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It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ-
ated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper under-
standing of nucleonic charge conservation as a manifestation of a gauge invariance, ~vithout the obvious
confIict ~ith experience that a massless particle entails.

&~OES the requirement of gauge invariance for a.
vector Geld coupled to a dynamical current imply

the existence of a corresponding particle with zero
mass? Although the answer to this question is invari-
ably given in the affirmative, ' the author has become
convinced that there is no such necessary implication,
once the assumption of weak coupling is removed. Thus
the path to an understanding of nucleonic (baryonic)
charge conservation as an aspect of a gauge invariance,
in strict analogy with electric charge, ' may be open for
the Grst time.
One potential source of error should be recognized at

the outset. A gauge-invariant system is not the con-
tinuous limit of one that fails to admit such an arbitrary
function transformation group. The discontinuous
change of invariance properties produces a correspond-
ing discontinuity of the dynamical degrees of freedom
and of the operator commutation relations. No reliable
conclusions about the mass spectrum of a gauge-
invariant system can be drawn from the properties of
an apparently neighboring system, with a smaller in-
variance group. Indeed, if one considers a vector Geld
coupled to a divergenceless current, where gauge
invariance is destroyed by a so-called mass term with
parameter mt, it is easily shown' that the mass spectrum
must extend below mp. The lowest mass value will
therefore become arbitrarily small as mo approaches
zero. Nevertheless, if m, o is exactly zero the commutation
relations, or equivalent properties, upon which this
conclusion is based become entirely different and the
argument fails.
If invariance under arbitrary gauge transformations

is asserted, one should distinguish sharply between
numerical gauge .functions and operator gauge func-
tions, for the various operator gauges are not on the
same quantum footing. In each coordinate frame there
is a unique operator gauge, characterized by three-
dimensional transversality (radiation gauge), for which
one has the standard operator construction in a vector
space of positive norm, with a physical probability
interpretation. When the theory is formulated with the
aid of vacuum expectation values of time-ordered
operator products, the Green's functions, the freedom
of formal gauge transformation can be restored. ' The
' For example, J. Schwinger, Phys. Rev. 75, 651 (1949).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).' K. Johnson, Nuclear Phys. 25, 435 (1961).' J. Schwinger, Phys. Rev. 115, '121 (1959).

A„P(P)=B(m') g„.—(P.
~.+P.~,) (~P)+P.P

P'+(&P)'

Here B(m') is a real non-negative number. It obeys the
sum rule

1= dm' B(m')

which is a full expression of all the fundamental equal-
time commutation relations.
The Geld equations supply the analogous construction

for the vacuum expectation value of current products
(j„(x)j„(x')), in terms of the non-negative matrix

j"(P)=m'B( ')(P»P g"P'). —
The factor m' has the derisive consequence that m=0
is not contained in the current vector's spectrum of
vacuum fluctuations. The latter determines B(m') for
ns&0, but leaves unspeciGed a possible delta function
contribution at m=0,

B(m') =Bob(m')+Bi(m')
The non-negative constant 80 is then Gxed by the sum
rule,

1=Be+ dms Bi(m').
0

Green's functions of other gauges have more compli-
cated operator realizations, however, and will generally
lack the positiveness properties of the radiation gauge.
Let us consider the simplest Green's function associ-

ated with the field A „(x),which can be derived from the
unordered product

(A„(x)A„(x'))

(dP) .a'vt* "&dm-s st+(p)b(p'+m')A„, (p),
(2or)s

where the factor +st(p)8(p'+ m) enforces the spectral
restriction to states with mass m& 0 and positive energy.
The requirement of non-negativeness for the matrix
A„„(p) is satisfied by the structure associated with the
radiation gauge, in virtue of the gauge-dependent asym-
metry between space and time (the time axis is specified
by the unit vector rt„):
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We study the formation of a mass gap, or effective gluon mass (and consequent dimen-
sionful parameters such as the string tension, glueball mass, (Trg„„2), correlation
lengths) in continuum QCD, using a special set of Schwinger-Dyson equations. These
equations are derived from a resummation of the Feynman graphs which represent cer-
tain gauge-invariant color-singlet Green s functions, and are themselves essentially gauge
invariant. This resummation is essential to the multiplicative renormalizability of QCD
in the light-cone gauge, which we adopt for technical reasons. We close the dynamical
equations by "solving" a Ward identity, a procedure which, while exact in the infrared re-
gime, is subject to ambiguities and corrections in the ultraviolet regime which are beyond
the scope of the present work. (These ambiguities are less prominent for QCD in three
dimensions, which we discuss also. ) As discussed in an earlier work, quark confinement
arises from a vortex condensate supported by the mass gap. Numerical calculations of
the mass gap are presented, suggesting an effective gluon mass of 500+200 MeV and a
0+ glueball mass of about twice this value.

