The gluon mass and the gauge sector of QCD

Piece one: Gribov and gluon masses

In collaboration with: F. Gao, S. Qin and C.D. Roberts [Phys.Rev. D97 (2018) no.3, 034010]

The Gribov problem

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \partial_{\mu} A^{u}=0 ; \quad \text { Not enough!!! }
$$

\checkmark Gribov suggestion: minimization of $F_{A}[U]=\frac{1}{2} \int d^{4} x\left[A_{\mu}^{a}(x)\right]_{U}\left[A_{\mu}^{a}(x)\right]_{U}$

The Gribov problem

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \partial_{\mu} A^{u}=0 ; \quad \text { Not enough!!! }
$$

Fadeev-Popov operator: $\mathcal{M}^{a b}(x, y)=\left[-\partial^{2} \delta^{a b}+\partial_{\mu} f^{a b c} A_{\mu}^{c}(x)\right] \delta^{4}(x-y)$

- In perturbation theory: the ghost propagator reads

$$
\left(\mathcal{M}^{-1}\right)^{a b}=\frac{1}{k^{2}} \frac{1}{1-\sigma(k, A)} \longrightarrow \sigma(0, A)<1 \longrightarrow\left\{\begin{array}{l}
G_{\text {Gribov }}\left(k^{2}\right)=\frac{k^{4}}{k^{4}+m_{G}^{4}} \\
F_{\text {Gribov }}\left(k^{2}\right)=\frac{128 \pi^{2} m_{G}^{2}}{N_{c} g^{2} k^{2}}
\end{array}\right.
$$

The Gribov problem

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \quad \partial_{\mu} A^{\mu}=0 ; \quad \text { Not enough!!! }
$$

- Zwanziger horizon condition: explicit modification of the action incorporating the horizon term:

$$
\begin{gathered}
\text { erm: } \begin{array}{c}
\gamma \int d^{4} x h(x) \quad[\mathrm{D} . \text { Zwanziger, Nucl.Phys.B321 (198s } \\
h(x)=g^{2} f^{a b c} A_{\mu}^{b}(x)\left[\mathcal{M}^{-1}\right]^{a d}(x, x) f^{d e c} A_{\mu}^{e}(x) \\
\mathcal{M}^{a b}(x, y)=\left[-\partial^{2} \delta^{a b}+\partial_{\mu} f^{a b c} A_{\mu}^{c}(x)\right] \delta^{4}(x-y) \\
\langle h[\gamma]\rangle=d\left(N^{2}-1\right) \quad \text { Condition fixing the Gribov scale }
\end{array}
\end{gathered}
$$

The Gribov problem

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \partial_{\mu} A^{u}=0 ; \quad \text { Not enough!!! }
$$

- Zwanziger horizon condition: explicit modification of the action incorporating the horizon term:

$$
\begin{gathered}
\text { erm: } \begin{array}{c}
\gamma \int d^{4} x h(x) \quad \text { [D. Zwanziger, Nucl.Phys.B321 (1989) 591] } \\
h(x)=g^{2} f^{a b c} A_{\mu}^{b}(x)\left[\mathcal{M}^{-1}\right]^{a d}(x, x) f^{d e c} A_{\mu}^{e}(x) \\
\mathcal{M}^{a b}(x, y)=\left[-\partial^{2} \delta^{a b}+\partial_{\mu} f^{a b c} A_{\mu}^{c}(x)\right] \delta^{4}(x-y) \\
\langle h[\gamma]\rangle=d\left(N^{2}-1\right) \quad \text { Condition fixing the Gribov scale }
\end{array}
\end{gathered}
$$

- An equivalent local action can be derived by incorporating auxiliary fields
[D.. Zwanziger, Nucl.Phys.B399(1993)477]
Gluon dressing function:

$$
\mathcal{D}^{\gamma}\left(k^{2}\right)=\frac{k^{2}}{k^{4}+2 N\left(g^{2} \gamma\right.}
$$

- Gribov mass: m_{γ}^{4}

The Gribov problem

Gribov-Zwanziger approach

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \partial_{\mu} A^{u}=0 ; \quad \text { Not enough!!! }
$$

- An equivalent local action can be derived by incorporating auxiliary fields
[D. Zwanziger, Nucl.Phys.B399(1993)477]
Gluon dressing function: $\mathcal{D}^{\gamma}\left(k^{2}\right)=\frac{k^{2}}{k^{4}+2 N\left(g^{2} \gamma\right.}$
\checkmark Gribov mass: m_{γ}^{4}

The Gribov problem

Refined Gribov-Zwanziger approach

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \partial_{\mu} A^{u}=0 ; \quad \text { Not enough!!! }
$$

- An equivalent local action can be derived by incorporating auxiliary fields
[D. Zwanziger, Nucl.Phys.B399(1993)477]
Gluon dressing function:

$$
\mathcal{D}^{\gamma}\left(k^{2}\right)=\frac{k^{2}}{k^{4}+2 N\left(g^{2} \gamma\right.}
$$

