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Analytic properties of the gluon propagator

in a generic covariant gauge

Last step of a recent attempt to study
"Non-Perturbative" QCD by Perturbation Theory

@ "Massive-Expansion" for Yang-Mills theory
F.S. 1509.05891; Nucl.Phys.B907(2016) 572-596.

@ Inclusion of Quarks and analytic properties
F.S. PRD 94 (2016)

@ Extension to finite temperature
F.S. PRD 96 (2017); G. Comitini + F.S. PRD 97 (2018)

@ Dynamical mass generation (variational argument)
F.S. 1701.00286; G. Comitini + F.S. PRD 97 (2018)

@ Extension to a generic covariant gauge and optimization
F.S. + G. Comitini PRD 98 (2018)

The outcome is a self-contained optimized perturbation theory @
from first principles
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Standard Perturbation Theory
Our understanding of QFT relies mainly on PT

Historically based on PT (QED, SM, etc.)
PT has many merits:
@ explicit calculations
@ analytical results at lowest order and 1-loop
@ order by order improved accuracy
@ important symmetries embedded in the formalism (gauge inv.)
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Standard Perturbation Theory
Our understanding of QFT relies mainly on PT

Historically based on PT (QED, SM, etc.)
PT has many merits:
@ explicit calculations
@ analytical results at lowest order and 1-loop
@ order by order improved accuracy
@ important symmetries embedded in the formalism (gauge inv.)

Unfortunately, PT breaks down in the IR of QCD

It is a pity since:
@ Important phenomenology occurs in the IR (e.g. bound states)

@ QCD is believed to be a complete consistent theory at any
scale, containing its necessary cut-off
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Non-Perturbative Effects

They cannot be addressed by any finite-order truncation

@ Typically described by an infinite resummation

@ They might be the sign of a wrong expansion point
(rather than a failure of PT)

They are not intrinsic if can be cured by a change of the expansion
point. (Well known issue of PT in QM where the accuracy depends
on the "good" choice of Hy)

What is "perturbative" and what is not?

It might depend on the Expansion Point

o
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Trivial Example of a Wrong Expansion Point

2 4
Ao dfiom ]

The pole is at p = 0 at any finite order, but
1 1 1

A:— =
p21+%§ m2 + p?

The shift of the pole emerges as NP effect by an infinite resumm. of
the Dyson expansion.

resummation <= change of expansion point

awTrTTTT = comens + armknns + ke + ok ko + - @
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Which Expansion point is the best?

Gauge inv. (BRST) —> {NO gluon mass at any

finite order of PT
exact resumm. (NP approach)
or
Dyn. Mass Generation = < change the exp. point of PT
BUT give up exact gauge inv.
at any finite order
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Which Expansion point is the best?

Gauge inv. (BRST) =

Dyn. Mass Generation —

No gluon mass at any
finite order of PT

exact resumm. (NP approach)
or

change the exp. point of PT
BUT give up exact gauge inv.
at any finite order

We can build a viable PT in the IR
but we must give up exact gauge invariance at any finite order.

o
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Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly"
algorithm which however
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes
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Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly" 2) Hand-drawn by a human
algorithm which however (giving up exact symmetries)
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes
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Exact vs. Approximate Invariance

Suppose we want a SQUARE to be drawn

1) By a computer using a "silly" 2) Hand-drawn by a human
algorithm which however (giving up exact symmetries)
preserves exact symmetries like

@ Rotat. Inv. by 6 = 7
@ Inversion of axes

Does not satisfy any of the
symmetries!

If it looks like a square = approximate symmetries
Exact symmetries = correct result B
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Screened Expansion in a generic covariant gauge

Standard BRST invariant SU(N) YM Lagrangian:

L = Lyy + L + Lrp + from Faddeev-Popov Determinant

Loy = —%Tr (FuwF™),  Lp= —2Tr (8,4 (0,47)]

So =3 [ Au)AG" (6, A, (A x ddy + [ W (0)Gy ! (x, y)w(y)dix diy
Ao (p) = Ao(p) [t (p) + £ (p)]
1 1
Ao(p) = el Go(p) = o
S; = [d% [Lgn + L3 + L4] where:
1
£3 = _gﬁlbc(a,uAuu)AZAlc/u £4 = _ZngabcfadeAbuAcyAZAgy
Len = _gfabC(auWZ JwpAL @
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Screened Expansion in a generic covariant gauge

Same standard, BRST invariant, SU(N) YM Lagrangian:

1 1
S = |:S0+ 2/A# (5F“VAV:| -+ |:S[— 2/14# 5FMVAV:|

"\ not BRST inv.