I. INTRGDUCTION

The extraction of dimensionful quantities (e.g.,
the string tension) in continuum QCD is a truly
quantum-mechanical problem since the classical
Lagrangian has no fixed scale of mass. The
pioneering instanton/meron work of Callan,
Dashen, and Gross' emphasized classical solutions
which themselves have no fixed mass scale, and
then attempted to introduce the renormalization-
group mass through one-loop quantum corrections.
However, even this difficult calculation failed to
provide a definitive cutoff mechanism for infrared
singularities, and it appears that the proposed
phase transition to a baglike state takes one un-
comfortably close to the momentum scale at which
the square of the one-loop running charge

g (k)=[bin( —k /A )]
turns negative and unphysical. [Here

11'b=
48m

is the lowest-order coefficient in the P function
P= bg + . . ;C~—is the Casimir eigenvalue of
the adjoint representation if no quarks are present,
as we shall assume, and C„=N for SU(N.]
Other authors have attempted to account for the

presence of fluctuating color-magnetic fields in the
QCD vacuum, beginning with the famous one-loop
correction to the QCD Lagrangian for constant

fields. But this has a minimum only for unphysi-
cal values of g; moreover, the minimum is un-
stable. Even in three-dimensional (d =3) QCD
(or equivalently, d =4 QCD at very high tempera-
tures) which has a dimensionful parameter in the
Lagrangian (g -mass) perturbation theory is only
useful at large momenta, just as for d =4, and the
problem of infrared singularities remains un-
resolved.
It may well happen that continued work on

merons, instantons, corrections to the Lagrangian,
etc., ultimately leads to a systematic and practical
picture of confinement in continuum QCD. But it
would clearly be valuable to have a picture which
allowed for a direct, intuitive grasp of the role of
the infrared cutoff and how it is used in calculat-
ing various dimensionful quantities. Moreover, it
must be shown that such a picture is systematically
derivable from first principles. We offer here the
first steps in such a derivation, which leads to the
conclusion that the gauge fields are effectively
described as massive. The gluon "mass" is not a
directly measurable quantity, but must be related
to other physical parameters by difficult calcula-
tions not yet done. Nevertheless the ideas behind
these calculations are easily grasped, and semi-
quantitative estimates of, e.g., the string tension
and glueball mass can be made.
We begin with a description of massive gluons at

the Lagrangian level, emphasizing that this can be
made locally gauge invariant. Although we speak
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notoriously complex task [7–11]. In fact, the purely non-
perturbative character of the problem is compounded by
the need to demonstrate, at every step, the compatibility
of any proposed mechanism with the crucial concepts of
gauge invariance and renormalizability.

The notion that gluons acquire a dynamical,
momentum-dependent mass due to their self-interactions
was originally put forth in the early 1980s [1, 12, 13], but
has only gained particular impetus relatively recently;
this is primarily the result of the continuous accumula-
tion of indisputable evidence from large-volume lattice
simulations, both for SU(3) [14–17] and SU(2) [18–21].
As shown in Fig. 1, according to these high-quality sim-
ulations, the Landau gauge gluon propagator saturates
at a nonvanishing value in the deep infrared range, a fea-
ture that corresponds to an unequivocal signal of gluon
mass generation [22] (for related but somewhat different
approaches to this issue, see Refs. [23–41]).

The primary theoretical concept underlying this en-
tire topic is none other than Schwinger’s fundamental
observation [42, 43]. That is, a gauge boson may acquire
mass even if the gauge symmetry forbids a mass term at
the level of the fundamental Lagrangian, provided that
its vacuum polarization function develops a pole at zero
momentum transfer. In this paper, which is based upon
a brief series of lectures [44], we outline the implementa-
tion of this fascinating concept in QCD, using the general
formalism of the Schwinger-Dyson equations (SDEs) [24,
45]. In particular, we focus on a variety of subtle concep-
tual issues, and explain how they can be self-consistently
addressed within a particularly suitable framework that
has been developed in recent years.

