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Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions

Hadronic bound states

Bound state equations: E.g., meson

Ingredients:

Interaction kernel K Quark propagator S

Approaches:

Phenomenological (bottom-up):
Model interactions

From �rst principles (top-down):
Piecing together the elementary
pieces
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The elementary pieces

Gluon propagator Dµν(p2):
−1

=
−1

−1
2 −1

2

+ −1
6 −1

2

+

Quark-gluon vertex Γµ(p, q):
= + + +

→ Couple to in�nity of equations.
→ Gluonic part is crucial.

Note: E�ective interaction via g2Dµν(p)Γµ(p, q)→ Z2Z̃3D
(0)
µν (p)γµG((p + q)2)
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Another example: QCD phase diagram

Questions:

Phases and transitions
between them, critical
point

Experimental
signatures

Theoretical challenges:

Model description

Mathematical, e.g., complex action for lattice QCD

Complexity, e.g., truncations of function eqs.

. . .
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Truncations

In�uence of higher correlation functions?
qualitative? quantitative? negligible?

Hierarchy of diagrams/correlation functions?
negligible diagrams? irrelevant correlation functions for speci�c questions?

Model dependence ↔ Self-contained truncation?
con�icting requirements for models? parameter-free solution?

How to realize resummation?
higher loop contributions?

Systematics and tests?
comparison to other methods, self-tests?
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Dyson-Schwinger equations
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Coupled systems of Dyson-Schwinger equations
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quark propagator + 3-point functions: [Williams, Fischer, Heupel '15] → application to
bound states
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Coupled systems of Dyson-Schwinger equations
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Yang-Mills propagators, 3-point

functions +
4-gluon vertex in

d =
3:

[MQH
'16]
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Coupled systems of Dyson-Schwinger equations
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Three- and four-point functions

[MQH '17]

Markus Q. Huber Giessen University, University of Graz September 20, 2018 7/33



Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions

3PI system of equations

Three-loop expansion of PI e�ective action [Berges '04]:
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Setting the scale

Only external input for Yang-Mills theory is the coupling αs . It is related to the
scale ΛYM .

Observables of Yang-Mills theory, e.g., glueballs to �x the scale. → Impractical.

More convenient: Take scale from lattice calculations of the gluon propagator.
Scale via string tension of σ = (440MeV)2.
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Example of a bottom-up calculation

Propagators and ghost-gluon vertex with three-gluon vertex model:
One-loop truncation of gluon propagator with an optimized e�ective model
(contains zero crossing) [MQH, von Smekal '13; lattice: Sternbeck '06]:
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Good quantitative agreement for ghost and gluon dressings.

QCD is only this: Can we do with only that?
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A lesson from three dimensions?

Three-dimensional Yang-Mills theory is �nite.

→ No renormalization

→ Leading pertubative contributions ∝ g2/p

⇒ Testbed for functional calculations.

Various methods employed:

Lattice: [Bornyakov, Cucchieri, Maas, Mendes, Mitrjushkin, Rogalyov, . . . ]

Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]

(R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]

DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]

YM + mass term: [Tissier, Wschebor '10, '11]

FRG: [Corell, Cyrol, Mitter, Pawlowski, Strodtho� '18]

Study e�ect of individual diagrams. . .
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Cancellations in three-gluon vertex
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DAAA(p2,p2,p2)

[MQH '16; lattice: Cucchieri, Maas, Mendes '08]

Close to tree-level above 1GeV

Good agreement with lattice data.

Linear IR divergence [Pelaez, Tissier,

Wschebor '13; Aguilar et al. '13]

Similar results from FRG [Corell et al.

'18]
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gluon tr.
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[MQH '16]

Individual contributions large.

Sum is small!

