Baryon Structure with PTIR and beyond

Cédric Mezrag

INFN Roma1

September 19 ${ }^{\text {th }}, 2018$

A bit of History

- 1954 Wick and Cutkosky introduced the first integral representation
- Goal at this time: solve the BSE
- 1955: Nambu derived a Integral representation for Scattering Amplitudes.
- 1st attempt to derive general Integral representation, which turn to be wrong.

Nakanishi Integral Representation

- Formula hold for any n-point function at any order of perturbation theory
- s_{k} are all the independent Poincaré invariant you can build from the p_{i}
- ρ_{j} is real and unique
N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, 1971

Nakanishi Integral Representation

摂 $=\int_{0}^{1}\left[\mathrm{~d} z_{i}\right] \int_{0}^{\infty} \mathrm{d} \gamma \frac{\rho_{j}\left(\gamma, z_{i}\right) \delta\left(1-\sum_{i} z_{i}\right)}{\left(\gamma-\sum_{k} z_{k} s_{k}\right)^{j}}$

- Formula hold for any n-point function at any order of perturbation theory
- s_{k} are all the independent Poincaré invariant you can build from the p_{i}
- ρ_{j} is real and unique
N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and Breach, 1971

Caveat

Rigorous proof at all order of perturbation theory is not equivalent to a rigorous non-perturbative proof. But it makes the procedure appealing for non-perturbative studies.

Special cases

- Three-point Function (Vertex):

Special cases

- Three-point Function (Vertex):

In the following we will use algebraic models of ρ_{V}

Special cases

- Three-point Function (Vertex):

In the following we will use algebraic models of ρ_{V}

- Two-point Function (Self-Energy):

Special cases

- Three-point Function (Vertex):

In the following we will use algebraic models of ρ_{V}

- Two-point Function (Self-Energy):

This will be studied in the last part of the talk

Kallen-Lehmann vs Nakanishi

Kallen-Lehmann representation:

$$
S(p)=\int \mathrm{d} \omega \frac{\bar{\sigma}(\omega)}{p^{2}-\omega^{2}+i \epsilon}
$$

- KL comes from insertion of a complete set of state and $\bar{\sigma}$ is positive \neq NIR comes from perturbation theory and ρ is real.
- NIR allows for a bigger flexibility, and therefore might accomodate more theories.

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}
- Schematically a distribution amplitude φ is related to the LFWF through:

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(p p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$
- 3 bodies Fock space interpretation (leading twist):

$$
\begin{aligned}
&|P, \uparrow\rangle=\int \frac{[\mathrm{d} x]}{8 \sqrt{6 x_{1} x_{2} x_{3}}}|u u d\rangle \otimes\left[\varphi\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \downarrow \uparrow\rangle\right. \\
&\left.+\varphi\left(x_{2}, x_{1}, x_{3}\right)|\downarrow \uparrow \uparrow\rangle-2 T\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \uparrow \downarrow\rangle\right]
\end{aligned}
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$
- 3 bodies Fock space interpretation (leading twist):

$$
\begin{aligned}
&|P, \uparrow\rangle=\int \frac{[\mathrm{d} x]}{8 \sqrt{6 x_{1} x_{2} x_{3}}}|u u d\rangle \otimes\left[\varphi\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \downarrow \uparrow\rangle\right. \\
&\left.+\varphi\left(x_{2}, x_{1}, x_{3}\right)|\downarrow \uparrow \uparrow\rangle-2 T\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \uparrow \downarrow\rangle\right]
\end{aligned}
$$

- Isospin symmetry:

$$
2 T\left(x_{1}, x_{2}, x_{3}\right)=\varphi\left(x_{1}, x_{3}, x_{2}\right)+\varphi\left(x_{2}, x_{3}, x_{1}\right)
$$

Evolution and Asymptotic results

- Both φ and T are scale dependent objects: they obey evolution equations

Evolution and Asymptotic results

- Both φ and T are scale dependent objects: they obey evolution equations
- At large scale, they both yield the so-called asymptotic DA $\varphi_{\text {AS }}$:

Evolution and Asymptotic results

- Both φ and T are scale dependent objects: they obey evolution equations
- At large scale, they both yield the so-called asymptotic DA φ_{AS} :

Form Factors: Nucleon case

Form Factors: Nucleon case

S. Brodsky and G. Lepage, PRD 22, (1980)

Form Factors: Nucleon case

S. Brodsky and G. Lepage, PRD 22, (1980)

Form Factors: Nucleon case

$$
\begin{array}{ccccccc}
0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\
& \mathbf{u}\left(x_{1}\right)^{0.7} & 0.8 & 0.9 \\
& \eta=2
\end{array}
$$

