Quark and Meson Spectral Functions with the Functional Renormalization Group

Ralf-Arno Tripolt, ECT*, Trento, Italy

In collaboration with:
Chris Jung, Fabian Rennecke, Naoto Tanji,
Lorenz von Smekal, Jochen Wambach, Johannes Weyrich

Workshop on "Emergent mass and its consequences in the Standard Model" ECT*, Trento, Italy, September 17-21, 2018

Outline

I) Theoretical setup

- Functional Renormalization Group (FRG)
- QCD effective model
- Analytic continuation procedure
II) Results
- Quark spectral function
- (Pseudo-)scalar meson spectral functions
- (Axial-)vector meson spectral functions
- Electromagnetic spectral function and dilepton rates
III) Summary and outlook

[courtesy L. Holicki]

Consistent theoretical framework

How are in-medium modifications of hadrons related to the change of the vacuum structure of QCD? (deconfinement and chiral symmetry restoration,...)
\rightarrow want a theoretical framework for computing the thermodynamic and the spectral properties of QCD matter on the same footing!

Requirements:

- thermodynamic consistency
- preservation of symmetries and their breaking pattern

Candidates:

- mean-field theory
- Functional Renormalization Group (FRG)

FRG includes both thermal and quantum fluctuations and hence properly deals with phase transitions!

Functional Renormalization Group

Euclidean partition function for a scalar field:

$$
Z[J]=\int \mathcal{D} \varphi \exp \left(-S[\varphi]+\int d^{4} x J(x) \varphi(x)\right)
$$

Wilson's coarse-graining: split φ into low- and high-frequency modes

$$
\varphi(x)=\varphi_{q \leq k}(x)+\varphi_{q>k}(x)
$$

only include fluctuations with $q>k$

$$
Z[J]=\int \mathcal{D} \varphi_{q \leq k} \underbrace{\int \mathcal{D} \varphi_{q>k} \exp \left(-S[\varphi]+\int d^{4} x J(x) \varphi(x)\right)}_{Z_{k}[J]}
$$

Functional Renormalization Group

Scale-dependent partition function can be defined as

$$
Z_{k}[J]=\int \mathcal{D} \varphi \exp \left(-S[\varphi]-\Delta S_{k}[\varphi]+\int d^{4} x J(x) \varphi(x)\right)
$$

by introducing a regulator term that suppresses IR modes

$$
\Delta S_{k}[\varphi]=\frac{1}{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \varphi(-q) R_{k}(q) \varphi(q)
$$

Switch to scale-dependent effective action $(\phi(x)=\langle\varphi(x)\rangle)$:

$$
\Gamma_{k}[\phi]=\sup _{J}\left(\int d^{4} x J(x) \phi(x)-\log Z_{k}[J]\right)-\Delta S_{k}[\phi]
$$

Functional Renormalization Group

Flow equation for the effective average action Γ_{k} :

$$
\partial_{k} \Gamma_{k}=\frac{1}{2} \mathrm{~S} \operatorname{Tr}\left(\partial_{k} R_{k}\left[\Gamma_{k}^{(2)}+R_{k}\right]^{-1}\right)
$$

[C. Wetterich, Phys. Lett. B 301 (1993) 90]

[wikipedia.org/wiki/Functional_renormalization_group]

- Γ_{k} interpolates between bare action S at $k=\Lambda$ and effective action Γ at $k=0$
- regulator R_{k} acts as a mass term and suppresses fluctuations with momenta smaller than k
- the use of 3D regulators allows for a simple analytic continuation procedure

Quark-meson model

Ansatz for the scale-dependent effective average action:
$\Gamma_{k}[\bar{\psi}, \psi, \phi]=\int d^{4} x\left\{\bar{\psi}\left(\not \partial+h\left(\sigma+i \vec{\tau} \vec{\pi} \gamma_{5}\right)-\mu \gamma_{0}\right) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+U_{k}\left(\phi^{2}\right)-c \sigma\right\}$