The present work is organized as follows. In Section 1,
we present the main characteristics and advantages of the
new SDE framework that emerges from the combination
of the pinch technique (PT) [1, 46–49] with the back-
ground field method (BFM) [50, 51], which is simply re-
ferred to as “PT-BFM” [52–54]. In Section 2, we conduct
a detailed study of the special identity that enforces the

masslessness of the gluon propagator when the Schwinger
mechanism is non-operational, and demonstrate conclu-
sively that the seagull graph is not responsible for the
mass generation, nor does it give rise to quadratic di-
vergences once such a mass has been generated [55]. In
Section 3, we explain how the massless poles required for
the implementation of the Schwinger mechanism enter
the treatment of the gluon SDE, and why their inclu-
sion is crucial for maintaining the Becchi–Rouet–Stora–
Tyutin (BRST) symmetry of the theory in the presence
of a dynamical gluon mass [56]. Then, in Section 4, we
derive the “gluon gap equation” [57], namely, the homo-
geneous integral equation that governs the dependence of
the gluon mass function on the momentum. In Section
5, we proceed to the numerical treatment of this equa-
tion, and discuss its compatibility with some basic field-
theoretic criteria. Finally, we present our conclusions in
Section 6.

2 General considerations

In this section, we present a general overview of the con-
ceptual and technical tools necessary for the analysis that
follows.

2.1 Preliminaries

The Lagrangian density of the SU(N) Yang–Mills theory
can be expressed as the sum of three terms:

L = LYM + LGF + LFPG. (2.1)

The first term represents the gauge covariant action,
which is usually expressed in terms of the field strength
of the gluon field A

LYM = −1
4
F a

µνFµν
a ;

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , (2.2)

Fig. 1 The SU(3) (a) and SU(2) (b) gluon propagator ∆ measured on the lattice. Lattice data are from Refs. [14, 15]
[SU(3)] and Ref. [21] [SU(2)].
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m2(0), we find that the gluon masses before and after
renormalization are related by [80]

m2
R(q2) = ZAm2

0(q
2). (5.22)

Evidently, this particular “renormalization” is not asso-
ciated with a counter-term of the type δm2= m2

R −m2
0,

as is the case for hard boson masses (which is precisely
the essence of point (iii)).

(v) In order to fully determine the nonperturbative
∆(q2), one should, in principle, solve the coupled system
of Eq. (5.1). However, the derivation of the all-order inte-
gral equation for Jm(q2) is technically far more difficult,
primarily because of the presence of the fully dressed ver-
tex BQ3 [see (a5) in Fig. 6]. The latter is a practically
unexplored quantity with an enormous number of form
factors (for recent works on the subject see Refs. [81,
82]). Instead, we study Eq. (5.17) in isolation, treating
all full propagators appearing in this calculation as ex-
ternal quantities, the forms of which are determined by
resorting to information beyond the SDEs, such as the
large-volume lattice simulations. Therefore, Eq. (5.17) is
effectively converted into a homogeneous linear integral
equation for the unknown m2(q2).

We now turn to the numerical analysis of the gluon gap
equation. After its full renormalization has been care-
fully performed1) , Eq. (2.24) has been utilized, and the
substitution of ∆(k2) and F (q2) into Eq. (5.17) using
the lattice data of Refs. [14, 15] has been implemented,
one obtains positive-definite and monotonically decreas-
ing solutions, as shown in Fig. 10. This numerical solu-
tion can be accurately fit using the simple and physically
motivated function

m2(q2) =
m2

0(q2)
1 + (q2/M2)1+p

. (5.23)

Specifically, the numerical solution shown in Fig. 10 is
perfectly reproduced when the parameters (M, p) as-
sume the values (436 MeV, 0.15).

