

Nucleon resonances in Compton scattering

Gernot Eichmann

IST Lisboa, Portugal

Emergent mass and its consequences in the Standard Model ECT*, Trento, Italy

September 18, 2018

Compton scattering

Structure functions & PDFs in forward limit

Handbag dominance & GPDs in DVCS

TPE corrections to form factors

Guichon, Vanderhaeghen, PRL 91 (2003)

Proton radius puzzle?

Antonigni et al., 2013, Pohl et al. 2013, Birse, McGovern 2012, Carlson 2015

Nucleon polarizabilities

Hagelstein, Miskimen, Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016)

Resonances!

 $\pi, \sigma, a_1, ...$

イロト イポト イヨト イヨト

Motivation

pentaquarks??

Form factors: resonance transition FFs, spacelike vs. timelike properties

Hadron structure & scattering amplitudes

Extraction of resonances?

1 ⁺ 2 ⁺	1- 2	3 ⁺	3- 2	<u>5</u> +	5-	7+ 2
N(939) N(1440) N(1710) N(1880)	N(1535) N(1650) N(1895)	N(1720) N(1900)	N(1520) N(1700) N(1875)	N(1680) N(1860) N(2000)	N(1675)	N(1990)
∆(1910)	∆(1620) ∆(1900)	∆(1232) △(1600) △(1920)	∆(1700) ∆(1940)	∆(1905) ∆(2000)	∆(1980)	∆(1950)
Λ(1116) Λ(1600) Λ(1810)	A(1405) A(1670) A(1800)	Λ(1890)	A(1520) A(1690)	∆(1820)	A(1830)	
Σ(1189) Σ(1660) Σ(1880)	Σ(1750)	Σ(1385)	Σ(1670) Σ(1940)	Σ(1915)	E(1775)	
E(1315)		Ξ(1530) Ω(1672)	∃(1820)			

イロト イロト イヨト イヨト

Outline

- Introduction
- DSEs, BSEs:

From quarks and gluons to baryon resonances

• Nucleon resonances in Compton scattering, transition form factors

GE, Ramalho, 1806.04579

Compton scattering

Compton amplitude = sum of Born terms + 1PI structure part:

Compton scattering

Scattering amplitude: GE, Fischer, PRD 85 (2012) & PRD 87 (2013)

- · Poincaré covariance and crossing symmetry automatic
- em. gauge invariance and chiral symmetry automatic as long as all ingredients calculated from symmetry-preserving kernel
- · perturbative processes included
- **s, t, u channel poles** dynamically generated, no need for "offshell hadrons"

DSEs & BSEs

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + ig A + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \boxed{ \underbrace{ - \frac{1}{2}}_{0}}_{0} \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac$$

DSEs = quantum equations of motion: derived from path integral, relate n-point functions

Bethe-Salpeter equations for hadronic bound states:

Quantum "effective action":

 $\int \mathcal{D}[\psi,\bar{\psi},A] e^{-S} = e^{-\Gamma}$ $- - \frac{1}{2} - \frac{1}{2} = - \frac{1}{2}$

- Poincaré covariance
- · Chiral symmetry
- EM gauge invariance
- Only quark & gluon d.o.f., hadron poles generated dynamically
- multiscale problems feasible
- gauge-fixed
- truncations: neglect higher n-point functions to obtain closed system

QCD's n-point functions

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Gluon propagator

• Three-gluon vertex

 $\begin{array}{c} F_1 \left[\, \delta^{\mu\nu} (p_1 - p_2)^{\rho} + \delta^{\nu\rho} (p_2 - p_3)^{\mu} \\ + \, \delta^{\rho\mu} (p_3 - p_1)^{\nu} \right] + \dots \end{array}$

Agreement between lattice, DSE & FRG within reach

Huber, EPJ C77 (2017), Cyrol, Mitter, Pawlowski, PRD 97 (2018), ... · Quark-gluon vertex

