On propagators and vertices of Yang-Mills theory from their equations of motion

Markus Q. Huber

arXiv:1808.05227

Institute of Theoretical Physics, Giessen University Institute of Physics, University of Graz

68th Annual Meeting of the Austrian Physical Society

Graz, Austria

September 20, 2018

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

Hadronic bound states

Bound state equations: E.g., meson

Ingredients:

• Interaction kernel K

• Quark propagator *S*

Hadronic bound states

Bound state equations: E.g., meson

Ingredients:

• Interaction kernel K

Approaches:

 Phenomenological (bottom-up): Model interactions

• From first principles (top-down): Piecing together the elementary pieces

Markus Q. Huber

The elementary pieces

The elementary pieces

 \rightarrow Couple to infinity of equations. \rightarrow Gluonic part is crucial.

The elementary pieces

 \rightarrow Couple to infinity of equations. \rightarrow Gluonic part is crucial.

Note: Effective interaction via
$$g^2 D_{\mu\nu}(p) \Gamma_\mu(p,q) o Z_2 \widetilde{Z}_3 D^{(0)}_{\mu\nu}(p) \gamma_\mu \mathcal{G}((p+q)^2)$$

Markus Q. Huber

Another example: QCD phase diagram

Questions:

- Phases and transitions between them, critical point
- Experimental signatures

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.

• . . .

Markus Q. Huber

Another example: QCD phase diagram

Questions:

- Phases and transitions between them, critical point
- Experimental signatures

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.

• . . .

Markus Q. Huber

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

• Hierarchy of diagrams/correlation functions?

negligible diagrams? irrelevant correlation functions for specific questions?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

- Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

- Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?
- How to realize resummation?

higher loop contributions?

Markus Q. Huber

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

- Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?
- How to realize resummation?

higher loop contributions?

• Systematics and tests?

comparison to other methods, self-tests?

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

5/33

Dyson-Schwinger equations

Coupled systems of Dyson-Schwinger equations

quark propagator + 3-point functions: [Williams, Fischer, Heupel '15] \rightarrow application to bound states

Coupled systems of Dyson-Schwinger equations

Coupled systems of Dyson-Schwinger equations

Markus Q. Huber

3PI system of equations

Three-loop expansion of PI effective action [Berges '04]:

Setting the scale

Only external input for Yang-Mills theory is the coupling α_s . It is related to the scale Λ_{YM} .

Setting the scale

Only external input for Yang-Mills theory is the coupling α_s . It is related to the scale Λ_{YM} .

Observables of Yang-Mills theory, e.g., glueballs to fix the scale. \rightarrow Impractical.

More convenient: Take scale from lattice calculations of the gluon propagator. Scale via string tension of $\sigma = (440 \text{ MeV})^2$.

Example of a bottom-up calculation

Propagators and ghost-gluon vertex with three-gluon vertex model: One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13; lattice: Sternbeck '06]:

Good quantitative agreement for ghost and gluon dressings.

Example of a bottom-up calculation

Propagators and ghost-gluon vertex with three-gluon vertex model: One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13; lattice: Sternbeck '06]:

Good quantitative agreement for ghost and gluon dressings.

QCD is only this:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left(F_{\mu\nu} F^{\mu\nu} \right) + \sum_{j} \overline{\varphi}_{j} [i \, y^{\mu} D_{\mu} - m_{j}] \varphi_{j}$$

$$\begin{array}{ll} \text{WOBEI} & F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}] \\ \\ \text{WD} & D_{\mu} = \partial_{\mu} + igA_{\mu} \end{array}$$

Markus Q. Huber

A lesson from three dimensions?

Three-dimensional Yang-Mills theory is finite.

- \rightarrow No renormalization
- ightarrow Leading pertubative contributions $\propto g^2/p$

 \Rightarrow Testbed for functional calculations.

Various methods employed:

- Lattice: [Bornyakov, Cucchieri, Maas, Mendes, Mitrjushkin, Rogalyov, ...]
- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]
- YM + mass term: [Tissier, Wschebor '10, '11]
- FRG: [Corell, Cyrol, Mitter, Pawlowski, Strodthoff '18]

A lesson from three dimensions?