S. Brodsky and G. Lepage, PRD 22, (1980)

Some previous studies of DA

- QCD Sum Rules
- V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246 (1984)
- Relativistic quark model
- Z. Dziembowski, PRD 37 (1988)
- Scalar diquark clustering
- Z. Dziembowski and J. Franklin, PRD 42 (1990)
- Phenomenological fit
- J. Bolz and P. Kroll, Z. Phys. A 356 (1996)
- Lightcone quark model
- B. Pasquini et al., PRD 80 (2009)
- Lightcone sum rules
- I. Anikin et al., PRD 88 (2013)
- Lattice Mellin moment computation
- G. Bali et al., JHEP 201602

Faddeev WF Model

- Algebraic parametrisation inspired by the results obtained from DSEs and Faddeev equations.
- It is based on Nakanishi representation, which is completely general.
- We also assume the dynamical diquark correlations, both scalar and $A V$, and compare in the end with Lattice QCD one.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):
Braun et al., Nucl.Phys. B589 (2000)
- We can apply it on the wave function:

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C 巾 n u_{\downarrow}^{j}\left(z_{2}\right)\right) \nmid d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C 巾 n u_{\downarrow}^{j}\left(z_{2}\right)\right) \nmid d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C \phi u_{\downarrow}^{j}\left(z_{2}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.
- Our ingredients are:
- Perturbative-like quark and diquark propagator
- Nakanishi based diquark Bethe-Salpeter-like amplitude (green disks)
- Nakanishi based quark-diquark amplitude (dark blue ellipses)

Nakanishi Representation

At all order of perturbation theory, one can write (Euclidean space):

$$
\Gamma(k, P)=\mathcal{N} \int_{0}^{\infty} \mathrm{d} \gamma \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(\gamma, z)}{\left(\gamma+\left(k+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

We use a "simpler" version of the latter as follow:

$$
\tilde{\Gamma}(q, P)=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(z)}{\left(\Lambda^{2}+\left(q+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

Scalar Diquark BSA

The model used:

$$
=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left(\Lambda^{2}+\left(q+\frac{z}{2} P\right)^{2}\right)}
$$

Comparable to scalar diquark amplitude previously used:

red curve from Segovia et al.,Few Body Syst. 55 (2014) 1185-1222

Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

- This results provide a broad and concave meson DA parametrisation
- The endpoint behaviour remains linear

Nucleon Quark-Diquark Amplitude

$$
\widetilde{\Sigma}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(q-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}
$$

Preliminary estimations of the parameters through comparison to Chebychev moments:

red curve from Segovia et al.,

Nucleon Quark-Diquark Amplitude

$$
\mathcal{L}^{\underline{L}}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(q-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}
$$

Preliminary estimations of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,

Nucleon Quark-Diquark Amplitude

$$
\int=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(q-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}
$$

Preliminary estimations of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,

There are still some works necessary to improve the comparison of higher Chebychev moments

Mellin Moments

- We do not compute the PDA directly but Mellin moments of it:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{1}^{m} x_{2}^{n} \varphi\left(x_{1}, x_{2}, 1-x_{1}-x_{2}\right)
$$

- For a general moment $\left\langle x_{1}^{m} x_{2}^{n}\right\rangle$, we change the variable in such a way to right down our moments as:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle=\int_{0}^{1} \mathrm{~d} \alpha \int_{0}^{1-\alpha} \mathrm{d} \beta \alpha^{m} \beta^{n} f(\alpha, \beta)
$$

- f is a complicated function involving the integration on 6 parameters
- Uniqueness of the Mellin moments of continuous functions allows us to identify f and φ

Results

Nucleon DA

Asymptotic DA
(Evolved at 2GeV)

- Nucleon DA is skewed compared to the asymptotic one
- These properties are consequences of our quark-diquark picture

Comparison with lattice

$$
<x_{i}>_{\varphi}=\int \mathcal{D} x x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602

CM, G. Salmè

Computing the Nakanishi weight

- We have assume a specific (simplified) form for the Nakanishi weight Can we do better?

Computing the Nakanishi weight

- We have assume a specific (simplified) form for the Nakanishi weight

Can we do better?

- We can try to extract numerically the Nakanishi weight using various techniques dedicated to the inverse problem
- But the problem is intrinsically ill-posed in the sens of Hadamard, and sophisticated techniques would be required:
- Tikhonov regularisation (J.Carbonell et al., Phys.Lett. B769 (2017) 418-423)
- Maximal Entropy method (F. Gao et al.,Phys.Lett. B770 (2017) 551-555)

Computing the Nakanishi weight

- We have assume a specific (simplified) form for the Nakanishi weight

Can we do better?

