{Wilson}}(V(t)) \Big] V_{x,\mu}(t),$$

Monitor
$$\langle E \rangle = \frac{1}{2N_{\tau}N_{\sigma}^3} \sum_{x,\mu,\nu} \operatorname{Tr}[F_{\mu\nu}(x)F^{\mu\nu}(x)]$$
 as a function of t

Stop flowing when
$$t^2 \langle E \rangle \Big|_{t=t_0} = 0.3$$

Observables < O(t) > renormalized at $\mu = 1/\sqrt{8t}$

Continuum limit of < O(t) > is independent on the chosen reference value

Caveat: note comments by Kanaya et al.

Flowing towards the plateau

On finer lattices, plateau is almost reached:

Gradient method coincides with cooling

Instanton potential - cumulants' ratio b2 DIGA predicts

Effective exponent :

Same DIGA onset seen in b2 \approx 350 MeV

 $\chi_{top}^{1/4} = aT^{-d(T)}$ Results for $F(\theta)$ coherent with d(T)

Parting remarks

Topology in hot QCD is a rich field which is only recently becoming truly quantitative: there is room for improvement!

Topology constraints the QCD axion mass

Questions:

requirements from phenomenology? axion potential?