- effective low-energy model for QCD with two flavors
- describes spontaneous and explicit chiral symmetry breaking
- flow equation for the effective average action:

$$
\left.\partial_{k} \Gamma_{k}=\frac{1}{2}: \begin{array}{l}
1 \\
\hdashline-, \\
\hdashline
\end{array}\right)
$$

Flow of the effective potential at $\mu=0$ and $T=0$

Flow equations for two-point functions

- quark-meson vertices are given by $\Gamma_{\bar{\psi} \psi \sigma}^{(3)}=h, \Gamma_{\bar{\psi} \psi \vec{\pi}}^{(3)}=i h \gamma^{5} \vec{\tau}$
- mesonic vertices from scale-dependent effective potential: $U_{k, \phi_{i} \phi_{j} \phi_{m}}^{(3)}, U_{k, \phi_{i} \phi_{j} \phi_{m} \phi_{n}}^{(4)}$
- one-loop structure and 3D regulators allow for a simple analytic continuation!
[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

The analytic continuation problem

Calculations at finite temperature are often performed using imaginary energies:

The analytic continuation problem

Analytic continuation problem: How to get back to real energies?

Two-step analytic continuation procedure

1) Use periodicity w.r.t. imaginary energy $i p_{0}=i 2 n \pi T$:

$$
n_{B, F}\left(E+i p_{0}\right) \rightarrow n_{B, F}(E)
$$

2) Substitute p_{0} by continuous real frequency ω :

$$
\Gamma^{(2), R}(\omega, \vec{p})=-\lim _{\epsilon \rightarrow 0} \Gamma^{(2), E}\left(i p_{0} \rightarrow-\omega-i \epsilon, \vec{p}\right)
$$

Spectral function is then given by

$$
\rho(\omega, \vec{p})=-\frac{1}{\pi} \operatorname{lm} \frac{1}{\Gamma^{(2), R}(\omega, \vec{p})}
$$

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]
[J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 92, 094009 (2015)]
[N. Landsman and C. v. Weert, Physics Reports 145, 3\&4 (1987) 141]

III) Results

results
[courtesy L. Holicki]

Phase diagram of the quark-meson model

- chiral order parameter σ_{0} decreases towards higher T and μ
- a crossover is observed at $T \approx 175 \mathrm{MeV}$ and $\mu=0$
- critical endpoint (CEP) at $\mu \approx 292 \mathrm{MeV}$ and $T \approx 10 \mathrm{MeV}$
- we will study spectral functions along $\mu=0$ and $T \approx 10 \mathrm{MeV}$

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Phase diagram of the quark-meson model

- chiral order parameter σ_{0} decreases towards higher T and μ
- a crossover is observed at $T \approx 175 \mathrm{MeV}$ and $\mu=0$
- critical endpoint (CEP) at $\mu \approx 292 \mathrm{MeV}$ and $T \approx 10 \mathrm{MeV}$
- we will study spectral functions along $\mu=0$ and $T \approx 10 \mathrm{MeV}$

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Flow of quark spectral function at $\mu=T=0$

Quark spectral function at $\mu=T=0$

$$
\begin{aligned}
& \rho_{k, \psi}(\omega)=\gamma_{0} \rho_{k, \psi}^{(C)}(\omega)+\rho_{k, \psi}^{(B)}(\omega) \\
& \rho_{k}^{ \pm}(\omega)=\mp \frac{1}{\pi} \operatorname{lm} G_{k}^{ \pm}(\omega) \\
& G_{k}^{ \pm}(\omega)=\frac{1}{2} \operatorname{tr}\left(G_{k, \psi}(\omega) \Lambda_{ \pm}\right) \\
& \text {with } \Lambda_{ \pm}=\left(1 \pm \gamma_{0}\right) / 2 \\
& \int_{-\infty}^{\infty} d \omega \rho_{k, \psi}^{(C)}(\omega)=1 \\
& \int_{-\infty}^{\infty} d \omega \rho_{k, \psi}^{(B)}(\omega)=0 \\
& \rho_{k, \psi}^{(C)}(\omega) \geq\left|\rho_{k, \psi}^{(B)}(\omega)\right|
\end{aligned}
$$

[R.-A. T., J. Weyrich, L. v. Smekal, and J. Wambach, arXiv:1807.11708]

