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A bit of History

Cédric Mezrag (INFN)

PTIR

1954 Wick and Cutkosky
introduced the first
integral representation

Goal at this time:
solve the BSE

1955: Nambu derived a
Integral representation for
Scattering Amplitudes.

1st attempt to derive
general Integral
representation, which turn
to be wrong.
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Nakanishi Integral Representation

/[dz,]/ dy %ZI)(SZ(iZkSZk:)jZI)

@ Formula hold for any n-point function at any order of perturbation

theory
@ s, are all the independent Poincaré invariant you can build from the p;

@ pj is real and unique

N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, 1971
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Nakanishi Integral Representation

/[dz,]/ dy 7’2')‘52(1Zk§)j2i)

@ Formula hold for any n-point function at any order of perturbation
theory

@ s, are all the independent Poincaré invariant you can build from the p;

@ pj is real and unique

N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, 1971

Caveat

Rigorous proof at all order of perturbation theory is not equivalent to a
rigorous non-perturbative proof. But it makes the procedure appealing
for non-perturbative studies.
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Special cases NEL

@ Three-point Function (Vertex):

1 9]
pV(’Ya Z)
= dz/ dy Z -
i /1 0 (g—3P)2 —~+ie
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Special cases /N
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Cédric Mezrag (INFN) PTIR September 19t#, 2018 5 /28



Special cases

@ Three-point Function (Vertex):

1 9]
pV(’Ya Z)
= dz/ dy Z -
i /1 0 (g—3P)2 —~+ie

In the following we will use algebraic models of py/ J

@ Two-point Function (Self-Energy):

:/Ood7 pse(y)
0 p? = +ie
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Special cases /N

@ Three-point Function (Vertex):

1 9]
pV(’Ya Z)
= dz/ dy Z -
i /1 0 (g—3P)2 —~+ie

In the following we will use algebraic models of py/ J

@ Two-point Function (Self-Energy):
oo
PSe\Y
0 ps —tie

This will be studied in the last part of the talk ]
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Kallen-Lehmann vs Nakanishi

Kallen-Lehmann representation:

(p) = [ w57

— w2+ e

@ KL comes from insertion of a complete set of state and & is positive
# NIR comes from perturbation theory and p is real.

@ NIR allows for a bigger flexibility, and therefore might accomodate
more theories.
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CM, J. Segovia, L. Chang, C.D. Roberts
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Hadrons seen as Fock States

o Lightfront quantization allows to expand hadrons on a Fock basis:

P.x) o S W qg) + 3 wiqg, q7) + ...

3 3
IP,N) o< > Wi qqq) + > Wi qqq,q3) + ...
E 3
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@ Non-perturbative physics is contained in the N-particles
Lightfront-Wave Functions (LFWF) WV
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Hadrons seen as Fock States INEN

o Lightfront quantization allows to expand hadrons on a Fock basis:

P.x) o S W qg) + 3 wiqg, q7) + ...

3 3
IP,N) o< > Wi qqq) + > Wi qqq,q3) + ...
E 3

@ Non-perturbative physics is contained in the N-particles
Lightfront-Wave Functions (LFWF) WV

@ Schematically a distribution amplitude ¢ is related to the LFWF

through:
d?k,
o(x) W\U(X, ki)

S. Brodsky and G. Lepage, PRD 22, (1980)
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Nucleon Distribution Amplitudes IN

@ 3 bodies matrix element:

(Ofe¥ uf, (z1)uy (22)df (23)| P)
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Nucleon Distribution Amplitudes (ﬁ?

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 —
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)
+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
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Nucleon Distribution Amplitudes a/')

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 —
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)
+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

@ Usually, one defines p =V — A
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Nucleon Distribution Amplitudes (ﬁ?

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 —
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)
+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
@ Usually, one defines p =V — A
@ 3 bodies Fock space interpretation (leading twist):

B [dx]
P1) = [ Gamluud) @ [l 2.5 144)

+o(x2, x1,x3)| 111) — 2T (x1, x2, 3)[ T11)]
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Nucleon Distribution Amplitudes IN

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 -
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)

+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
@ Usually, one defines p =V — A
@ 3 bodies Fock space interpretation (leading twist):

B [dx]
P1) = [ Gamluud) @ [l 2.5 144)

+o(x2, x1,x3)| 111) — 2T (x1, x2, 3)[ T11)]

@ Isospin symmetry:

2T (x1,x2,x3) = p(x1,X3,%2) + ©(x2, X3, X1)
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Evolution and Asymptotic results

@ Both ¢ and T are scale dependent objects: they obey evolution
equations
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Evolution and Asymptotic results INFN