In addition, note that one can omit the 1 in the denom-
inator of Eq. (5.23) for asymptotically large momentum
values, yielding “power-law” behavior [83–85], where

m2(q2) ∼
q2≫M2

m2
0M2

q2
(q2/M2)−p. (5.24)

This particular behavior reveals that condensates of di-
mension two do not contribute to the operator product
expansion (OPE) of m2(q2), given that their presence
would have induced a logarithmic running of the so-
lutions. Indeed, in the absence of quarks, the lowest-
order condensates appearing in the OPE of the mass

Fig. 10 The numerical solution for m2 (q2 ) (black circles) com-
pared with the corresponding fit Eq. (5.23) (black, continuous).
The (blue) dashed curve represents the asymptotic fit given by Eq.
(5.24).

must be those of dimension four, namely, the (gauge-
invariant) ⟨0|:Ga

µνGµν
a :|0⟩, and possibly the ghost con-

densate ⟨0|:ca ! ca:|0⟩ [86–88]. As these condensates
must be divided by q2 on dimensional grounds, one ob-
tains (up to logarithms) the observed power-law behav-
ior.

We end this section by commenting that, as has been
argued recently [5], the nontrivial momentum depen-
dence of the gluon mass shown in Fig. 10 may be con-
sidered responsible for the fact that, in contradistinction
to a propagator with a constant mass, the ∆(q2) of Fig.
1 displays an inflection point. The presence of such a
feature, in turn, is a sufficient condition for the spectral
density of ∆(q2), ρ, to be non-positive definite.

Specifically, the Källén–Lehman representation of
∆(q2) reads

∆(q2) =
∫ ∞

0
dσ

ρ(σ)
q2+ σ

, (5.25)

and if ∆(q2) has an inflection point at q2
⋆ , then its second

derivative vanishes at that point (see Fig. 11), such that
[89]

∆′′(q2
⋆) = 2

∫ ∞

0
dσ

ρ(σ)
(q2

⋆ + σ)3
= 0. (5.26)

Given that q2
⋆ > 0, then the sign of ρ(σ) is forced to re-

verse at least once. This non-positivity of ρ(σ) may be
interpreted as an indication of confinement (see Ref. [5],
and references therein), because the resultant breeching
of the axiom of reflection positivity excludes the gluon
from the Hilbert space of observable states (for related
works, see Refs. [23, 25, 89–93]). As can be seen in Fig.
11, the first derivative of ∆(q2) exhibits a minimum at

1) This rather technical procedure, and the manner in which it affects the form of the renormalized kernel Kαβ , has been presented in
Ref. [80].
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Ø …...	
Ø Can	we	quantitatively	understand	quark	and	gluon	
confinement	in	quantum	chromodynamics	and	the	existence	of	
a	mass	gap?	

	
Quantum	chromodynamics,	or	QCD,	is	the	theory		
describing	the	strong	nuclear	force.	Carried	by		
gluons,	it	binds	quarks	into	particles	like	protons		
and	neutrons.	Apparently,	the	tiny	subparticles		
are	permanently	confined:	one	can’t	pull	a	quark		
or	a	gluon	from	a	proton	because	the	strong	force		
gets	stronger	with	distance	and	snaps	them	right		
back	inside.	
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Dynamical	Chiral	Symmetry	Breaking 

•  Is	a	crucial	emergent	phenomenon	in	QCD	
•  Expressed	in	hadron	wave	functions	not	in	

vacuum	condensates	
•  Contemporary	theory	indicates	that	it	is	

responsible	for	more	than	98%	of	the	
visible	mass	in	the	Universe;	namely,	given	
that	classical	massless-QCD	is	a	conformally	
invariant	theory,	then	DCSB	is	the	origin	of	
mass	from	nothing.			

•  Dynamical,	not	spontaneous	
–  Add	nothing	to	QCD	,		

	No	Higgs	field,	nothing!		
	Effect	achieved	purely		
	through	quark+gluon		
	dynamics.	
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Pion’s	dichotomy 
Goldstone	boson	and	Bound	State 
Maris,	Roberts	and	Tandy,	Phys. Lett. B420(1998)	267-273 

Ø  Pion’s	Bethe-Salpeter	amplitude	
	Solution	of	the	Bethe-Salpeter	equation	

	
	
	
Ø  Dressed-quark	propagator	

Ø  Axial-vector	Ward-Takahashi	identity	entails(chiral	limit)	

•  Given	the	dichotomy	of	pion	the	fine-tuning	should	not	play	any	role	in	an	explanation	of	pion	properties;	
•  Descriptions	of	pion	within	frameworks	that	cannot	faithfully	express	symmetries	and	their	breaking	

patterns(such	as	constituent-quark	models)	are	unreliable;	
•  Hence,	pion	properties	are	an	almost	direct	measure	of	the	dressed-quark	mass	function.			
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•  Infrared	Behaviors	