Flow of σ and π spectral function at $\mu=T=0$

σ spectral function vs. ω and \vec{p} at $\mu=T=0$

$$
\mathrm{T}=0 \mathrm{MeV}
$$

- time-like region $(\omega>\vec{p})$ is
Lorentz-boosted to higher energies
- space-like region
($\omega<\vec{p}$) is non-zero at finite T due to space-like processes

σ spectral function vs. ω and \vec{p} for $T>0, \mu=0$

- time-like region
$(\omega>\vec{p})$ is
Lorentz-boosted to
higher energies
- space-like region
($\omega<\vec{p}$) is non-zero at finite T due to space-like processes

π spectral function vs. ω and \vec{p} at $\mu=T=0$

$\mathrm{T}=0 \mathrm{MeV}$
\rightarrow time-like region
$(\omega>\vec{p})$ is
Lorentz-boosted to higher energies

- capture process
$\pi^{*}+\pi \rightarrow \sigma$ is
suppressed at large \vec{p}
- space-like region
$(\omega<\vec{p})$ is non-zero at finite T due to
space-like processes

π spectral function vs. ω and \vec{p} for $T>0, \mu=0$

- time-like region
$(\omega>\vec{p})$ is
Lorentz-boosted to
higher energies
- capture process
$\pi^{*}+\pi \rightarrow \sigma$ is suppressed at large \vec{p}
- space-like region
$(\omega<\vec{p})$ is non-zero at finite T due to space-like processes

Gauged linear-sigma model with quarks

- $S U(2)_{L} \times S U(2)_{R}$: corresponds to chiral symmetry of two-flavor QCD
- Additional gauge symmetry $U(1)$ to include photon field

Ansatz for the effective average action $\Gamma_{k} \equiv \Gamma_{k}\left[\sigma, \pi, \rho, a_{1}, \psi, \bar{\psi}, A_{\mu}\right]$:

$$
\begin{aligned}
\Gamma_{k}=\int d^{4} x\{ & \left\{\bar{\psi}\left(\not D-\mu \gamma_{0}+h_{S}\left(\sigma+\mathrm{i} \vec{\tau} \vec{\pi} \gamma_{5}\right)+\mathrm{i} h_{V}\left(\gamma_{\mu} \vec{\tau} \vec{\rho}^{\mu}+\gamma_{\mu} \gamma_{5} \vec{\tau} \vec{a}_{1}^{\mu}\right)\right) \psi+U_{k}\left(\phi^{2}\right)\right. \\
& \left.-c \sigma+\frac{1}{2}\left|\left(D_{\mu}-\mathrm{i} g V_{\mu}\right) \Phi\right|^{2}+\frac{1}{8} \operatorname{Tr}\left(V_{\mu \nu} V^{\mu \nu}\right)+\frac{1}{4} m_{V, k}^{2} \operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
V_{\mu \nu} & =D_{\mu} V_{\nu}-D_{\nu} V_{\mu}-\mathrm{i} g\left[V_{\mu}, V_{\nu}\right], \quad D_{\mu} \psi=\left(\partial_{\mu}-\mathrm{i} e A_{\mu} Q\right) \psi, \\
D_{\mu} V_{\mu} & =\partial_{\mu} V_{\nu}-i e A_{\mu}\left[T_{3}, V_{\nu}\right], \quad \phi \equiv(\vec{\pi}, \sigma), \quad V_{\mu} \equiv \vec{\rho}_{\mu} \vec{T}+\vec{a}_{1, \mu} \vec{T}^{5}
\end{aligned}
$$

Flow equations for ρ and a_{1} 2-point functions

- neglect vector mesons inside the loops
- vertices extracted from ansatz for the effective average action Γ_{k}
- tadpole diagrams give ω-independent contributions
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

ρ and a_{1} vacuum spectral functions

> (1) $: \rho^{*} \rightarrow \pi+\pi$
> (2) $: \rho^{*} \rightarrow \bar{\psi}+\psi$
(3) $: a_{1}^{*}+\pi \rightarrow \sigma$
(4) : $a_{1}^{*} \rightarrow \pi+\sigma$
(5) : $a_{1}^{*} \rightarrow \bar{\psi}+\psi$
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