@ Both ¢ and T are scale dependent objects: they obey evolution
equations

@ At large scale, they both yield the so-called asymptotic DA ¢ag:

2
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u(xy)
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Form Factors: Nucleon case

\ 8
] 8\
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Form Factors: Nucleon case

I D
EC/ g\}

2 T T T
$(xin Q) (xx2%3)” .
I E 1
cs
o 1
as
)
-1k
Gh<0{6h>0
MM (b)
-2 L . 01 02 03 04 05 06 07 08 09
o | 2 3 4 u(xy)
n
n=1
S. Brodsky and G. Lepage, PRD 22, (1980)
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Form Factors: Nucleon case

I D
EC/ g\}

2 . T .
(% Q) ~ (xx2x3)"
b g
COE
< o g
as
(G
-l
6R<0|Gh>0
MEELMTT (b)
_2 1 1
0 | 2 3 4

S. Brodsky and G. Lepage, PRD 22, (1980)
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PTIR

01 02 03 04 05 06 07 08 09

u(xy)

n=0.5

September 19t%, 2018 11 /28



Form Factors: Nucleon case

I D
EC/ g\}

2 T T T
B (i Q) ~(xxpx3)”

P P
65 <0{6h>0
MZTPOMTT (b)

-2 L L 01 02 03 04 05 06 07 08 09
0 | 3] 3 4 u(xy)
n=2

S. Brodsky and G. Lepage, PRD 22, (1980)
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Some previous studies of DA

e QCD Sum Rules
» V. Chernyak and . Zhitnitsky, Nucl. Phys. B 246 (1984)

@ Relativistic quark model

» Z. Dziembowski, PRD 37 (1988)
Scalar diquark clustering

» Z. Dziembowski and J. Franklin, PRD 42 (1990)
Phenomenological fit

> J. Bolz and P. Kroll, Z. Phys. A 356 (1996)
Lightcone quark model

» B. Pasquini et al., PRD 80 (2009)
Lightcone sum rules

> 1. Anikin et al., PRD 88 (2013)
Lattice Mellin moment computation

» G. Bali et al.,, JHEP 2016 02
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Faddeev WF Model

@ Algebraic parametrisation inspired by the results obtained from DSEs
and Faddeev equations.

@ It is based on Nakanishi representation, which is completely general.

@ We also assume the dynamical diquark correlations, both scalar and
AV, and compare in the end with Lattice QCD one.
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Nucleon Distribution Amplitude

@ Operator point of view for every DA (and at every twist):

(0le™ (uh(21) Ciu] (22)) fidk (22) P, A) — plx1, 2, ),

Braun et al., Nucl.Phys. B589 (2000)
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Nucleon Distribution Amplitude

@ Operator point of view for every DA (and at every twist):

(O (i (22) Coiu](22) ) i (28)|P, ) = o1, 72, 33),

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:

V41 021
. %
D3 03

SepTamE S 3 A 26
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Nucleon Distribution Amplitude NEN

@ Operator point of view for every DA (and at every twist):

(0™ (Ul (21) | (22) ) ik (22) P, ) — 91, 32, %),

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:
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Nucleon Distribution Amplitude NEN

@ Operator point of view for every DA (and at every twist):

(0™ (Ul (21) | (22) ) ik (22) P, ) — 91, 32, %),

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:

@ The operator then selects the relevant component of the wave
function.
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Nucleon Distribution Amplitude

@ Operator point of view for every DA (and at every twist):

(0™ (Ul (21) | (22) ) ik (22) P, ) — 91, 32, %),

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:

@ The operator then selects the relevant component of the wave
function.
@ Our ingredients are:

» Perturbative-like quark and diquark propagator
» Nakanishi based diquark Bethe-Salpeter-like amplitude (green disks)
» Nakanishi based quark-diquark amplitude (dark blue ellipses)
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Nakanishi Representation /N

At all order of perturbation theory, one can write (Euclidean space):

pn(7; 2)
M(k,P) = N/ dfy/ dz’y—i—(k—i—ZP))

We use a “simpler” version of the latter as follow:
Pn(z)
N/ dz =
/\2 2 P)2)n
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Scalar Diquark BSA

The model used:

e a2
:( ‘N/_le(A2+(q+;P)z>

Comparable to scalar diquark amplitude previously used:

1.0
~ 0.8
S
Il
0.6
v
=04
=02

0.0
0.0 0.5 1.0 1.5 2.0

ql

red curve from Segovia et al.,Few Body Syst. 55 (2014) 1185-1222
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Diquark DA