Properties	of	Pion	BS	Wave	Function 

Dµ⌫(k) =

✓
�µ⌫ �

kµk⌫

k2

◆
D(k2) (1)

DQC(s) = 8⇡2 d
3

!5
e�

s
!2 +

8⇡2
�m

ln

✓
⌧ +

⇣
1 + s

⇤2
QCD

⌘2
◆ 1� e�s

s
(2)

vs

DC(s) =
8⇡2

�m

ln

✓
⌧ +

⇣
1 + s

⇤2
QCD

⌘2
◆ 1

s+
m4

g

s+m2
g

0

@1 +
d

s+
m4

g

s+m2
g

1

A (3)

S(k) = �i� · k�V (k
2) + �S(k

2) (4)

�⇡(k;P ) = �5 (iE(k;P ) + � · PF (k;P ) + � · kG(k;P ) + �µ⌫kµP⌫H(k;P )) (5)

1

0.0 0.5 1.0 1.5 2.0-20

-10

0

10

20

k2

mg
2

F'
'Hk

2 L

•  Inflection	points	
•  Black	line:	F	function	
•  Red	line:	running	gluon	propagagor	
•  Blue	line:	vector	part	of	propagator	
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Gluon mass scale--->Quark--->LFWFs 

mg	≈	0.5	GeV	:	A	dynamical	mass	scale	generation		

lC	≈	0.5	:	maxium	wavelength	

Quark	and	Hadron	

LFWFs	and	obervables	
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Transition from Dynamical Chiral Symmetry Breaking to 
Explicit Chiral Symmetry Breaking 

•  Current	quark	mass,	Higgs	boson	coupling;	
•  m=0,	chiral	limit,	physics	controlled	by	the	emergent	phenomena:	confinement	

and	DCSB;	
•  The	chiral	symmetry	is	broken	explicitly	if	the	coupling	of	Higgs	boson	increasing;	

•  Question:	could	we	describe	the	transition	erea	and	does	it	has	the	any	relation	
with	gluon	mass	mg?	
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Transition from Dynamical Chiral Symmetry Breaking to 
Explicit Chiral Symmetry Breaking 

•  Current	quark	mass,	Higgs	boson	coupling;	
•  m=0,	chiral	limit,	physics	controlled	by	the	emergent	phenomena:	confinement	

and	DCSB;	
•  The	chiral	symmetry	is	broken	explicitly	if	the	coupling	of	Higgs	boson	increasing;	

•  Question:	could	we	describe	the	transition	erea	and	does	it	has	the	any	relation	
with	gluon	mass	mg?	

Three	examples:	
Ø  Multisolution	of	gap	equation	and	the	critical	mass;	
Ø  The	mass	dependence	of	parton	distribution	amplitudes	of	pseudoscalar	mesons	
Ø  Observables	
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Example-I 
Multi-solutions	of	quark	Gap	equation	and	a	critical	mass	

 In	chiral	limit 

CJT	effective	potential	
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Example-I 
Multi-solutions	of	quark	Gap	equation	and	a	critical	mass	

Beyond chiral limit  In	chiral	limit 

CJT	effective	potential	
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Critical mass 
Dynamical	chiral	symmetry	breaking	and	a	critical	mass	
Lei	Chang,	et.al,	PRC	75	(2007)	015201	
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•  Critical	current	
quark	mass,	the	
related	
pseudoscalar	
meson	mass	is	
around~0.4GeV；	

•  Belowed	the	
critical	mass	
there	are	three	
diffferent	quark	
propagators	

•  Analytical	
convergence	
radius,	without	
considerring	log	
or	fraction	
power	
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Example-II 
Mass	dependence	of	pseudoscalar	meson’s	parton	distribution	amplitudes	

Twist-four two-particle pion PDA

C.D. Roberts
Physics Division, Argonne National Laboratory, Argonne IL 60439, USA

1. Introduction
In extracting the pion’s PDAs, one considers the following expectation value, of mass-dimension two,

⟨0|ψ(−x)γ5γµψ(x)|π(q)⟩ (1)

= fπ

∫ 1

0
du e−i(2u−1)x·q

(
q̌µ

[
φ(2)
π (u) +

1
4
x2φ(4)