P.T. does not satisfy exact relations imposed by BRST at any finite order

1
p2+m2

A’ (p) =

" (p) + = " (p) (free propagator)
"\ Exact since IIX = 0
STHY — [A,;““’ ~ A =m? 1 (p)  (2-point vertex)

P.T. with the new vertex set

1
£3 - _gfabc(auAau)AZAZu 'C4 - _ZngabcfadeAbuAcuAsAey

1
gh = gfabc( )(/JbAg, Em = _E(Sab(SFMVAgAZ @
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Screened Expansion in a generic covariant gauge

At variance with Curci-Ferrari model:
1 1 1

Ar(p) = = =
(p2 + m2) r (P2 + m2) (m + HLoops) HZOOPS
o ol = m?
Y Y @ The pole shift cancels at
tree level
\ édzé @ All spurious diverging
T = vk + gﬁ% b B s mé:g + mass terms cancel
() (10) (10) () without counterterms
+ o o 4 “ﬂé:j@w . M%m and/or parameters
(\2;)/ (2b) (2:) @ Standard UV behavior

— , 2
In the MS scheme: II9vers- = (Q’W)Q < + log &5 ) 2 (% — %)

Standard UV behavior — T . — 25, 2 (12— €} log 2, @
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Dynamical Mass Generation

Variational argument by the Gaussian Effective Potential (GEP)

P.M. Stevenson PRD 32 (1985); P.M. Stevenson Z.Phys.C35 (1987)

mp=0 =— Ez[lgb(—ﬁz—mz)(b]—[i\‘(b mqﬁ}

2
O+ Q + (X)) SCALAR
Veep( (9), m*) = {
- gig gf §Z§§Z§§ SU(N)

“Precarious” renormalizationind =4 +¢, PM. Stevenson, (1987):

OVaerr( () =0, m*) _ . {mzmo #0

m4
om? Vaer ((6) =0, mg) = =55 < 0

Same identical result for SU(N) YM in any covariant £-gauge
(gauge parameter independent! G. Comitini + ES. PRD 97 (2018)) &
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Screened Expansion at one-loop

Expanding around the best Gaussian vacuum
Setting s = p?/m? « the scale m cannot be fixed by theory!

2 .
Hzoops = _(iing)z p2 [F(s) —+ ng(S)] + T1diverg.

After subtraction (wave function renormalization):

= &
md P+ i F(S)+5F€(s)_F<'%) I (’%)}

7
AP) = 2 FE) T EF) + Rl

<= Fo

12
Duarte et al., SU(3) ——

@ Results depend on p/m — Fy ‘ @ —

@ Nielsen Identities (BRST) are O et
NOT exactly satisfied

m = 0.654 GeV
Fy = —0.887
&

sl

6|

D)

Bestfitaté =0: {
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ANALYTIC CONTINUATION AND CONFINEMENT

In the long wave-length limit p? = w? — k* — w? the poles are at
w==x(M=*iy) where M=0581GeV and ~=0.375GeV.
10

-1 ' Im w (GeV)

No violation of unitarity and casuality (Stingl, 1996):

short-lived quasigluons with lifetime = = 1/~ are canceled from the
asymptotic states
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Finite T
Trajectory of poles in the complex plane

In the limit k — 0 the pole w = +(m + i) is the same for A, Ar.
Using my = 0.73 GeV and Fy = —1.05 (fixed at T = 0):

0.8 T T T T T T T 1
0.75 " q 09
07 b i 08
3 =3
8 o065 & o7t
£ e >
06 | e : 06 -
0.55 q 0.5 L
05 _— 0.4 _—
0O 01 02 03 04 05 06 07 08 0O 01 02 03 04 05 06 07 08
T (GeV) T (GeV)
The line is the fit v = o + bT with vy = 0.295 GeV and b = 1.12.
(Hard thermal loops: ~/T = 3.3a) &N
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Gauge-Parameter-Independence of Poles and Residues

Proof by Nielsen Identities (BRST)

8 1 _ T 1 2 v, *
N.I. — NG G' (p) [A(p)] G ~ (T [D*w,A,w}Bp))
The pole po(&) must be gauge-parameter-independent:
1 d 1 d
— =0, ———+—=0 — =0
Ap(©) " A (p©) = e