• 3PI system: all 2 & 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

Rainbow-ladder: quark propagator calculated, ۰ kernel = effective gluon exchange

 $\alpha(k^2)$ $\alpha(k^2)$ $k^2 [GeV^2]$

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \boldsymbol{\eta}\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable. keep width η as parameter

Oin et al., PRC 84 (2011)

Beyond rainbow-ladder using symmetries and quark-gluon vertex ansätze

Chang, Roberts, PRL 103 (2009), Binosi, Chang, Papavassiliou, Qin, Roberts, PRD 93 (2016)

Gernot Eichmann (IST Lisboa)

Maris, Tandy, PRC 60 (1999),

• 3PI system: all 2 & 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

Rainbow-ladder: quark propagator calculated, • kernel = effective gluon exchange

 $\alpha(k^2)$ $\alpha(k^2)$ $k^2 [GeV^2]$

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable. keep width η as parameter

Maris, Tandy, PRC 60 (1999), Oin et al., PRC 84 (2011)

Light meson spectrum beyond rainbow-ladder:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

• **3PI system:** all 2 & 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

 Rainbow-ladder: quark propagator calculated, kernel = effective gluon exchange

 $\frac{-\mathbf{c}}{\frac{1}{2}} \alpha(k^2)$

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter

Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Light meson spectrum beyond rainbow-ladder:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

• **3PI system:** all 2 & 3-point functions calculated Williams, Fischer, Heupel, PRD 93 (2016)

 Rainbow-ladder: quark propagator calculated, kernel = effective gluon exchange

 $\frac{-\mathbf{c}}{\prod_{k=1}^{n}\alpha(k^2)}$

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter

Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Light meson spectrum beyond rainbow-ladder:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

Baryons

Covariant Faddeev equation for baryons:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- 3-gluon diagram vanishes ⇒ 3-body effects small? Sanchis-Alepuz, Williams, PLB 749 (2015)
- 2-body kernels same as for mesons, no further approximations:

$$\Psi_{\alpha\beta\gamma\delta}(p,q,P) = \sum_{i} f_i(p^2,q^2,p\cdot q,p\cdot P,q\cdot P) \ \tau_i(p,q,P)_{\alpha\beta\gamma\delta}$$

Lorentz-invariant dressing functions

Dirac-Lorentz tensors carry OAM: s, p, d,...

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

The role of diquarks

Three-body equation knows nothing of **diquarks**, but dynamically generates them in iteration

Group Lorentz invariants into **multiplets of permutation group S3:** GE, Fischer, Heupel, PRD 92 (2015), GE, Sanchis-Alepuz, in preparation

• Singlet: symmetric variable, carries overall scale:

• Doublet:

 $\mathcal{D}_0 \sim \frac{1}{\mathcal{S}_0} \left[\begin{array}{c} -\sqrt{3} \left(\delta x + 2\delta \omega \right) \\ x + 2\omega \end{array} \right]$

 $S_0 \sim p_1^2 + p_2^2 + p_3^2 + \frac{M^2}{3}$

• Second doublet:

$$\mathcal{D}_1 \sim \frac{1}{\sqrt{\mathcal{S}_0}} \begin{bmatrix} -\sqrt{3} \left(\delta x - \delta \omega \right) \\ x - \omega \end{bmatrix}$$

Mandelstam plane, outside: diquark poles!

イロト イポト イヨト イヨト 二日

The role of diquarks

Three-body equation knows nothing of **diquarks**, but dynamically generates them in iteration

Group Lorentz invariants into **multiplets of permutation group S3:** GE, Fischer, Heupel, PRD 92 (2015), GE, Sanchis-Alepuz, in preparation

- Singlet: symmetric variable, carries overall scale:
 - $S_0 \sim p_1^2 + p_2^2 + p_3^2 + \frac{M^2}{3}$
- Doublet:

 $\mathcal{D}_0 \sim \frac{1}{\mathcal{S}_0} \left[\begin{array}{c} -\sqrt{3} \left(\delta x + 2\delta \omega \right) \\ x + 2\omega \end{array} \right]$

$$\mathcal{D}_1 \sim \frac{1}{\sqrt{\mathcal{S}_0}} \left[\begin{array}{c} -\sqrt{3} \left(\delta x - \delta \omega \right) \\ x - \omega \end{array} \right]$$

⇒ Simplify 3-body equation to quark-diquark BSE

Oettel, Alkofer, Hellstern Reinhardt, PRC 58 (1998), Cloet, GE, El-Bennich, Klähn, Roberts, FBS 46 (2009) GE, Krassnigg, Schwinzerf, Alkofer, Ann. Phys. 323 (2008) Segovia, El-Bennich, Rojas, Cloet, Roberts, Xu, Zong, PRL 115 (2015)

Baryon spectrum

Baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Resonances!

Gernot Eichmann (IST Lisboa)

Resonances!

Resonances!

DSE / BSE:

Resonance dynamics "on top of" quark-gluon dynamics

Gernot Eichmann (IST Lisboa)

Compton scattering

Scattering amplitude: GE, Fischer, PRD 85 (2012) & PRD 87 (2013)

- · Poincaré covariance and crossing symmetry automatic
- em. gauge invariance and chiral symmetry automatic as long as all ingredients calculated from symmetry-preserving kernel
- · perturbative processes included
- **s, t, u channel poles** dynamically generated, no need for "offshell hadrons"

Need em. transition FFs

But vertices are half offshell: need 'consistent couplings' Pascalutsa, Timmermans, PRC 60 (1999)

- em gauge invariance: $Q^{\mu} \Gamma^{\alpha \mu} = 0$
- spin-3/2 gauge invariance: $k^{\alpha} \Gamma^{\alpha \mu} = 0$
- invariance under point transformations: $\gamma^{\alpha} \Gamma^{\alpha\mu} = 0$
- no kinematic dependencies, "minimal" basis

$J^P = \frac{1}{2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$
N(940) N(1440) <i>N</i> (1710) <i>N</i> (1880)	N(1720) N(1900)	N(1535) N(1650) N(1895)	N(1520) N(1700) N(1875)
$\Delta(1910)$	$\Delta(1232)$ $\Delta(1600)$ $\Delta(1920)$	Δ(1620) Δ(1900)	Δ(1700) Δ(1940)

E.g. Jones-Scadron current cannot be used offshell:

$$\begin{split} \Gamma^{\alpha\mu} &\sim \bar{u}^{\alpha}(k) \left[m^{2} \lambda_{-} (G_{M}^{*} - G_{E}^{*}) \varepsilon_{kQ}^{\alpha\mu} \right. \\ &\left. - G_{E}^{*} \varepsilon_{kQ}^{\alpha\beta} \varepsilon_{kQ}^{\beta\mu} - \frac{1}{2} G_{C}^{*} \left(Q^{\alpha} k^{\beta} t_{QQ}^{\beta\mu} \right] u(k') \right. \\ \left. t_{AB}^{\alpha\beta} &= A \cdot B \, \delta^{\alpha\beta} - B^{\alpha} \, A^{\beta} \right. \\ \left. \varepsilon_{AB}^{\alpha\beta} &= \gamma_{5} \, \varepsilon^{\alpha\beta\gamma\delta} A^{\gamma} B^{\delta} \end{split}$$

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{G}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{G}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{G}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{G}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{G}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{T}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Without minimal basis:

With minimal basis:

no kinematic dependencies, only 'physical' poles and cuts!