Three-dimensional Yang-Mills theory is finite.

- \rightarrow No renormalization
- ightarrow Leading pertubative contributions $\propto g^2/p$

\Rightarrow Testbed for functional calculations.

Various methods employed:

- Lattice: [Bornyakov, Cucchieri, Maas, Mendes, Mitrjushkin, Rogalyov, ...]
- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]
- YM + mass term: [Tissier, Wschebor '10, '11]
- FRG: [Corell, Cyrol, Mitter, Pawlowski, Strodthoff '18]

Study effect of individual diagrams...

Markus Q. Huber

Cancellations in three-gluon vertex

- Close to tree-level above 1 GeV
- Good agreement with lattice data.
- Linear IR divergence [Pelaez, Tissier, Wschebor '13; Aguilar et al. '13]
- Similar results from FRG [Corell et al. '18]

Cancellations in three-gluon vertex

- Close to tree-level above 1 GeV
- Good agreement with lattice data.
- Linear IR divergence [Pelaez, Tissier, Wschebor '13; Aguilar et al. '13]
- Similar results from FRG [Corell et al. '18]
- Individual contributions large.
- Sum is small!

Markus Q. Huber

Cancellations in three-gluon vertex

- Close to tree-level above 1 GeV
- Good agreement with lattice data.
- Linear IR divergence [Pelaez, Tissier, Wschebor '13; Aguilar et al. '13]
- Similar results from FRG [Corell et al. '18]
- Individual contributions large.
 Sum is small!

→ In four dimensions similar qualitative effects, but renormalization complicates things.

[MQH '16]

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$

$$\left(1+\frac{\alpha(s)11N_c}{12\pi}\ln\frac{p^2}{s}\right)^{\gamma}$$

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$

$$\left(1+\frac{\alpha(s)11N_c}{12\pi}\ln\frac{p^2}{s}\right)^{\gamma}$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$

$$\left(1+\frac{\alpha(s)11N_c}{12\pi}\ln\frac{p^2}{s}\right)^{\gamma}$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

 \rightarrow Puts constraints on UV behavior of vertices if one wants a self-consistent solution [von Smekal, Hauck, Alkofer '97].

Markus Q. Huber

Fixing the UV behavior of the gluon propagator I

First possibility:

Modify the UV behavior of the integrand, e.g., replace the renormalization constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG improvement'), adapt employed models.

 $\widetilde{Z}_1 \to f(p^2)$ Part of the modeling.

Fixing the UV behavior of the gluon propagator I

First possibility:

Modify the UV behavior of the integrand, e.g., replace the renormalization constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG improvement'), adapt employed models.

$$\widetilde{Z}_1 o f(p^2)$$
 Part of the modeling.

Examples:

- Yang-Mills propagators, e.g., [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02; MQH, von Smekal '12, '14]
- quark propagator: e.g., [Maris, Tandy '97], talk by Aguilar

Fixing the UV behavior of the gluon propagator I

First possibility:

Modify the UV behavior of the integrand, e.g., replace the renormalization constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG improvement'), adapt employed models.

$$\widetilde{Z}_1 o f(p^2)$$
 Part of the modeling.

Examples:

- Yang-Mills propagators, e.g., [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02; MQH, von Smekal '12, '14]
- quark propagator: e.g., [Maris, Tandy '97], talk by Aguilar

IR completion has an effect on the gluon propagator [MQH, von Smekal '14]:

Fixing the UV behavior of the gluon propagator II

Second possibility: Include higher perturbative terms. Worked out analytically for ϕ^3 -theory [MQH '18].

Fixing the UV behavior of the gluon propagator II

 $\frac{\text{Second possibility:}}{\text{Include higher perturbative terms.}}$ Worked out analytically for ϕ^3 -theory [MQH '18].

ightarrow Two-loop diagrams

Fixing the UV behavior of the gluon propagator II

Second possibility: Include higher perturbative terms. Worked out analytically for ϕ^3 -theory [MQH '18].

ightarrow Two-loop diagrams

 \rightarrow Contributions also from renormalization constants in front of one-loop diagrams.