T-dependence of ρ and a_{1} spectral functions

[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

μ-dependence of ρ and a_{1} spectral functions

[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

T-dependence of ρ and a_{1} spectral functions

T-dependence of ρ and a_{1} pole masses

- pole masses in the vacuum:
$m_{\rho}^{p}=789 \mathrm{MeV}, \quad m_{a_{1}}^{p}=1275 \mathrm{MeV}$
- degeneration of ρ and a_{1} spectral functions in chirally symmetric phase
- broadening of spectral functions with increasing T
- pole masses do not vary much, no dropping ρ mass

\Rightarrow consistent with
broadening/melting- ρ-scenario
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

Momentum-dependence of ρ spectral function

- shown for $\mu=0$ and $T=100 \mathrm{MeV}$
- time-like region ($\omega>\vec{p}$) is Lorentz-boosted to higher energies
- space-like region ($\omega<\vec{p}$) is non-zero at finite T due to space-like processes

[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

Temperature-dependence of ρ spectral function

- time-like region
$(\omega>\vec{p})$ is
Lorentz-boosted to
higher energies
- space-like region
($\omega<\vec{p}$) is non-zero
at finite T due to space-like processes
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

Electromagnetic (EM) spectral function

$$
\begin{aligned}
& \left(\begin{array}{cc}
\Gamma_{A A}^{(2)} & \Gamma_{A \rho}^{(2)} \\
\Gamma_{\rho A}^{(2)} & \Gamma_{\rho \rho}^{(2)}
\end{array}\right) \xrightarrow{\text { diagonalize }}\left(\begin{array}{cc}
\tilde{\Gamma}_{A A}^{(2)} & 0 \\
0 & \tilde{\Gamma}_{\rho \rho}^{(2)}
\end{array}\right), \quad \tilde{\Gamma}_{A A}^{(2)}=\overbrace{\left.\Gamma_{A A}^{(2)}-\frac{\Gamma_{A \rho}^{(2)} \Gamma_{\rho A}^{(2)}}{\Gamma_{\rho \rho}^{(2)}}+\mathcal{O}\left(e^{4}\right)\right) ~}^{\text {(e) }}
\end{aligned}
$$

EM spectral function - preliminary

[R.-A. T., C. Jung, N. Tanji, L. von Smekal, and J. Wambach, arXiv:1807.04952]

Calculation of dilepton rates

- We use the Weldon formula for the thermal dilepton rate:

$$
\frac{d^{8} N_{l \overline{\bar{l}}}}{d^{4} x d^{4} q}=\frac{\alpha}{12 \pi^{3}}\left(1+\frac{2 m^{2}}{q^{2}}\right)\left(1-\frac{4 m^{2}}{q^{2}}\right)^{1 / 2} q^{2}\left(2 \rho_{T}+\rho_{L}\right) n_{B}\left(q_{0}\right)
$$

- in the following we assume $m=0$ and set the external spatial momentum to zero, such that $\rho_{T}=\rho_{L}=\rho_{\tilde{A} \tilde{A}}$
[H. A. Weldon, Phys. Rev. D42, 2384 (1990)]
[R.-A. T., C. Jung, N. Tanji, L. von Smekal, and J. Wambach, arXiv:1807.04952]

Dilepton rates - preliminary

- clear changes are visible with increasing temperature
- no distinct signatures for the critical endpoint yet \rightarrow improve truncation [R.-A. T., C. Jung, N. Tanji, L. von Smekal, and J. Wambach, arXiv:1807.04952]

Summary and Outlook

- analytically continued flow equations for quark and (vector-)meson spectral functions using effective models for QCD within a consistent FRG framework
- degeneracy of 'parity partners' due to restoration of broken chiral symmetry in the QCD medium

Outlook:

- study the quark spectral function at finite density and temperature
- improve truncation (include baryons and more decay channels) to calculate realistic dilepton rates and identify signatures of phase transitions
- calculate transport coefficients like the shear viscosity and the electrical conductivity