→ In four dimensions similar qualitative
e�ects, but renormalization complicates
things.
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UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension γ = −13/22(
1 +

α(s)11Nc

12π
ln

p2

s

)γ

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

→ Puts constraints on UV behavior of vertices if one wants a self-consistent
solution [von Smekal, Hauck, Alkofer '97].
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Fixing the UV behavior of the gluon propagator I

First possibility:
Modify the UV behavior of the integrand, e.g., replace the renormalization
constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG
improvement'), adapt employed models.

Z̃1 → f (p2) Part of the modeling.

Examples:

Yang-Mills propagators, e.g., [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02;

MQH, von Smekal '12, '14]

quark propagator: e.g., [Maris, Tandy '97], talk by Aguilar

IR completion has an e�ect on the gluon propagator [MQH, von Smekal '14]:
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Fixing the UV behavior of the gluon propagator II

Second possibility:
Include higher perturbative terms.
Worked out analytically for φ3-theory [MQH '18].

→ Two-loop diagrams

q2
p

q1 + p

q1 − q2
q1

q2

p

q1 + p

q1 − q2

→ Contributions also from renormalization constants in front of one-loop
diagrams.

⇒ All two-loop contributions in the gluon propagator are included.
And higher contributions...

Z̃1Z1
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Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

Squint diagram (sunset has no g4 ln2 p2)

Correct anomalous dimensions of three-point functions

Correct renormalization (constants)
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p[GeV]

0

2

4

6

8

G(p2)

0.001 0.010 0.100 1 10 100
p[GeV]

5

10

15

Z(p2)/p2

0 1 2 3 4 5 6

p[GeV]

0

1

2

3

Z(p2)

[propagator+ghost-gluon eqs. full, 3-gluon vertex model, bare 4-gluon vertex]

Resummed behavior is recovered
[MQH '17].
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Extending truncations

Various ways to extend truncations:

Vertex tensors beyond tree-level tensor

Include neglected diagrams

Include neglected correlation functions

Extensions also test the previous truncations!

In the following:

Three-gluon vertex

Four-point functions

Coupling the equations
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Three-gluon vertex DSE

Talk by Papavassiliou: �Three-gluon vertex: The new frontier�
[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et

al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel

'16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Full DSE:

= −2 + +1
2

+1
2 +1

2 +1
2 +1

2 +1
2 +1

6

+1
2 +1

2

+

−

Non-perturbative one-loop truncation [MQH '17]:

Markus Q. Huber Giessen University, University of Graz September 20, 2018 18/33



Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions

Three-gluon vertex DSE

Talk by Papavassiliou: �Three-gluon vertex: The new frontier�
[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et

al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel

'16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Full DSE:

= −2 + +1
2

+1
2 +1

2 +1
2 +1

2 +1
2 +1

6

+1
2 +1

2

+

−

Non-perturbative one-loop truncation [MQH '17]:

Markus Q. Huber Giessen University, University of Graz September 20, 2018 18/33



Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions

Three-gluon vertex DSE

Talk by Papavassiliou: �Three-gluon vertex: The new frontier�
[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et

al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel

'16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Full DSE:

= −2 + +1
2

+1
2 +1

2 +1
2 +1

2 +1
2 +1

6

+1
2 +1

2

+

−

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer,

Vujinovic '14; Williams, Fischer, Heupel '16]:
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In�uence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and
without two-ghost-two-gluon vertex [MQH '17]:
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Small in�uence on ghost-gluon vertex (< 1.7%)
Negligible in�uence on three- and four-gluon vertices.
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Three-gluon vertex results

one-loop
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The two-ghost-two-gluon vertex

Non-primitively divergent correlation function → No guide from tree-level
tensor. → Use full basis.

Lorentz basis transverse wrt gluon legs → 5 tensors τ iµν(p, q; r , s),
(anti-)symmetric under exchange of gluon legs.
Color basis: 8 tensors (results show that only 5 required).