 \Rightarrow All two-loop contributions in the gluon propagator are included. And higher contributions...

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018
Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram (sunset has no $g^4 \ln^2 p^2$)
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram (sunset has no $g^4 \ln^2 p^2$)
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Markus Q. Huber

Summary and conclusions

Extending truncations

Various ways to extend truncations:

- Vertex tensors beyond tree-level tensor
- Include neglected diagrams
- Include neglected correlation functions

Extensions also test the previous truncations!

Summary and conclusions

Extending truncations

Various ways to extend truncations:

- Vertex tensors beyond tree-level tensor
- Include neglected diagrams
- Include neglected correlation functions

Extensions also test the previous truncations!

In the following:

- Three-gluon vertex
- Four-point functions
- Coupling the equations

Markus Q. Huber

Talk by Papavassiliou: "Three-gluon vertex: The new frontier"

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel

'16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Talk by Papavassiliou: "Three-gluon vertex: The new frontier"

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Talk by Papavassiliou: "Three-gluon vertex: The new frontier"

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14; Williams, Fischer, Heupel '16]:

Talk by Papavassiliou: "Three-gluon vertex: The new frontier"

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Introduction

Extending truncations

Summary and conclusions

Influence of two-ghost-two-gluon vertex

Introduction

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

Introduction

Extending truncations

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

- Small influence on ghost-gluon vertex (< 1.7%)
- Negligible influence on three- and four-gluon vertices.

Markus Q. Huber

Giessen University, University of Graz

Summary and conclusions

Summary and conclusions

- Two-loop truncation: All diagrams except the one with a five-point function.
- One-momentum configuration approximation.

Three-gluon vertex results

- Difference between two-loop DSE and 3PI smaller than lattice error.
- Zero crossing in agreement with other approaches, e.g., [Pelaez et al. '13; Aguilar et al. '13; Cyrol et al. '15; Athenodorou et al. '16; Duarte et al. '16; Sternbeck et al. '17]

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

<u>Lorentz basis</u> transverse wrt gluon legs \rightarrow 5 tensors $\tau^i_{\mu\nu}(p,q;r,s)$, (anti-)symmetric under exchange of gluon legs. <u>Color basis:</u> 8 tensors (results show that only 5 required).

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

<u>Lorentz basis</u> transverse wrt gluon legs \rightarrow 5 tensors $\tau^i_{\mu\nu}(p,q;r,s)$, (anti-)symmetric under exchange of gluon legs. <u>Color basis:</u> 8 tensors (results show that only 5 required).

Two-ghost-two-gluon vertex

w

$$\mathcal{F}_{\mu\nu}^{AA\bar{c}c,abcd}(p,q;r,s) = g^4 \sum_{k=1}^{40} \rho_{\mu\nu}^{k,abcd} D_{k(i,j)}^{AA\bar{c}c}(p,q;r,s)$$

ith

$$ho_{\mu
u}^{k,abcd} = \sigma_i^{abcd} \tau_{\mu
u}^j, \qquad k = k(i,j) = 5(i-1) + j$$

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Markus Q. Huber

Giessen University, University of Graz

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

 \rightarrow Two classes of dressings: 13 very small, 12 not small

 \rightarrow No nonzero solution for $\{\sigma_6, \sigma_7, \sigma_8\}$ found.

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

23/33

[MQH '17]

Results for the four-ghost vertex

Kinematic approximation: one-momentum configuration

Results for the four-ghost vertex

Kinematic approximation: one-momentum configuration

3PI system of primitively divergent correlation functions

Summary and conclusions

Results for fully coupled 3PI system

Results for fully coupled 3PI system

Results for fully coupled 3PI system

- Details of renormalization crucial!
- Other details also important.
- Very small angle dependence of three-gluon vertex.
- Slight bending down of gluon propagator in IR.

Summary and conclusions

Open checks

- Effects of larger tensor bases, in particular of the three-gluon vertex
- Renormalization

What tests can be done?