- We can try to extract numerically the Nakanishi weight using various techniques dedicated to the inverse problem
- But the problem is intrinsically ill-posed in the sens of Hadamard, and sophisticated techniques would be required:
- Tikhonov regularisation (J.Carbonell et al., Phys.Lett. B769 (2017) 418-423)
- Maximal Entropy method (F. Gao et al.,Phys.Lett. B770 (2017) 551-555)
- Is it possible to derive the weight directly? Without inversion?

Computing the Nakanishi weight

- We have assume a specific (simplified) form for the Nakanishi weight

Can we do better?

- We can try to extract numerically the Nakanishi weight using various techniques dedicated to the inverse problem
- But the problem is intrinsically ill-posed in the sens of Hadamard, and sophisticated techniques would be required:
- Tikhonov regularisation (J.Carbonell et al., Phys.Lett. B769 (2017) 418-423)
- Maximal Entropy method (F. Gao et al.,Phys.Lett. B770 (2017) 551-555)
- Is it possible to derive the weight directly? Without inversion?

We try to answer it with an abelian theory first

Divide and Solve

We write the propagator and self energy following:
$S(p, \zeta)=\int \mathrm{d} \omega \frac{\not p \bar{\sigma}_{v}(\omega, \zeta)-\bar{\sigma}_{m}(\omega, \zeta)}{p^{2}-\omega+i \epsilon}, \quad \Sigma(p, \zeta)=\int \mathrm{d} s \frac{\not p \rho_{A}(s, \zeta)-\rho_{B}(s, \zeta)}{p^{2}-s+i \epsilon}$
We consider the σ and the ρ as independent unknown and use 4 equations to relate them among each other:

- The expansion of the propagator: $S=S_{0}+S_{0} \Sigma S$
- The fermion gap equation

Divide and Solve

We write the propagator and self energy following:
$S(p, \zeta)=\int \mathrm{d} \omega \frac{\not p \bar{\sigma}_{v}(\omega, \zeta)-\bar{\sigma}_{m}(\omega, \zeta)}{p^{2}-\omega+i \epsilon}, \quad \Sigma(p, \zeta)=\int \mathrm{d} s \frac{\not p \rho_{A}(s, \zeta)-\rho_{B}(s, \zeta)}{p^{2}-s+i \epsilon}$
We consider the σ and the ρ as independent unknown and use 4 equations to relate them among each other:

- The expansion of the propagator: $S=S_{0}+S_{0} \Sigma S$
- The fermion gap equation

Nota Bene

The momenta can be handle entirely algebraically, allowing direct calculations in Minkowsky space.

Choosing the vertex

- Bare Vertex : $\gamma^{\mu} \rightarrow$ breaks WTI and upsets our main organiser
V. Sauli, JHEP 0302 (2003) 001

Choosing the vertex

- Bare Vertex : $\gamma^{\mu} \rightarrow$ breaks WTI and upsets our main organiser
- Ball-Chiu Vertex: $\Gamma_{B C}^{\mu}(p, q)=$

$$
\gamma^{\mu} \frac{A\left(p^{2}\right)+A\left(q^{2}\right)}{2}+\frac{(p+q)^{\mu}}{p^{2}-q^{2}}\left((p+q) \frac{A\left(p^{2}\right)-A\left(q^{2}\right)}{2}-\left(B\left(p^{2}\right)-B\left(q^{2}\right)\right)\right)
$$

\rightarrow Breaks multiplicative renormalisability

Choosing the vertex

- Bare Vertex : $\gamma^{\mu} \rightarrow$ breaks WTI and upsets our main organiser
- Ball-Chiu Vertex: $\Gamma_{B C}^{\mu}(p, q)=$ $\gamma^{\mu} \frac{A\left(p^{2}\right)+A\left(q^{2}\right)}{2}+\frac{(p+q)^{\mu}}{p^{2}-q^{2}}\left((p+q) \frac{A\left(p^{2}\right)-A\left(q^{2}\right)}{2}-\left(B\left(p^{2}\right)-B\left(q^{2}\right)\right)\right)$ \rightarrow Breaks multiplicative renormalisability
- Curtis-Pennington Vertex \rightarrow not suited to our formalism