\checkmark Gribov mass: m_{γ}^{4}

- The auxiliary fields localizing the horizon term take a non-zero dimension-two condensates such that
[D. Dudal et al., Phys.Rev.D72(2005)014016]
[D. Dudal et al., Phys.Rev.D77(2008)071501]

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}
$$

The Gribov problem

Refined Gribov-Zwanziger approach

- The gauge-fixing condition, defined as the unambiguous selection of one unique element from each "gauge-field orbit" is nonperturbatively inadequate.

$$
\text { i.e., Landau gauge: } \partial_{\mu} A^{u}=0 ; \quad \text { Not enough!!! }
$$

- An equivalent local action can be derived by incorporating auxiliary fields [D. Zwanziger, Nucl.Phys.B399(1993)477]
Gluon dressing function:

$$
\mathcal{D}^{\gamma}\left(k^{2}\right)=\frac{k^{2}}{k^{4}+2 N\left(g^{2} \gamma\right.}
$$

\checkmark Gribov mass: m_{γ}^{4}

The auxiliary fields localizing the horizon term take a non-zero dimension-two condensates such that
[D. Dudal et al., Phys.Rev.D72(2005)014016]
[D. Dudal et al., Phys.Rev.D77(2008)071501]

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2}\left(m^{2}\right)+\left(\lambda^{4}\right)}\left\{\begin{array}{c}
m^{2}=M^{2}-\mu^{2} \\
\text { where: } \mu^{2}=\frac{3}{32}\left\langle A_{\mu}^{a} A_{a}^{u}\right\rangle \neq 0 \\
M^{2} \neq 0
\end{array}\right.
$$

The partonic constraints

- An illustrative example: $S_{f}\left(k^{2}\right)=1 /\left(k^{2}+\nu^{2}\right)$. a free-parton propagator!

4-d dual in configuration space:

$$
s_{f}(\chi)=\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} S_{f}\left(k^{2}\right)
$$

The partonic constraints

- An illustrative example: $S_{f}\left(k^{2}\right)=1 /\left(k^{2}+\nu^{2}\right)$. a free-parton propagator!

4-d dual in configuration space:

$$
\begin{aligned}
s_{f}(\chi) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} S_{f}\left(k^{2}\right) \\
& =\frac{1}{4 \pi^{2}} \frac{1}{\chi} \int_{0}^{\infty} d k k^{2} \frac{J_{1}(k \chi)}{\left(k^{2}+\nu^{2}\right)}
\end{aligned}
$$

$$
x=\sqrt{x^{2}}
$$

The partonic constraints

- An illustrative example: $S_{f}\left(k^{2}\right)=1 /\left(k^{2}+\nu^{2}\right)$. a free-parton propagator!

4-d dual in configuration space:

$$
x=\sqrt{x^{2}}
$$

$$
\begin{aligned}
s_{f}(\chi) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} S_{f}\left(k^{2}\right) \\
& =\frac{1}{4 \pi^{2}} \frac{1}{\chi} \int_{0}^{\infty} d k k^{2} \frac{J_{1}(k \chi)}{\left(k^{2}+\nu^{2}\right)}=\frac{1}{4 \pi^{2}} \frac{\nu}{\chi} K_{1}(\nu \chi)
\end{aligned}
$$

The partonic constraints

- An illustrative example: $S_{f}\left(k^{2}\right)=1 /\left(k^{2}+\nu^{2}\right)$. a free-parton propagator!

4-d dual in configuration space:

$$
\begin{aligned}
s_{f}(\chi) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} S_{f}\left(k^{2}\right) \\
& =\frac{1}{4 \pi^{2}} \frac{1}{\chi} \int_{0}^{\infty} d k k^{2} \frac{J_{1}(k \chi)}{\left(k^{2}+\nu^{2}\right)}=\frac{1}{4 \pi^{2}} \frac{\nu}{\chi} K_{1}(\nu \chi)
\end{aligned}
$$

- 1-d dual in configuration space:

$$
\text { rest mass }=\left.2 \frac{d^{2}}{d \tau^{2}} \sigma(\tau)\right|_{\tau=0}
$$

$$
x=\sqrt{\vec{x}^{2}+\tau^{2}} .
$$

The partonic constraints

- An illustrative example: $S_{f}\left(k^{2}\right)=1 /\left(k^{2}+\nu^{2}\right)$. a free-parton propagator!