The residues are also ¢-independent (first suggested by D.Dudal):

dfd 1] [d 4T[17 ;1 [d1
% o) = a7 7] 3] 2 x [aen

d 1 17" B
R=1lim A 2ol =1 — —R=0
Jm Alp)p” = po) = lim [dpzA(p)] — o
¢-independent  Principal Part  AF(p) = R + K (RGZ)
P’=ry P -py E
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Optimized Screened Expansion

Fo = F|

Assume that if 0 () = N.l. are satisfied
m=m(§)

and define the complex variable: 7> = —pz =p3,, z==x+iy

A=y where [W(e Fom) = (-2 /) + ¢ Fe(=2 /) + Fo

Conformal map — (21, &1, Fo(&), m(1) ) = ¥ (22,2, Fo(&),m(&) )

Fixed Point: \II<ZO,§1,F0(§1),m(§1)) = W(Zo;fzfo(fz%’"(fz)) =0
§&1=0
m(&) = m(0) } = Fo(&), m(&) (two real equations)
F(&1) = Fo(0)
BUT "\ free param. {

d
%Z\y(z,O,Fo(O)am(o)) £0
&W(z,f,FO(f)’m(é)) z=120 ®

R(¢) =R(0)e®),  6(¢) = Arg




Optimized Screened Expansion

Optimization by &-independence of principal part

1 T
e me=0 o —
&1, Rew =0 —— 04 | pioke
£=0, MY =0 - - - - R0 - 050 —
3 £=0, ReW=0 - - - - FlO=02 —
> 03
| g€ o2}
1.5 2
x (GeV) ]
0.1
Fo(0) = —0.876, my = m(0) = 0.656 GeV, Z(0) = 2.684
10(6)] <2.76-107°,  0<¢< 12 . —
Fo(€) ~ —0.8759 — 0.01260¢ + 0.009536£2 + 0.009012€° ‘isx

m*(€)/mj ~ 1 —0.39997¢ + 0.064141¢> 0 02 04 06 08 1 12
20/mo = 0.8857 + 057184, 1z = ImR(0)/Re R(0) = 3.132 :
M = 0.581 GeV, v = 0.375 GeV (invariant pole) @
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Back to Euclidean Space

Optim. S.E. vs. Lattice data of Bicudo,Binosi,Cardoso,Oliveira,Silva PRD 92 (2015)

14 . . 105
£=00 —

12 £=05 — ||
£=10 —

°(p)

< £
g <
£
£=05 —e—
L L £§=10 ——
0.01 0.1 1 10 100 0.85 . . . . : :
p? (Gev?) 0 05 1 15 2 25 3 35
T p (GeV)
f— @ Optim. in Complex pl. = Euclidean
@ Quantitative agreement with lattice
= @ Qual. agreem. with DS if N.I. are used:
g Aguilar, Binosi, Papavassiliou (2015)

b \ @ Not afit! No free parameters.

@ Quantitative prediction up to and

‘ ‘ ‘ beyond the Feynman gauge (£ = 1) @
0.01 01 1 10 100 (not accessible by other methods)

p? (GeV?
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Schwinger function

+o0 dp4 ip4t — . .
At) = 5 ¢ A(p=0,ps) (t = Euclidean time)
P Pt M RGZ |
A =7 anguage
(P) - 2*1’0 GZ p4 —i—M%pz +M§1 ( guage)

[ ] nenir

3
£=0.0 ——
2.5 801 —— 1
£=05 ——
) &=1.0
En Princ. Part - - - -
>
5]
O 15¢
a’ 1 .
05
0 L L L T
0 2 4 6 8 10

t[GevY

where ¢ = Arg[R] — arctan

@ 1~ 5.8 GeV~! ~ hadron size:
physical gauge-invariant scale ?
Conject. by Alkofer, Detmold,
Fischer, Maris PRD 70 (2004)

@ Large ¢ behavior dominated by
singularities (i.e. £&-independent
principal part)

@ =~ % (Arg[R] — arctan 2 + 7)

o
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Final remarks

@ Screened Expansion (S.E.) — analyt. and from first principles
£-gauge + N.I. = self-contained optimization
(no external inputs and/or parameters are required).