Choosing the vertex

- Bare Vertex : $\gamma^{\mu} \rightarrow$ breaks WTI and upsets our main organiser
- Ball-Chiu Vertex: $\Gamma_{B C}^{\mu}(p, q)=$ $\gamma^{\mu} \frac{A\left(p^{2}\right)+A\left(q^{2}\right)}{2}+\frac{(p+q)^{\mu}}{p^{2}-q^{2}}\left((p+q q) \frac{A\left(p^{2}\right)-A\left(q^{2}\right)}{2}-\left(B\left(p^{2}\right)-B\left(q^{2}\right)\right)\right)$ \rightarrow Breaks multiplicative renormalisability
- Curtis-Pennington Vertex \rightarrow not suited to our formalism
- Qin-Chang-Liu-Roberts-Smith Vertex (Qin Vertex) $\Gamma_{Q}^{\mu}=\Gamma_{B C}^{\mu}(p, q)+\Gamma_{\perp}^{\mu}\left[\left(A\left(p^{2}\right)-A\left(q^{2}\right), B\left(p^{2}\right)-B\left(q^{2}\right)\right]\right.$
- Fulfil the WTI longitudinal and transverse (in a simplified way)
- It preserves the multiplicative renormalisability of the theory (we neglect τ_{5})
- It does not introduce new unknown, and is entirely fixed by the quark propagator
S. Qin et al.,Phys.Lett. B722 (2013) 384-388

Choosing the vertex

- Bare Vertex : $\gamma^{\mu} \rightarrow$ breaks WTI and upsets our main organiser
- Ball-Chiu Vertex: $\Gamma_{B C}^{\mu}(p, q)=$
$\gamma^{\mu} \frac{A\left(p^{2}\right)+A\left(q^{2}\right)}{2}+\frac{(p+q)^{\mu}}{p^{2}-q^{2}}\left((p+q) \frac{A\left(p^{2}\right)-A\left(q^{2}\right)}{2}-\left(B\left(p^{2}\right)-B\left(q^{2}\right)\right)\right)$
\rightarrow Breaks multiplicative renormalisability
- Curtis-Pennington Vertex \rightarrow not suited to our formalism
- Qin-Chang-Liu-Roberts-Smith Vertex (Qin Vertex) $\Gamma_{Q}^{\mu}=\Gamma_{B C}^{\mu}(p, q)+\Gamma_{\perp}^{\mu}\left[\left(A\left(p^{2}\right)-A\left(q^{2}\right), B\left(p^{2}\right)-B\left(q^{2}\right)\right]\right.$
- Fulfil the WTI longitudinal and transverse (in a simplified way)
- It preserves the multiplicative renormalisability of the theory (we neglect τ_{5})
- It does not introduce new unknown, and is entirely fixed by the quark propagator
S. Qin et al.,Phys.Lett. B722 (2013) 384-388

The Qin vertex seems well appropriate for our study

From the previous considerations, we can derive a new Gap equation system (On-shell renormalisation, MOM scheme):

$$
\begin{gathered}
\binom{\sigma_{v}}{\sigma_{m}} \propto\binom{\rho_{A}}{\rho_{B}}+\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right)\binom{\sigma_{v}}{\sigma_{m}} \\
\binom{\rho_{A}}{\rho_{B}} \propto\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)\binom{\rho_{A}}{\rho_{B}}
\end{gathered}
$$

where the O and the Q are operators depending resp. on the ρ and σ.

- The same type of equation can be derived for the photon
- No momentum dependence remains: Momenta are integrated out.
- These equations are derived used the Minkowski metric.

We have now started to think about numerical solution to this new problem

Summary

Baryon PDA with NIR

- DSE compatible framework for Baryon PDAs.
- Simple Nakanishi representation works for the nucleon PDA.
- Improved results for the scalar diquark
- We need to add the axial-vector diquark

Direct computation

- Derived a new set of equations for the ρ and σ
- No momentum dependence remains, everything is derived in Minkowski space
- Numerical part is still to be done

Thank you for your attention

Back up slides

$n=-1$ Mellin Moment

$$
\left\langle x^{-1}\right\rangle=\int_{0}^{1} \mathrm{~d} x \frac{\varphi(x)}{1-x} \quad \quad \quad \ln (x) \propto 1-\frac{\ln [1+\kappa x(1-x)]}{\kappa x(1-x)}
$$

	$x(1-x)$	$\phi_{\ln }(x)$	$(x(1-x))^{\nu}$	$\sqrt{x(1-x)}$
$\left\langle x^{-1}\right\rangle$	3	3.41	3.66	4
$\frac{\left\langle x^{-1}\right\rangle}{\left\langle x^{-1}\right\rangle_{A s}}$	1	1.14	1.22	1.33

--- Asymptotic

Meson Form Factors