4-d dual in configuration space:

$$
x=\sqrt{x^{2}}
$$

$$
\begin{aligned}
s_{f}(\chi) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} S_{f}\left(k^{2}\right) \\
& =\frac{1}{4 \pi^{2}} \frac{1}{\chi} \int_{0}^{\infty} d k k^{2} \frac{J_{1}(k \chi)}{\left(k^{2}+\nu^{2}\right)}=\frac{1}{4 \pi^{2}} \frac{\nu}{\chi} K_{1}(\nu \chi)
\end{aligned}
$$

1-d dual in configuration space:

$$
\begin{aligned}
\text { rest mass } & =\left.2 \frac{d^{2}}{d \tau^{2}} \sigma(\tau)\right|_{\tau=0} & \chi=\sqrt{\vec{x}^{2}+\tau^{2}} . \\
\sigma(\tau) & =\int d^{3} \vec{x} s(\chi)=\frac{1}{\pi} \int_{0}^{\infty} d k S\left(k^{2}\right) \cos (\tau k) &
\end{aligned}
$$

The partonic constraints

- An illustrative example: $S_{f}\left(k^{2}\right)=1 /\left(k^{2}+\nu^{2}\right)$. a free-parton propagator!

4-d dual in configuration space:

$$
\begin{aligned}
s_{f}(\chi) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} S_{f}\left(k^{2}\right) \\
& =\frac{1}{4 \pi^{2}} \frac{1}{\chi} \int_{0}^{\infty} d k k^{2} \frac{J_{1}(k \chi)}{\left(k^{2}+\nu^{2}\right)}=\frac{1}{4 \pi^{2}} \frac{\nu}{\chi} K_{1}(\nu \chi)
\end{aligned}
$$

1-d dual in configuration space:

$$
\begin{aligned}
\text { rest mass }=\left.2 \frac{d^{2}}{d \tau^{2}} \sigma(\tau)\right|_{\tau=0} & \chi=\sqrt{\vec{x}^{2}+\tau^{2}} . \\
\sigma(\tau) & =\int d^{3} \vec{x} s(\chi)=\frac{1}{\pi} \int_{0}^{\infty} d k \mathcal{S}\left(k^{2}\right) \cos (\tau k)=\frac{1}{2 \nu} e^{-\nu \tau}
\end{aligned}
$$

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{\text {QCD }}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.

The partonic constraints

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{Q C D}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.
- Applied to the RGZ gluon propagator: $\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}$
- 1-d dual in configuration space:

$$
\begin{aligned}
& \qquad \Delta(\tau)=\frac{1}{\pi} \int_{0}^{\infty} d k \cos (\tau k) \overline{\mathcal{D}}\left(k^{2}\right) \\
& =\frac{\exp \left(-\tau \lambda c_{\varphi / 2}\right)}{2 \lambda s_{\varphi}}\left[\left(1+\frac{\lambda^{2}}{M^{2}}\right) s_{\varphi / 2} \cos \left(\tau \lambda s_{\varphi / 2}\right)+\left(1-\frac{\lambda^{2}}{M^{2}}\right) c_{\varphi / 2} \sin \left(\tau \lambda s_{\varphi / 2}\right)\right] \\
& \left.s_{\varphi}=\left(1-c_{\varphi}^{2}\right)^{1 / 2}\right) \\
& s_{\varphi / 2}=\left(1-c_{\varphi / 2}^{2}\right)^{1 / 2} \\
& c_{\varphi}=\cos (\varphi)=\frac{m^{2}}{2 \lambda^{2}} \\
& c_{\varphi / 2}=\left(\frac{1}{2}+\frac{m^{2}}{4 \lambda^{2}}\right)^{1 / 2}
\end{aligned}
$$

The partonic constraints

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{Q C D}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.
- Applied to the RGZ gluon propagator: $\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}$
- 1-d dual in configuration space: weak constraint: $\lambda=M$

$$
\begin{aligned}
& \Delta(\tau)=\frac{1}{\pi} \int_{0}^{\infty} d k \cos (\tau k) \overline{\mathcal{D}}\left(k^{2}\right) \\
& \\
& =\frac{\exp \left(-\tau \lambda c_{\varphi / 2}\right)}{2 \lambda s_{\varphi}}\left[\left(1+\frac{\lambda^{2}}{M^{2}}\right) s_{\varphi / 2} \cos \left(\tau \lambda s_{\varphi / 2}\right)+\left(1-\frac{\lambda^{2}}{M^{2}}\right)_{\varphi / 2} \sin \left(1 c_{\varphi}^{2}\right)^{1 / 2}\right. \\
& s_{\varphi / 2}=\left(1-c_{\varphi / 2}^{2}\right)^{1 / 2} \\
& c_{\varphi \varphi}=\cos (\varphi)=\frac{m^{2}}{2 \lambda^{2}} \\
& c_{\varphi / 2}=\left(\frac{1}{2}+\frac{m^{2}}{4 \lambda^{2}}\right)^{1 / 2}
\end{aligned} \quad \simeq \frac{e^{-v \tau}}{2(1)}\left(1-\frac{\tau^{2} \lambda^{2} s_{\varphi / 2}^{2}}{2}\right) \longrightarrow v=\lambda c_{\varphi / 2}=M\left(\frac{1}{2}+\frac{m^{2}}{M^{2}}\right)^{1 / 2}
$$