@ Optimization by N.l. = furthrer proof that poles are genuine.
Complex poles — Gluon-Confinement (y > 0 at T = 0).

@ m ~ 0.6 GeV = Gribov copies irrelevant!
The mass m is as effective as the Gribov parameter for
screening the theory (Gao,Qin,Roberts,Rodriguez-Quintero,2018);
Faddeev-Popov — very good approx. if P.T. works well.

@ A(p) almost gauge invariant (slightly depressed for £ > 0).
Well described by ¢-independent principal part (RGZ).
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Gaussian Effective Potential (GEP)

Renormalized Effective Potential in units of the best mass my

mt m2\ 2 m?
Vim) = —— la(log™5 ) +210g™ —1
m) = Tag2 | ( o8 mg) i

From the gap eq.:
0c = myexp(—1/a)]

The vacuum energy does not

depend on §,. and a:

4
mg

12872

<0

V(mg) =

-1.

5 L .
0.01 0.1 1 10
m2/m02
Gluon mass generation: the same identical result for SU(N)
Yang-Mills Theory in any covariant £-gauge if « = 9Na,/(87)
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UNIVERSAL SCALING

GLUON INVERSE DRESSING FUNCTION (Landau gauge ¢ = 0)

5 T :
\ Duarte et al., SU(3) ——
45 Cucchieri and Mendes, SU(2) —— |]
4l ; Bogolubsky et al., SU(3)
F(p?im?)+Fy ——
35
< 3
C
= 25 F
2 L
15
1 -
0.5 Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3

p (GeV) %



UNIVERSAL SCALING

GHOST INVERSE DRESSING FUNCTION (Landau gauge ¢ = 0)

The ghost universal function is just
G(s) =15 [2+ + — 2slogs + (1 +5)%(2s — 1) log (1 + 5)]

1.2
1.1
1 -
09 r
i
= 08
< Bogolubsky et al.
0.7 1 Duarte etal. = )
; Cucchieri-Mendes SU(2)
0.6 ; Ayalaetal. N;=0 g
Ayalaetal. Ni=2
0.5 . Ayala et al. Nt2= 2+1+1 . E
' G(pAm?)+G,
0.4 ‘ ! !
0 0.5 1 1.5 2

p (GeV) %



Running Coupling
Pure Yang-Mills SU(3)

RG invariant product (Landau Gauge — MOM-Taylor scheme):

2 .
as(p) = as(uo)% What if 0Fy = 6Gy = £25% ?

1.6

14

12

1L

s 08¢

0.6 -

001 01 1 10
H @ev)
uo =2 GeV, ay = 0.37, data of Bogolubsky et al.(2009).
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CHIRAL QCD

Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

S(p) = Sp(P*)p + Su(p?)

NO COMPLEX POLES = Standard Dispersion Relations

1
pu(p?) = - Im Sy (p?)

po(p?) = — = Im,(p?)

Y 5 0o (@B + pu(g?)
S@>—/O ag L R,

Positivity Conditions:

pp(P?) =0, P op(p?) — pu(p®) = 0
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CHIRAL QCD

Quark sector: m = 0.7 GeV, M is fixed by requiring that #(0) ~ 0.

0.35
0s=0.6 ------
0.3 0520.9 — |
0g=1.2 e
0.25 =15 ——— |
s 0=1.8 —----
& 0.2 Lattice e 7
=
~ 015 m=0.7 GeV
=
0.1
0.05
0 . . & =
0.1 1 10

Pe (GeV)
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CHIRAL QCD

Quark sector: Ny =2, M = 0.65 GeV, m = 0.7 GeV

o
S
T

L

—
>
[}
Q
S 02
o) ' p=M
@
: |
< 0
&2 (0.32 GeV)
>
3 1t p=m+M
= -02¢f 0
2 p
%. Pm m=0.7 GeV
& g4l| RSl —— M = 0.65 GeV
& Re[Sy] as=0.9

Positivity Conditions:

pp(p?) =0, P op(p?) — pu(p®) > 0
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CHIRAL QCD

Quark sector: Ny =2, M = 0.65 GeV, m = 0.7 GeV

0.2

0.15 |

0.1

0.05

-0.05

P pp(P) - Pu(P) (Gev'™)
o

-0.1 | m=0.7 GeV R
M = 0.65 GeV

015 1 ag=0.9 1

Positivity Conditions:

pp(p?) =0, P op(p?) — pu(p®) > 0

o
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