M2 In 1+ %X(l — x)}
K2 x(1 - x)

d(x) x1—

Scalar diquark

— Asymptotic
=== K"2 =4M"2
- K2 =16 MA2
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Diquark DA

M2 In 1+ %X(l — x)}
K2 x(1 - x)

d(x) x1—

Scalar diquark

— Asymptotic

--- KA2 = 4M"2 \%;
- KA2 = 16 MA2 <
0.0 x
0.0 0.25 0.50 0.75 1.0
X
Pion figure from L. Chang et al., PRL 110 (2013)
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Diquark DA

M2 In 1+ %X(l — x)}
K2 x(1 - x)

d(x) x1—

Scalar diquark

— Asymptotic .
- KA2 = 4MR2 Zik
- KA2 = 16 M2 <

0.0 0.25 0.50 0.75 1.0
X

Pion figure from L. Chang et al., PRL 110 (2013)

@ This results provide a broad and concave meson DA parametrisation
@ The endpoint behaviour remains linear
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Nucleon Quark-Diquark Amplitude

[ (1-2)p(2)
_N/ldz(/\Z—i—(q— 1%532/3)2)3

Preliminary estimations of the parameters through comparison to
Chebychev moments:
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red curve from Segovia et al.,
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Nucleon Quark-Diquark Amplitude

[ 0 22)
R o

Preliminary estimations of the parameters through comparison to
Chebychev moments:
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Nucleon Quark-Diquark Amplitude

[ 0 22)
R o

Preliminary estimations of the parameters through comparison to
Chebychev moments:

0.30) 0.07 0.020

025 0.06, vors
=020 _ g‘gi <00
& T 0 &
< 8'13 < 0.03 < 010
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red curves from Segovia et al.,

There are still some works necessary to improve the comparison of higher
Chebychev moments
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Mellin Moments 7

@ We do not compute the PDA directly but Mellin moments of it:

1 X1
() = / dx / Ao xxo(x1, 3,1 — X1 — x0)
0 0

e For a general moment (x{"xJ'), we change the variable in such a way
to right down our moments as:

-«
(x{"x3) / da/ dg amB"f(a, B)
e f is a complicated function involving the integration on 6 parameters

@ Uniqueness of the Mellin moments of continuous functions allows us
to identify f and ¢
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Results

4
uix2) 06 d(xy)
' 0.4
0.2

02 04 06 08
u(xy)

Nucleon DA
(Evolved at 2GeV)

02 04 06 038
u(xy)

Asymptotic DA

@ Nucleon DA is skewed compared to the asymptotic one

@ These properties are consequences of our quark-diquark picture
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Comparison with lattice

< X >p= /DX Xip(x1, X2, X3)

040 ‘
o 65% Scalar +— 5%
A === Asymptotic Value
= L
v 0.35 = Lattice 2016
= Lattice 2014
. e Scalar Only
0.30F [
: o Evolved Results
2

[y

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02
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CM, G. Salme
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Computing the Nakanishi weight IN

@ We have assume a specific (simplified) form for the Nakanishi weight

Can we do better? )
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Computing the Nakanishi weight

@ We have assume a specific (simplified) form for the Nakanishi weight

Can we do better? )

@ We can try to extract numerically the Nakanishi weight using various
techniques dedicated to the inverse problem
@ But the problem is intrinsically ill-posed in the sens of Hadamard, and
sophisticated techniques would be required:
» Tikhonov regularisation (J.Carbonell et al., Phys.Lett. B769 (2017)
418-423)
» Maximal Entropy method (F. Gao et al.,Phys.Lett. B770 (2017)
551-555)
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@ We can try to extract numerically the Nakanishi weight using various
techniques dedicated to the inverse problem

@ But the problem is intrinsically ill-posed in the sens of Hadamard, and
sophisticated techniques would be required:
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Computing the Nakanishi weight

@ We have assume a specific (simplified) form for the Nakanishi weight

Can we do better? J

@ We can try to extract numerically the Nakanishi weight using various
techniques dedicated to the inverse problem

@ But the problem is intrinsically ill-posed in the sens of Hadamard, and
sophisticated techniques would be required:

» Tikhonov regularisation (J.Carbonell et al., Phys.Lett. B769 (2017)
418-423)

» Maximal Entropy method (F. Gao et al.,Phys.Lett. B770 (2017)
551-555)

@ Is it possible to derive the weight directly? Without inversion?