The partonic constraints

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{Q C D}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.
- Applied to the RGZ gluon propagator: $\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}$
- 1-d dual in configuration space: weak constraint: $\lambda=M$

$$
\Delta(\tau)=\frac{1}{\pi} \int_{0}^{\infty} d k \cos (\tau k) \overline{\mathcal{D}}\left(k^{2}\right) \quad m_{\gamma} \geq 0: \lambda^{2} \geq \frac{\mu^{2}}{3}
$$

$$
s_{\varphi}=\left(1-c_{\varphi}^{2}\right)^{1 / 2}
$$

$$
s_{q / 2}=\left(1-c_{q / 2}^{2}\right)^{1 / 2}
$$

$$
c_{\varphi}=\cos (\varphi)=\frac{m^{2}}{2 \lambda^{2}}
$$

$$
c_{\varphi / 2}=\left(\frac{1}{2}+\frac{m^{2}}{4 \lambda^{2}}\right)^{1 / 2}
$$

$$
\simeq \frac{e^{-v \tau}}{2(v)}\left(1-\frac{\tau^{2} \lambda^{2} s_{\varphi / 2}^{2}}{2}\right) \longrightarrow \nu=\lambda c_{\varphi / 2}=M\left(\frac{1}{2}+\frac{m^{2}}{M^{2}}\right)^{1 / 2}
$$

The partonic constraints

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{Q C D}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.
- Applied to the RGZ gluon propagator: $\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}$
- 1-d dual in configuration space: strong constraint: $\lambda^{2} \geq \mu^{2}$

$$
\begin{aligned}
& \Delta(\tau)=\frac{1}{\pi} \int_{0}^{\infty} d k \cos (\tau k) \overline{\mathcal{D}}\left(k^{2}\right) \\
&=\frac{\exp \left(-\tau \lambda c_{\varphi / 2}\right)}{2 \lambda s_{\varphi}}\left[\left(1+\frac{\lambda^{2}}{M^{2}}\right) s_{\varphi / 2} \cos \left(\tau \lambda s_{\varphi / 2}\right)+\left(1-\frac{\lambda^{2}}{M^{2}}\right) c_{\varphi / 2} \sin \left(\tau \lambda s_{\varphi / 2}\right)\right] \\
& s_{\varphi}=\left(1-c_{\varphi}^{2}\right)^{1 / 2} \\
& s_{\varphi / 2}=\left(1-c_{\varphi / 2}^{2}\right)^{1 / 2} \\
& c_{\varphi}=\cos (\varphi)=\frac{m^{2}}{2 \lambda^{2}}\left.\frac{d^{2}}{d \tau^{2}} \Delta(\tau)\right|_{\tau=0}=\frac{\lambda}{4 c_{\varphi / 2}}\left[1-\mu^{2} / \lambda^{2}\right] \geq 0
\end{aligned}
$$

$c_{\varphi / 2}=\left(\frac{1}{2}+\frac{m^{2}}{4 \lambda^{2}}\right)^{1 / 2}$

The partonic constraints

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{Q C D}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.
- Applied to the RGZ gluon propagator: $\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}$
-4-d dual in configuration space:

$$
d(\chi)=\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} \overline{\mathcal{D}}\left(k^{2}\right) \quad \chi=\sqrt{x^{2}}
$$

$$
\begin{aligned}
a_{ \pm} & =\frac{r \pm m^{2} \mp 2 M^{2}}{2 r} \\
b_{ \pm} & =\frac{1}{\sqrt{ } 2}\left(m^{2} \pm r\right)^{1 / 2} \\
r & =\sqrt{\left(m^{2}-2 \lambda^{2}\right)\left(m^{2}+2 \lambda^{2}\right)}
\end{aligned}
$$

The partonic constraints

- Asymptotic freedom implies that the two-points QCD Schwinger functions must be convex-down, both in momentum space (for $k^{2}>k_{P}^{2}>\Lambda_{Q C D}^{2}$) and in configuration space (for $x^{2}<x_{P}^{2}<1 / \Lambda_{Q C D}^{2}$). A real, positive effective mass implies the same for the 1-d Schwinger function in the vicinity of $\tau=0$.
- Applied to the RGZ gluon propagator: $\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}$
-4-d dual in configuration space:

$$
\begin{array}{rlrl}
d(\chi) & =\int \frac{d^{4} k}{(2 \pi)^{4}} \mathrm{e}^{i k \cdot x} \overline{\mathcal{D}}\left(k^{2}\right) & x=\sqrt{x^{2}} \\
& =\frac{1}{4 \pi^{2} \chi} \sum_{i= \pm} a_{i} b_{i} K_{1}\left(\chi b_{i}\right) \stackrel{\chi \simeq 0}{\approx} \frac{1}{4 \pi^{2} \chi^{2}}
\end{array}
$$

$$
\begin{aligned}
a_{ \pm} & =\frac{r \pm m^{2} \mp 2 M^{2}}{2 r} \\
b_{ \pm} & =\frac{1}{\sqrt{ } 2}\left(m^{2} \pm r\right)^{1 / 2} \\
r & =\sqrt{\left(m^{2}-2 \lambda^{2}\right)\left(m^{2}+2 \lambda^{2}\right)}
\end{aligned}
$$

- It behaves pretty like the free-propagator 4-d dual at low-distance,
- but the partonic rest-mass structure is only exposed by the 1-d dual with the appropriate constraints!