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{G}} \qquad \text{Minimal basis: neither } \underbrace{g_{i}, f_{j}}_{\text{nor } G_{i}, X_{j} \text{ become singular}}$$
Transversality constraints:
$$Q^{\prime\mu} \Gamma^{\mu\nu} = 0 \qquad \Rightarrow \qquad \begin{bmatrix} \cdots \cdots \cdots & \vdots \\ \cdots & \cdots & \cdots & \vdots \end{bmatrix} \begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix} = 0$$

A minimal basis exists, if

- by swapping columns (= renaming basis tensors)
- adding / subtracting rows, multiplying rows with scalars (Gauss-Jordan elimination)

one can find a **row-reduced echelon form** where ______ is nonsingular in any kinematic limit

$$\Gamma^{\mu\nu} = \sum_{i} c_{i} K_{i}^{\mu\nu} = \underbrace{\sum_{i} g_{i} G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} f_{j} X_{j}^{\mu\nu}}_{\mathbf{T}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Prerequisites:

K_i must be linearly and kinematically independent

e.g.
$$K_1 \ldots K_5$$
, but $\mathbf{k} \cdot \mathbf{Q} K_3 = \mathbf{Q}^2 K_4 + \mathbf{k}^2 K_5$

symmetries should be exploited beforehand ⇒ arrange K_i in singlets

A minimal basis exists, if

- by swapping columns (= renaming basis tensors)
- adding / subtracting rows, multiplying rows with scalars (Gauss-Jordan elimination)

one can find a **row-reduced echelon form** where is nonsingular in any kinematic limit

$$\begin{split} \Gamma^\mu(k,Q) &= c_1\,k^\mu + c_2\,Q^\mu\\ \overline{\Gamma}^\mu(k,Q) &:= \Gamma^\mu(-k,-Q) \stackrel{!}{=} -\Gamma^\mu(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

$$\begin{split} \Gamma^{\mu}(k,Q) &= c_1 \, k^{\mu} + c_2 \, (k \cdot Q) \, Q^{\mu} \\ \overline{\Gamma}^{\mu}(k,Q) &:= \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

$$\begin{split} &\Gamma^{\mu}(k,Q)=c_{1}\,k^{\mu}+c_{2}\,(k\cdot Q)\,Q^{\mu}\\ &\overline{\Gamma}^{\mu}(k,Q):=\Gamma^{\mu}(-k,-Q)\stackrel{!}{=}-\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\begin{split} &\Gamma^{\mu}(k,Q)=c_{1}\,k^{\mu}+c_{2}\,(k\cdot Q)\,Q^{\mu}\\ &\overline{\Gamma}^{\mu}(k,Q):=\Gamma^{\mu}(-k,-Q)\stackrel{!}{=}-\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\Rightarrow \left[\begin{array}{cc} w & w \, Q^2 \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] = 0$$

$$\begin{split} &\Gamma^{\mu}(k,Q)=c_1\,k^{\mu}+c_2\,({\color{black}{k}}\cdot Q)\,Q^{\mu}\\ &\overline{\Gamma}^{\mu}(k,Q):=\Gamma^{\mu}(-k,-Q)\stackrel{!}{=}-\Gamma^{\mu}(k,-Q) \quad \ \ \text{(charge conjugation)} \end{split}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\Rightarrow \begin{bmatrix} w & w Q^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = 0$$
$$\Rightarrow \begin{bmatrix} 1 & Q^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = 0$$

$$\begin{split} &\Gamma^{\mu}(k,Q)=c_1\,k^{\mu}+c_2\,(k\cdot Q)\,Q^{\mu}\\ &\overline{\Gamma}^{\mu}(k,Q):=\Gamma^{\mu}(-k,-Q)\stackrel{!}{=}-\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

Transversality:

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\Rightarrow \begin{bmatrix} w & w Q^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = 0$$
$$\Rightarrow \begin{bmatrix} 1 & Q^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = 0$$

but not

$$\begin{bmatrix} 1 & \frac{1}{Q^2} \end{bmatrix} \begin{bmatrix} c_2 \\ c_1 \end{bmatrix} = 0 \quad !!$$

$$\begin{split} \Gamma^{\mu}(k,Q) &= c_1 \, k^{\mu} + c_2 \, (k \cdot Q) \, Q^{\mu} \\ \overline{\Gamma}^{\mu}(k,Q) &:= \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

Transversality:

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

 c_1

$$= -c_2 Q^2 \quad \Rightarrow \quad \Gamma^{\mu} = -c_2 (Q^2 k^{\mu} - w Q^{\mu})$$
$$= -c_2 (Q^2 \delta^{\mu\nu} - Q^{\mu}Q^{\nu}) k^{\nu}$$
$$= -c_2 t^{\mu\nu}_{QQ} k^{\nu}$$
$$\Rightarrow \quad \Gamma^{\mu}(k,Q) = \underbrace{\mathbf{g_1} k^{\mu}}_{\mathbf{G}} + \underbrace{\mathbf{f_1} t^{\mu\nu}_{QQ} k^{\nu}}_{\mathbf{T}}$$

$$\begin{split} &\Gamma^{\mu}(k,Q)=c_1\,k^{\mu}+c_2\,(k\cdot Q)\,Q^{\mu}\\ &\overline{\Gamma}^{\mu}(k,Q):=\Gamma^{\mu}(-k,-Q)\stackrel{!}{=}-\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)} \end{split}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\begin{aligned} c_1 &= -c_2 \, Q^2 &\Rightarrow & \Gamma^{\mu} = -c_2 \, (Q^2 \, k^{\mu} - w \, Q^{\mu}) \\ &= -c_2 \, (Q^2 \, \delta^{\mu\nu} - Q^{\mu} Q^{\nu}) \, k^{\nu} \\ \mathbf{a} : &= -c_2 \, t^{\mu\nu}_{QQ} \, k^{\nu} \end{aligned}$$

$$\begin{split} &Q^{\mu}\,\Gamma^{\mu} = D(k_{+})^{-1} - D(k_{-})^{-1} = g_{1}\,w\\ \Rightarrow &g_{1} = 2\,\frac{D(k_{+})^{-1} - D(k_{-})^{-1}}{k^{2} - k^{2}} = 2\Delta \end{split}$$

$$\Rightarrow \Gamma^{\mu}(k,Q) = \underbrace{g_1 k^{\mu}}_{\mathbf{G}} + \underbrace{f_1 t^{\mu\nu}_{QQ} k^{\nu}}_{\mathbf{T}}$$

$$\begin{split} &\Gamma^{\mu}(k,Q)=c_1\,k^{\mu}+c_2\,(k\cdot Q)\,Q^{\mu}\\ &\overline{\Gamma}^{\mu}(k,Q):=\Gamma^{\mu}(-k,-Q)\stackrel{!}{=}-\Gamma^{\mu}(k,-Q) \quad \ (\text{charge conjugation}) \end{split}$$

Transversality:

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\begin{array}{rcl} c_1 = -c_2 \, Q^2 & \Rightarrow & \Gamma^{\mu} = -c_2 \, (Q^2 \, k^{\mu} - w \, Q^{\mu}) \\ & = -c_2 \, (Q^2 \, \delta^{\mu\nu} - Q^{\mu} Q^{\nu}) \, k^{\nu} \\ & = -c_2 \, t^{\mu\nu}_{QQ} \, k^{\nu} \end{array}$$

Transverse-longitudinal separation?

 $\Gamma^{\mu}(k,Q) = \tilde{g}_{1} w Q^{\mu} + \tilde{f}_{1} t_{QQ}^{\mu\nu} k^{\nu} \qquad \Rightarrow \qquad \Gamma^{\mu}(k,Q) = \underbrace{g_{1} k^{\mu}}_{\mathbf{G}} + \underbrace{f_{1} t_{QQ}^{\mu\nu} k^{\nu}}_{\mathbf{G}}$ $Q^{\mu} \Gamma^{\mu} = D(k_{+})^{-1} - D(k_{-})^{-1} = \tilde{g}_{1} w Q^{2} \qquad \qquad \mathbf{G} \qquad \mathbf{T}$

$$\Rightarrow \quad \tilde{g}_1 = \frac{2\Delta}{Q^2} \quad \Rightarrow \quad \tilde{f}_1 = f_1 + \frac{2\Delta}{Q^2} \quad \Rightarrow \quad \text{both kinematically dependent} \\ \text{and singular!}$$