We try to answer it with an abelian theory first J
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Divide and Solve

We write the propagator and self energy following:

S(p.0) :/ pov(w, ) — Tm(w,() 5 (p, ) = / PPA ) pe(s;¢)

p?2 —w +ie ’ —s+ie

We consider the o and the p as independent unknown and use 4 equations
to relate them among each other:

@ The expansion of the propagator:S = Sy + SoX.S
@ The fermion gap equation
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Divide and Solve

We write the propagator and self energy following:

S(p.0) :/ pov(w, ) — Tm(w,() 5 (p, ) = / PPA ) pe(s;¢)

p?2 —w +ie ’ —s+ie

We consider the o and the p as independent unknown and use 4 equations
to relate them among each other:

@ The expansion of the propagator:S = Sy + SoX.S
@ The fermion gap equation

Nota Bene

The momenta can be handle entirely algebraically, allowing direct
calculations in Minkowsky space.
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Choosing the vertex

o Bare Vertex : v* — breaks WTI and upsets our main organiser

V. Sauli, JHEP 0302 (2003) 001
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Choosing the vertex (ﬁ/”)

o Bare Vertex : v* — breaks WTI and upsets our main organiser
e Ball-Chiu Vertex: [3-(p, q) =
A A A
A(p? )+ CH) + (p+q)“((P+ ) (p? ) (¢%) — (B(p?) — B(q?)))
— Breaks multlpllcatlve renormallsablllty
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Choosing the vertex

o Bare Vertex : v* — breaks WTI and upsets our main organiser
e Ball-Chiu Vertex: [3-(p, q) =
A A A
A(p? )+ CH) + p+q) S(CE) p) (¢%) — (B(p?) — B(q?)))
— Breaks multlpllcatlve renormallsablllty

@ Curtis-Pennington Vertex — not suited to our formalism

@ Qin-Chang-Liu-Roberts-Smith Vertex (Qin Vertex)
Mo = Mec(p,a) + T [(A(P?) — A(g?), B(p?) — B(q?)]
» Fulfil the WTI longitudinal and transverse (in a simplified way)
> It preserves the multiplicative renormalisability of the theory (we
neglect 75)
» It does not introduce new unknown, and is entirely fixed by the quark
propagator

S. Qin et al.,,Phys.Lett. B722 (2013) 384-388
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Choosing the vertex

o Bare Vertex : v* — breaks WTI and upsets our main organiser
e Ball-Chiu Vertex: [3-(p, q) =
A A A
A(p? )+ CH) + p+q) S(CE) p) (¢%) — (B(p?) — B(q?)))
— Breaks multlpllcatlve renormallsablllty

@ Curtis-Pennington Vertex — not suited to our formalism

@ Qin-Chang-Liu-Roberts-Smith Vertex (Qin Vertex)
Mo = Mec(p,a) + T [(A(P?) — A(g?), B(p?) — B(q?)]
» Fulfil the WTI longitudinal and transverse (in a simplified way)
> It preserves the multiplicative renormalisability of the theory (we
neglect 75)
» It does not introduce new unknown, and is entirely fixed by the quark
propagator

S. Qin et al.,,Phys.Lett. B722 (2013) 384-388

The Qin vertex seems well appropriate for our study |
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The New Gap System

From the previous considerations, we can derive a new Gap equation
system (On-shell renormalisation, MOM scheme):

oy PA Ou1 O\ (o
<0m> > <PB) + <021 022> <0m>
<pA> ~ <Q11 le> (PA)

PB @1 @2/ \ps

where the O and the Q are operators depending resp. on the p and o.
@ The same type of equation can be derived for the photon

@ No momentum dependence remains: Momenta are integrated out.

@ These equations are derived used the Minkowski metric.

We have now started to think about numerical solution to this new problemJ
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Summary

Baryon PDA with NIR
o DSE compatible framework for Baryon PDAs.
@ Simple Nakanishi representation works for the nucleon PDA.
@ Improved results for the scalar diquark

@ We need to add the axial-vector diquark

Direct computation
@ Derived a new set of equations for the p and o

@ No momentum dependence remains, everything is derived in
Minkowski space

@ Numerical part is still to be done
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Thank you for your attention
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Back up slides
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. )
_— INF-N
n = —1 Mellin Moment T -

o= [ ax ) _InfL+ x(1 )]

1—x ¢|n(X) o< 1 HX(l — X)
X(1=x) on(x) (x(1=x))" /x(1-x)
(x71) 3 3.41 3.66 4
e 1 1.14 1.22 1.33

=== Asymptotic
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Meson Form Factors

0.61
osfh #& & B4}
o0 {
o Mo St
[ — tandar
o 0.3
NO ; \ === [.O Reg. BLM
0.2¢ = NLO Reg. BLM
=== O Effective Coupling
0.1p
0.0 1 1 1 |
0 5 10 15 20
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