Interpreting the lattice data

Interpreting the lattice data

$$
\bar{D}\left(k^{2} \zeta_{G Z}^{2}\right):=\bar{D}\left(k^{2}\right)
$$

$$
\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{\bar{D}\left(k^{2} \cdot \zeta_{G Z}^{2}\right)}{\zeta_{0}^{2} \bar{D}\left(\zeta_{0}, \zeta_{G Z}\right)}
$$

$$
\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{D_{\text {Lat }}\left(k^{2}, a\right)}{\zeta_{0}^{2} D_{\text {Lat }}\left(\zeta_{0}^{2}, a\right)}
$$

Interpreting the lattice data

$(\mathrm{A}) \quad$ quenched	k_{0}	ζ_{0}	λ	M	z_{0}	M / λ	μ / λ
unconstrained	4.5	1.1	0.84	2.10	0.43	2.49	2.33
weak	ζ_{0}	1.1	0.72	1.09	0.75	1.50	1.27
strong	ζ_{0}	1.0	0.59	0.59	1.04	1	0.45
0.0							0.68
0.88	0.84	1.29	1				
	ζ_{0}	1.0	0.5				

$\bar{D}\left(k^{2} \zeta_{G Z}^{2}\right):=\bar{D}\left(k^{2}\right)$
$\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{\bar{D}\left(k^{2} \zeta_{G Z}^{2}\right)}{\zeta_{0}^{2} \bar{D}\left(\zeta_{0}, \zeta_{G Z}\right)}$
$\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{D_{\text {Lat }}\left(k^{2}, a\right)}{\zeta_{0}^{2} D_{\text {Lat }}\left(\zeta_{0}^{2}, a\right)}$

Interpreting the lattice data

(A) quenched	k_{0}	ζ_{0}	λ	M	z_{0}	M / λ	μ / λ							
unconstrained	4.5	1.1	0.84	2.10	0.43	2.49	2.33							
	ζ_{0}	1.1	0.72	1.09	0.75	1.50	1.27							
weak	ζ_{0}	1.0	0.59	0.59	1.04	1	0.45							
strong	ζ_{0}	1.0	0.68	0.88	0.84	1.29	1							
0									0.5					

$\bar{D}\left(k^{\left.2, \zeta_{G Z}^{2}\right):=\bar{D}\left(k^{2}\right), ~(x)}\right.$
$\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{\bar{D}\left(k^{\left.2, \zeta_{G Z}^{2}\right)}\right.}{\zeta_{0}^{2} \bar{D}\left(\zeta_{0}, \zeta_{G Z}\right)}$
$\bar{D}\left(k^{2, \zeta_{0}^{2}}\right)=\frac{D_{L a t}\left(k^{2}, a\right)}{\zeta_{0}^{2} D_{L a t}\left(\zeta_{0}^{2}, a\right)}$

Interpreting the lattice data

$\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{D_{\text {Lat }}\left(k^{2}, a\right)}{\zeta_{0}^{2} D_{L a t}\left(\zeta_{0}^{2}, a\right)}$

Interpreting the lattice data

(A) quenched	k_{0}	ζ_{0}	λ	M	z_{0}	M / λ	μ / λ
unconstrained	4.5	1.1	0.84	2.10	0.43	2.49	2.33
	ζ_{0}	1.1	0.72	1.09	0.75	1.50	1.27
weak	ζ_{0}	1.0	0.59	0.59	1.04	1	0.45
strong	ζ_{0}	1.0	0.68	0.88	0.84	1.29	1

$\bar{D}\left(k^{2,} \zeta_{G Z}^{2}\right):=\bar{D}\left(k^{2}\right)$
$\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{\bar{D}\left(k^{2} \zeta_{G Z}^{2}\right)}{\zeta_{0}^{2} \bar{D}\left(\zeta_{0}, \zeta_{G Z}\right)}$
$\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{D_{\text {Lat }}\left(k^{2}, a\right)}{\zeta_{0}^{2} D_{\text {Lat }}\left(\zeta_{0}^{2}, a\right)}$

The Gribov and the gluon masses

The RGZ scenario:

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}
$$

The Gribov and the gluon masses

The RGZ scenario:
Gribov mass

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2}\left(m^{2}\right)+\lambda^{4}}\left\{\begin{array}{l}
\lambda^{4}=2 N m_{y}^{4}-\mu^{2} M^{2} \\
m^{2}=M^{2}-\mu^{2}
\end{array}\right.
$$

The Gribov and the gluon masses

The RGZ scenario:

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}} \begin{cases}\lambda^{4}=2 N\left(m_{y}^{4}-\mu^{2} M^{2}\right. \\ m^{2}=M^{2}-\mu^{2} & \text { (a manifestation of } \\ \text { Gluon mass } & \text { more elaborated } \\ m_{g}^{2}=\frac{\lambda^{4}}{M^{2}} & \text { mechanisms as }\end{cases}
$$

The Gribov and the gluon masses

- The RGZ scenario:

$$
\begin{aligned}
& \overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}} \begin{cases}\lambda^{4}=2 N \sqrt{m_{y}^{4}}-\mu^{2} M^{2} \\
m^{2}=M^{2}-\mu^{2} & \text { (a manifestation of }\end{cases} \\
& \text { Gluon mass } \begin{array}{l}
\text { more elaborated } \\
\text { mechanisms as }
\end{array} \\
& \begin{cases}m_{g}^{2}=\frac{\lambda^{4}}{M^{2}} & \text { Schwinger's one!!!) }\end{cases}
\end{aligned}
$$

- The RGZ + partonic scenario:
- Weak constraint: $M^{2}=\lambda^{2}, \lambda^{2} \geq \frac{\mu^{2}}{3}$
- Strong constraint: $\quad \lambda^{2} \geq \mu^{2}$

The Gribov and the gluon masses

- The RGZ scenario:

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}} \begin{cases}\lambda^{4}=2 N \sqrt{m_{y}^{4}}-\mu^{2} M^{2} \\ m^{2}=M^{2}-\mu^{2} & \text { (a manifestation of } \\ \text { Gluon mass } & \text { more elaborated } \\ \begin{cases}m_{g}^{2}=\frac{\lambda^{4}}{M^{2}} & \text { mechanisms as } \\ \text { Schwinger's one!!!) }\end{cases} \end{cases}
$$

- The RGZ + partonic scenario:
- Weak constraint: $M^{2}=\lambda^{2}, \lambda^{2} \geq \frac{\mu^{2}}{3}$

- Strong constraint: $\quad \lambda^{2} \geq \mu^{2}$

The Gribov and the gluon masses

- The RGZ scenario:

$$
\begin{aligned}
& \overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m m^{2}+\lambda^{4}} \begin{cases}\lambda^{4}=2 N\left(m_{y}^{4}\right)-\mu^{2} M^{2} \\
m^{2}=M^{2}-\mu^{2} & \text { (a manifestation of }\end{cases} \\
& \text { Gluon mass } \begin{array}{l}
\text { more elaborated } \\
\begin{cases}m_{g}^{2}=\frac{\lambda^{4}}{M^{2}} & \text { sechanisms as }\end{cases}
\end{array} \begin{array}{l}
\text { Schwinger's one!!!! }
\end{array}
\end{aligned}
$$

- The RGZ + partonic scenario:
- Weak constraint: $\quad M^{2}=\lambda^{2}, \lambda^{2} \geq \frac{\mu^{2}}{3}$

- Strong constraint: $\quad \lambda^{2} \geq \mu^{2}$

0.56 GeV

The Gribov and the gluon masses

| (A) quenched | k_{0} | ζ_{0} | λ | M | z_{0} | M / λ | μ / λ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| strong | ζ_{0} | 1.0 | 0.68 | 0.88 | 0.84 | 1.29 | 1 |
| str. $+m_{\gamma}=m_{g}$ | ζ_{0} | 1.0 | 0.67 | 0.84 | 0.87 | 1.26 | 0.94 |

$$
\begin{gathered}
g^{2}\left\langle A_{\mu}^{a} A_{\mu}^{a}\right\rangle=\frac{32}{3} \mu^{2} \approx 4 \mathrm{GeV}^{2} \\
g^{2}\left\langle A_{\mu}^{a} A_{\mu}^{a}\right\rangle_{p h}=1-7 G e V^{2}
\end{gathered}
$$

$$
\bar{D}\left(k^{2, \zeta_{G Z}^{2}}\right):=\bar{D}\left(k^{2}\right)
$$

$$
\bar{D}\left(k^{2,} \zeta_{0}^{2}\right)=\frac{\bar{D}\left(k^{\left.2, \zeta_{G Z}^{2}\right)}\right.}{\zeta_{0}^{2} \bar{D}\left(\zeta_{0,} \zeta_{G Z}\right)}
$$

$$
\bar{D}\left(k^{\left.2, \zeta_{0}^{2}\right)}=\frac{D_{L a t}\left(k^{2}, a\right)}{\zeta_{0}^{2} D_{L a t}\left(\zeta_{0}^{2}, a\right)}\right.
$$

The Gribov and the gluon masses

- The RGZ scenario:

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}
$$

- The RGZ + partonic scenario:

$$
\begin{gathered}
\begin{cases}\lambda^{4}=2 N m_{y}^{4}-\mu^{2} M^{2} \\
m^{2}=M^{2}-\mu^{2} & \text { (a manifestation of }\end{cases} \\
\begin{cases}\text { Gluon mass } & \text { more elaborated } \\
m_{g}^{2}=\frac{\lambda^{4}}{M^{2}} & \text { mechanisms as }\end{cases}
\end{gathered}
$$

$$
\lambda^{2} \geq \mu^{2}+m_{\gamma}=m_{g}=0.53 \mathrm{GeV}
$$

The Gribov and the gluon masses

- The RGZ scenario:

$$
\overline{\mathcal{D}}\left(k^{2}\right)=\frac{k^{2}+M^{2}}{k^{4}+k^{2} m^{2}+\lambda^{4}}
$$

- The RGZ + partonic scenario:
- Third synthetic and favoured case:

$$
\begin{aligned}
& \begin{cases}\lambda^{4}=2 N\left(m_{\gamma}^{4}\right)-\mu^{2} M^{2} \\
m^{2}=M^{2}-\mu^{2} & \text { (a manifestation of } \\
\text { Gluon mass } & \text { more elaborated } \\
\text { mechanisms as }\end{cases} \\
& \begin{cases}m_{g}^{2}=\frac{\lambda^{4}}{M^{2}} & \text { Schwinger's one!!! }\end{cases} \\
& \text { se: } \quad \lambda^{2} \geq \mu^{2}+m_{\gamma}=m_{g}=0.53 \mathrm{GeV}
\end{aligned}
$$

Conclusions:

- Both emergent phenomena, the appearance of a horizon scale and a gluon mass, play the same role in screening longwavelength gluon modes, thereby dynamically eliminating the Gribov ambiguities.
- Together, they set a confinement scale of the order of 1 GeV .
- We can thus sensibly conjecture that both emergent phenomena are equivalent!!!

Piece two: the zero-crossing of the three-gluon vertex

In collaboration with: A. Athenodorou, D. Binosi, Ph. Boucaud, F. De Soto, J. Papavassiliou and S. Zafeiropoulos
[Phys.Rev. D95 (2017) no.11, 114503]
[Phys.Lett. B761 (2016) 444-449]

The zero-crossing of the three-gluon vertex

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at very deep IR momenta and show then a zero-crossing. This appears to happen below $\sim 0.2 \mathrm{GeV}$.

The zero-crossing of the three-gluon vertex

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at very deep IR momenta and show then a zero-crossing. This appears to happen below $\sim 0.2 \mathrm{GeV}$.

The zero-crossing of the three-gluon vertex

Let's consider now the asymmetric case: the results are much noisier (surely because of the zeromomentum gluon field in the correlation function), although there appear to be strong indications for the happening of the zero-crossing.

The zero-crossing of the three-gluon vertex

After le trend is

The zero-crossing of the three-gluon vertex

The zero-crossing of the three-gluon vertex

After leg amputation, the 1PI form factor for the tree-level tensor shows clearly the zero-crossing. The trend is the same for both Wilson and tISym actions and symmetric and asymmetric configurations.

The zero-crossing of the three-gluon vertex

DSE-based explanation:

$$
\Gamma_{T, R}^{i,(B)}\left(p^{2} ; \mu^{2}\right) \underset{p^{2} / \mu^{2} \ll 1}{\sim} F_{R}\left(0 ; \mu^{2}\right) \frac{\partial}{\partial p^{2}} \Delta_{R}^{-1}\left(p^{2} ; \mu^{2}\right)+\ldots
$$

In PT-BFM truncation cf. Daniele's, Joannis' or Cristina's talk!!!

$$
\left[1+G\left(q^{2}\right)\right]^{2} \Delta^{-1}\left(q^{2}\right)=\widehat{\Delta}^{-1}\left(q^{2}\right) .
$$

The zero-crossing of the three-gluon vertex

DSE-based explanation:

$$
\Gamma_{T, R}^{i,(B)}\left(p^{2} ; \mu^{2}\right) \underset{p^{2} / \mu^{2} \ll 1}{\sim} F_{R}\left(0 ; \mu^{2}\right) \frac{\partial}{\partial p^{2}} \Delta_{R}^{-1}\left(p^{2} ; \mu^{2}\right)+\ldots
$$

In PT-BFM truncation cf. Daniele's, Joannis' or Cristina's talk!!!

$$
\Pi_{c}\left(q^{2}\right)=\frac{g^{2} C_{A}}{6} q^{2} F\left(q^{2}\right) \int_{k} \frac{F\left(k^{2}\right)}{k^{2}(k+q)^{2}},
$$

The zero-crossing of the three-gluon vertex

DSE-based explanation:

$$
\Gamma_{T, R}^{i,(B)}\left(p^{2} ; \mu^{2}\right) \underset{p^{2} / \mu^{2} \ll 1}{\sim} F_{R}\left(0 ; \mu^{2}\right) \frac{\partial}{\partial p^{2}} \Delta_{R}^{-1}\left(p^{2} ; \mu^{2}\right)+\ldots
$$

In PT-BFM truncation cf. Daniele's, Joannis' or Cristina's talk!!!