Need em. transition FFs

But vertices are half offshell: need 'consistent couplings' Pascalutsa, Timmermans, PRC 60 (1999)

- em gauge invariance: $Q^{\mu} \Gamma^{\alpha \mu} = 0$
- spin-3/2 gauge invariance: $k^{\alpha} \Gamma^{\alpha \mu} = 0$
- invariance under point transformations: $\gamma^{\alpha} \Gamma^{\alpha\mu} = 0$
- no kinematic dependencies, "minimal" basis

$J^P = \frac{1}{2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$
N(940) N(1440) N(1710) N(1880)	N(1720) N(1900)	N(1535) N(1650) N(1895)	N(1520) N(1700) N(1875)
$\Delta(1910)$	$\Delta(1232)$ $\Delta(1600)$ $\Delta(1920)$	Δ(1620) Δ(1900)	Δ(1700) Δ(1940)

Most general **offshell vertices** satisfying these constraints: GE, Ramalho, 1806.04579

$$\begin{split} {}^{\frac{1}{2}^{+}} &\to {}^{\frac{1}{2}^{\pm}} : \quad \Gamma^{\mu} = \begin{bmatrix} \mathbf{1} \\ \gamma_{5} \end{bmatrix} \sum_{i=1}^{8} \boldsymbol{F}_{i} \, \boldsymbol{T}_{i}^{\mu} \quad \begin{cases} \boldsymbol{t}_{\boldsymbol{Q}}^{\boldsymbol{t}} \boldsymbol{\gamma}^{\boldsymbol{r}} \\ [\boldsymbol{\gamma}^{\boldsymbol{\mu}}, \boldsymbol{Q}] \\ \cdots \end{cases} \\ \\ {}^{\frac{1}{2}^{+}} &\to {}^{\frac{3}{2}^{\pm}} : \ \Gamma^{\alpha\mu} = \begin{bmatrix} \gamma_{5} \\ \mathbf{1} \end{bmatrix} \sum_{i=1}^{12} \boldsymbol{F}_{i} \, \boldsymbol{T}_{i}^{\alpha\mu} \quad \begin{cases} \boldsymbol{\varepsilon}_{\boldsymbol{k}}^{\alpha\mu} \\ \boldsymbol{t}_{\boldsymbol{k}}^{\alpha\mu} \\ \boldsymbol{t}_{\boldsymbol{k}}^{\alpha\mu} \boldsymbol{\theta}_{\boldsymbol{Q}} \\ \boldsymbol{t}_{\boldsymbol{k}}^{\alpha\mu} \boldsymbol{\theta}_{\boldsymbol{Q}} \end{cases} \end{split}$$

Constraint-free transition FFs: only physical poles and cuts

 ρ poles ~ monotonous behavior (+ zero crossings for excited states)

 Non-monotonicity at low Q2
 ~ signature for cuts (ρ→ππ, etc.): meson cloud

$J^P = \frac{1}{2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$
N(940)	N(1720)	N(1535)	N(1520)
N(1440) N(1710)	N(1900)	N(1650) N(1895)	N(1700) N(1875)
N(1880)			
$\Delta(1910)$	$\Delta(1232)$	$\Delta(1620)$	$\Delta(1700)$
	$\Delta(1600)$ $\Delta(1920)$	$\Delta(1900)$	$\Delta(1940)$

 $N^* \equiv$

Kinematics

4 kinematic variables:

$$\begin{split} \eta_{+} &= \frac{Q^{2} + Q'^{2}}{2m^{2}} \\ \eta_{-} &= \frac{Q \cdot Q'}{m^{2}} \\ \omega &= \frac{Q^{2} - Q'^{2}}{2m^{2}} \\ \lambda &= -\frac{p \cdot Q}{m^{2}} \end{split}$$

18 Compton tensors, form minimal basis

- systematic derivation
- similar to Tarrach basis Tarrach, Nuovo Cim. A28 (1975)

 $X'_i = U_{ij} X_j$, $\det U = const$.