Couplings

Couplings can be defined from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05; Eichmann et al. '14]:

$$\begin{aligned} &\alpha_{ghg}(p^2) = \alpha(\mu^2) \left(D^{A\bar{c}c}(p^2) \right)^2 G^2(p^2) Z(p^2), \\ &\alpha_{3g}(p^2) = \alpha(\mu^2) \left(C^{AAA}(p^2) \right)^2 Z^3(p^2), \\ &\alpha_{4g}(p^2) = \alpha(\mu^2) F^{AAAA}(p^2) Z^2(p^2). \end{aligned}$$

They must agree perturbatively (STIs). This agreement is important also in coupled systems of functional equations and constitutes a highly non-trivial check of a truncation [Mitter, Pawlowski, Strodthoff '14].

Markus Q. Huber

Couplings

Couplings can be defined from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05; Eichmann et al. '14]:

$$\begin{split} &\alpha_{\rm ghg}(p^2) = \alpha(\mu^2) \left(D^{A\bar{c}c}(p^2) \right)^2 G^2(p^2) Z(p^2), \\ &\alpha_{\rm 3g}(p^2) = \alpha(\mu^2) \left(C^{AAA}(p^2) \right)^2 Z^3(p^2), \\ &\alpha_{\rm 4g}(p^2) = \alpha(\mu^2) F^{AAAA}(p^2) Z^2(p^2). \end{split}$$

They must agree perturbatively (STIs). This agreement is important also in coupled systems of functional equations and constitutes a highly non-trivial check of a truncation [Mitter, Pawlowski, Strodthoff '14].

Ghost-gluon vs. other couplings: Further checks required.

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

Renormalization with a hard UV cutoff

The breaking of gauge covariance by the UV regularization leads to spurious (quadratic) divergences.

Renormalization with a hard UV cutoff

The breaking of gauge covariance by the UV regularization leads to spurious (quadratic) divergences.

Due to the anomalous running, this behaves as (at one-loop resummed level)

$$rac{\Lambda_{
m QCD}^2}{
ho^2}(-1)^{2\delta} \Gamma(1+2\delta,-\ln(\Lambda^2/\Lambda_{
m QCD}^2))$$

Note: Appears already perturbatively!

Many ways to deal with them, e.g., Brown-Pennington projector, modifications of integrands/vertices, fitting, seagull identities,

Markus Q. Huber

Examples for renormalization with a hard UV cutoff

Here: Second renormalization condition

Breaking of gauge covariance ightarrow mass counter term [Collins '84]

Renormalization condition: D(0) = c [Meyers, Swanson '14]

Examples for renormalization with a hard UV cutoff

Here: Second renormalization condition Breaking of gauge covariance \rightarrow mass counter term [Collins '84]

Renormalization condition: D(0) = c [Meyers, Swanson '14]

Extreme example: One-loop truncation with bare vertices in three dimensions [MQH '16].

Better example: Full system with one-momentum configuration approximation.

Summary and conclusions

Results for fully coupled 3PI system revisited

Vary the renormalization condition D(0):

Results for fully coupled 3PI system revisited

Vary the renormalization condition D(0):

 \rightarrow Two solutions on top of each other. D(0) is not a parameter of the system.

Markus Q. Huber

Four-gluon vertex

Four-point functions have 6 kinematic variables.

Organize via S_4 permutation group [Eichmann, Fischer, Heupel '15] and restrict to singlet and doublet. \rightarrow Three variables.

Four-gluon vertex

Four-point functions have 6 kinematic variables.

Organize via S_4 permutation group [Eichmann, Fischer, Heupel '15] and restrict to singlet and doublet. \rightarrow Three variables.

Deviations from leading perturbative behavior small, but larger angle dependence than three-gluon vertex.

Markus Q. Huber

Giessen University, University of Graz

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Self-tests of results are useful.

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Self-tests of results are useful.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Add quarks
- Finite temperature
- Bound states
- Finite density

۲

Markus Q. Huber

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Self-tests of results are useful.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Add quarks
- Finite temperature
- Bound states
- Finite density

۲

Markus Q. Huber

Giessen University, University of Graz

September 20, 2018

Thank you for your attention!