$$
\Pi_{c}\left(q^{2}\right)=\frac{g^{2} C_{A}}{6} q^{2} F\left(q^{2}\right) \int_{k} \frac{F\left(k^{2}\right)}{k^{2}(k+q)^{2}}, \quad \mathrm{~d}=4 \quad \Delta_{R}^{-1}\left(q^{2} ; \mu^{2}\right) \underset{q^{2} \rightarrow 0}{=} q^{2}\left[a+b \log \frac{q^{2}+m^{2}}{\mu^{2}}+c \log \frac{q^{2}}{\mu^{2}}\right]+m^{2}
$$

The zero-crossing of the three-gluon vertex
DSE-based explanation:

$$
\Gamma_{T, R}^{i,(B)}\left(p^{2} ; \mu^{2}\right) \underset{p^{2} / \mu^{2} \ll 1}{\simeq} F_{R}\left(0 ; \mu^{2}\right)\left(a+b \ln \frac{m^{2}}{\mu^{2}}+c\right)+c F_{R}\left(0 ; \mu^{2}\right) \ln \frac{p^{2}}{\mu^{2}}+\ldots
$$

A logarithmic divergent contribution at vanishing momentum, pulling down the 1PI form factor and generating a zero crossing, can be understood within a DSE framework.

$$
\Pi_{c}\left(q^{2}\right)=\frac{g^{2} C_{A}}{6} q^{2} F\left(q^{2}\right) \int_{k} \frac{F\left(k^{2}\right)}{k^{2}(k+q)^{2}}, \quad \mathrm{~d}=4 \rightarrow \Delta_{R}^{-1}\left(q^{2} ; \mu^{2}\right) \underset{q^{2} \rightarrow 0}{=} q^{2}\left[a+b \log \frac{q^{2}+m^{2}}{\mu^{2}}+c \log \frac{q^{2}}{\mu^{2}}\right]+m^{2},
$$

The zero-crossing of the three-gluon vertex

A.C Aguilar et al.; PRD89(2014)05008

$$
g_{R}^{i}\left(\mu^{2}\right) \Gamma_{R}^{i}\left(p^{2} ; \mu^{2}\right)=a_{l n}^{i}\left(\mu^{2}\right) \ln \frac{p^{2}}{\mu^{2}}+a_{0}^{i}\left(\mu^{2}\right)+a_{2}^{i}\left(\mu^{2}\right) p^{2} \ln \frac{p^{2}}{M^{2}}+o\left(p^{2}\right)
$$

We can thus perform a fit, only over a deep IR domain, of our data to a DSE-grounded formula and describe the behaviour of the 1PI form factor.

The zero-crossing of the three-gluon vertex

A.C Aguilar et al.; PRD89(2014)05008
 $g_{R}^{i}\left(\mu^{2}\right) \Gamma_{R}^{i}\left(p^{2} ; \mu^{2}\right)=a_{l n}^{i}\left(\mu^{2}\right) \ln \frac{p^{2}}{\mu^{2}}+a_{0}^{i}\left(\mu^{2}\right)+a_{2}^{i}\left(\mu^{2}\right) p^{2} \ln \frac{p^{2}}{M^{2}}+o\left(p^{2}\right)$
$g_{R}^{i}\left(\mu^{2}\right) c F_{R}\left(0, \mu^{2}\right)$
Consistent with direct large-volume lattice evaluations of the gluon and ghost two-point Green functions.

We can thus perform a fit, only over a deep IR domain, of our data to the DSE-grounded formula and describe the behaviour of the 1PI form factor.

The zero-crossing of the three-gluon vertex

$$
g_{R}^{i}\left(\mu^{2}\right) \Gamma_{R}^{i}\left(p^{2} ; \mu^{2}\right)=a_{\ln }^{i}\left(\mu^{2}\right) \ln \frac{p^{2}}{\mu^{2}}+a_{0}^{i}\left(\mu^{2}\right)+a_{2}^{i}\left(\mu^{2}\right) p^{2} \ln \frac{p^{2}}{M^{2}}+o\left(p^{2}\right)
$$

$g_{R}^{i}\left(\mu^{2}\right) c F_{R}\left(0, \mu^{2}\right)$
Consistent with direct large-volume lattice evaluations of the gluon and ghost twopoint Green functions.

The low-momenta asymptotic 1PI form factor obtained from DSE within the PT-BFM is fully consistent with lattice data for both symmetric and asymmetric kinematic configurations.

Conclusions

- Lattice contemporary results for the three-gluon Green's functions provide, as a main feature, a zero-crossing at very lowmomenta...
- ... that can be understood as being driven by a negative logarithmic singularity for the 3 -gluon 1-PI vertex.

Conclusions

- Lattice contemporary results for the three-gluon Green's functions provide, as a main feature, a zero-crossing at very lowmomenta...
- ... that can be understood as being driven by a negative logarithmic singularity for the 3-gluon 1-PI vertex.

Thank you!!!