• CFFs free of kinematics

$$\begin{split} X_1^{\mu\nu} &= \frac{1}{m^4} t_{Q^P}^{\rho\mu} t_{QQ}^{\mu\nu} \,, \\ X_2^{\mu\nu} &= \frac{1}{m^2} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} \,, \\ X_3^{\mu\nu} &= \frac{1}{m^4} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} \,, \\ X_4^{\mu\nu} &= \frac{1}{m^6} t_{QQ}^{\mu\nu} t_{QQ}^{\rho\nu} t_{QQ}^{\mu\nu} \,, \\ X_5^{\mu\nu} &= \frac{\lambda}{m^4} \left(t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} t_{QQ}^{\mu\nu} \,, \\ X_5^{\mu\nu} &= \frac{1}{m^2} \varepsilon_{QQ}^{\mu\nu} \,, \\ X_7^{\mu\nu} &= \frac{1}{im^3} \left(t_{QQ}^{\mu\nu} \varepsilon_{QQ}^{\mu\nu} - \varepsilon_{QQ}^{\mu\nu} + \varepsilon_{QQ}^{\mu\nu} \,, \\ X_8^{\mu\nu} &= \frac{\omega}{im^3} \left(t_{QQ}^{\mu\nu} \varepsilon_{QQ}^{\mu\nu} + \varepsilon_{QQ}^{\mu\nu} \,, \\ \vdots \right) \end{split}$$

• CS on scalar particle

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel
- Scalar pole in t channel

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel
- Scalar pole in t channel
- **Pion pole** in t channel $(\pi^0 \rightarrow \gamma^* \gamma^*)$

Polarizabilities

Scalar polarizabilities:

$$\left[\begin{array}{c} \alpha+\beta\\ \beta \end{array} \right] = -\frac{\alpha_{\rm em}}{m^3} \left[\begin{array}{c} c_1\\ c_2 \end{array} \right]$$

Spin polarizabilities:

$$\begin{bmatrix} \gamma_{E1E1} \\ \gamma_{M1M1} \\ \gamma_{E1M2} \\ \gamma_{M1E2} \end{bmatrix} = \frac{\alpha_{em}}{2m^4} \begin{bmatrix} c_6 + 4c_{11} - 4c_{12} \\ -c_6 - 2c_{10} + 4c_{12} \\ c_6 + 2c_{10} \\ -c_6 \end{bmatrix}$$
$$\begin{bmatrix} \gamma_0 \\ \gamma_{\pi} \end{bmatrix} = -\frac{2\alpha_{em}}{m^4} \begin{bmatrix} c_{11} \\ c_6 + c_{10} + c_{11} - 2c_{12} \end{bmatrix}$$

Polarizabilities

Scalar polarizabilities:

$$\left[\begin{array}{c} \alpha+\beta\\ \beta \end{array} \right] = -\frac{\alpha_{\rm em}}{m^3} \left[\begin{array}{c} c_1\\ c_2 \end{array} \right]$$

Hagelstein, Miskimen, Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016)

PDG: $-c_1 = 20.3(4)$ $-c_2 = 3.7(6)$

Large Δ (1232) contribution, but also N(1520) non-negligible

Spin polarizabilities

Gernot Eichmann (IST Lisboa)

General kinematics

• Lorentz-invariant PW analyses?

General kinematics

- Lorentz-invariant PW analyses?
- With minimal basis, only physical singularities; if no physical singularities, no momentum dependence!

Nucleon resonances

GPD

Compton scattering

- · kinematic variables
- tensor basis
- constraint-free Compton FFs

GE, Ramalho, 1806.04579

- general offshell transition vertices
- constraint-free transition FFs
- fits for transition FFs
- impact of higher resonances on Compton FFs
- only Δ(1232) and N(1520) relevant for polarizabilities

Meson electroproduction?

- · kinematic variables
- · tensor basis
- constraint-free electroproduction amplitudes GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

How important is the "QCD background"?