Two-ghost-two-gluon vertex

ΓAAc̄c,abcd
µν (p, q; r , s) = g

4

40∑
k=1

ρk,abcdµν DAAc̄c
k(i,j) (p, q; r , s)

with

ρk,abcdµν = σabcd
i τ jµν , k = k(i , j) = 5(i − 1) + j
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The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex
→ Truncation discards only one diagram.
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Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum con�guration

Dimensionless
dressing functions Dk .

Each plot one Lorentz
tensor.
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→ Two classes of dressings: 13 very small, 12 not small

→ No nonzero solution for {σ6, σ7, σ8} found. [MQH '17]
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Results for the four-ghost vertex

Kinematic approximation: one-momentum con�guration

Four-ghost vertex

Γc̄ c̄cc,abcd(p, q, r , s) = g
4

8∑
k=1

σk,abcdE c̄ c̄cc
k (p, q, r , s).
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→ All dressings very small.
[MQH '17]

Markus Q. Huber Giessen University, University of Graz September 20, 2018 24/33



Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions

Results for the four-ghost vertex

Kinematic approximation: one-momentum con�guration

Four-ghost vertex

Γc̄ c̄cc,abcd(p, q, r , s) = g
4

8∑
k=1

σk,abcdE c̄ c̄cc
k (p, q, r , s).

E1

E2

E3

E4

E5

0.10 1 10
p[GeV]

-0.05

0.05

→ All dressings very small.
[MQH '17]

Markus Q. Huber Giessen University, University of Graz September 20, 2018 24/33



Introduction Dyson-Schwinger equations Extending truncations Summary and conclusions

3PI system of primitively divergent correlation functions
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Results for fully coupled 3PI system
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Open checks

E�ects of larger tensor bases, in particular of the three-gluon vertex

Renormalization

What tests can be done?
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Couplings

Couplings can be de�ned from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05;
Eichmann et al. '14]:

αghg(p2) = α(µ2)
(
DAc̄c(p2)

)2
G 2(p2)Z (p2),

α3g(p2) = α(µ2)
(
CAAA(p2)

)2
Z 3(p2),

α4g(p2) = α(µ2)FAAAA(p2)Z 2(p2).

They must agree perturbatively (STIs).
This agreement is important also in
coupled systems of functional equations
and constitutes a highly non-trivial
check of a truncation [Mitter, Pawlowski,

Strodtho� '14].
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Ghost-gluon vs. other couplings: Further checks required.
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Renormalization with a hard UV cuto�

The breaking of gauge covariance by the UV regularization leads to spurious
(quadratic) divergences.

Due to the anomalous running, this behaves as (at one-loop resummed level)

Λ2
QCD

p2
(−1)2δΓ(1 + 2δ,− ln(Λ2/Λ2

QCD))

Note: Appears already perturbatively!

Many ways to deal with them, e.g., Brown-Pennington projector, modi�cations
of integrands/vertices, �tting, seagull identities, . . . .
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Examples for renormalization with a hard UV cuto�

Here: Second renormalization condition

Breaking of gauge covariance → mass counter term [Collins '84]

Renormalization condition: D(0) = c [Meyers, Swanson '14]

Extreme example: One-loop truncation
with bare vertices in three dimensions
[MQH '16].

Better example: Full system with
one-momentum con�guration
approximation.
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Results for fully coupled 3PI system revisited

Vary the renormalization condition D(0):
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→ Two solutions on top of each other. D(0) is not a parameter of the system.
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Four-gluon vertex

Four-point functions have 6 kinematic variables.

Organize via S4 permutation group [Eichmann, Fischer, Heupel '15] and restrict to
singlet and doublet. → Three variables.
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Deviations from leading perturbative behavior small, but larger angle
dependence than three-gluon vertex.
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Summary and conclusions

Towards a systematic understanding of truncations of functional

equations to establish them as a �rst principles method.

Hierarchy of correlation functions exists.

Negligible diagrams identi�ed.

Self-tests of results are useful.

Outlook and possibilities:

Non-classical tensors in gluonic vertices

Add quarks

Finite temperature

Bound states

Finite density

Thank you for your attention!
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