π (u) + O(x4)
]

+
1
2

xµ

x · qψ
(4)
π (u)

)
,

where

q̌ = q − 1
2

q2

n · qn , p =
1

n · q q̌ , n2 = 0 = p2 = q̌2 , n · q̌ = n · q , n · p = 1 . (2)

NB. Here and below I have neglected the following line integral:

L[−x, x] = exp
(

ig

∫ x

−x
dζµAµ(ζ)

)
, (3)

which would make the matrix element gauge invariant.
One may equivalently write

⟨0|ψ(−x)γ5γµψ(x)|π(q)⟩ = Z2trCD

∫ Λ

dk
e−ix·k−ix·(k−q)γ5γµS(k)Γπ(k; q)S(k − q) , (4)

where
∫ Λ
dk is our usual translationally invariant regularisation of the integral.

First: Consider Eq. (2) in the case
xµ =

z

2
nµ , (5)

which means that the points are separated by a light-like distance z. Contract the result with nµ and
ignore φ(4)

π for the present:

⟨0|ψ(−x)γ5γ · nψ(x)|π(q)⟩ = fπn · q
∫ 1

0
du e−i(2u−1)x·qφ(2)

π (u) (6)

= Z2trCD

∫ Λ

dk
e−ix·k−ix·(k−q)γ5γ · nS(k)Γπ(k; q)S(k − q) . (7)

Pre-multiply Eqs. (6), (7) by ∫ ∞

−∞

dz

2π
ei(z/2)n·q(2u′−1) . (8)

Then, using ∫ ∞

−∞

dz

2π
eizα(u′−u) =

1
α
δ(u′ − u) = δ(α(u′ − u)) , (9)

one obtains

fπφ
(2)
π (u) = Z2trCD

∫ Λ

dk
δ(un · q − n · k)γ5γ · nS(k)Γπ(k; q)S(k − q) , (10)
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Consider(without	gauge	link…)	
	
	
	
Equally	
	
	
	
Definition	for	the	twist-2	
	
	
	
•  PDAs	depends	on	the	BS	wave	function…model calculation.	
•  Fix	renormalization	scale	μ=2GeV	
•  Moments	calculation	
•  Current	quark	mass	dependence	of	PDA	can	be	read	from	the	corresponding	BS	wave	

function		
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Dyson-Schwinger	Equation	scope	

Bethe-Salpeter	Equations	

GaoFei’s	talk	
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Pion	PDA——dynamical	chiral	symmetry	breaking	 

DB	

RL	

Conformal	
QCD	

•  Continuum-QCD	prediction:		
	marked	broadening	of	φπ(x),	which	owes	to	DCSB	

•  Scale	evolution	quite	slow		

Imaging	dynamical	chiral	symmetry	breaking:		
pion	wave	function	on	the	light	front,		
Lei	Chang,	et	al., 
Phys. Rev. Lett. 110 (2013) 132001 

MIT-CTP/4876
MSUHEP-17-003

Pion Distribution Amplitude from Lattice QCD

Jian-Hui Zhang,1, ⇤ Jiunn-Wei Chen,2, 3, † Xiangdong Ji,4, 5, ‡ Luchang Jin,6, § and Huey-Wen Lin7, 8, ¶
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We present the first lattice-QCD calculation of the pion distribution amplitude using the large-
momentum e↵ective field theory (LaMET) approach, which allows us to extract lightcone parton
observables from a Euclidean lattice. The mass corrections needed to extract the pion distribution
amplitude from this approach are calculated to all orders in m2

⇡/P
2
z . We also implement the Wilson-

line renormalization which is crucial to remove the power divergences in this approach, and find that
it reduces the oscillation at the end points of the distribution amplitude. Our exploratory result
at 310-MeV pion mass favors a single-hump form broader than the asymptotic form of the pion
distribution amplitude.

PACS numbers: 12.38.-t, 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Hadronic lightcone distribution amplitudes (DAs) play an essential role in the description of hard exclusive pro-
cesses involving large momentum transfer. They are crucial inputs for processes relevant to measuring fundamental
parameters of the Standard Model and probing new physics [1]. The QCD factorization theorem and asymptotic free-
dom allow us to separate the short-distance physics incorporated in the hard quark and gluon subprocesses from the
long-distance physics incorporated in the process-independent hadronic DAs. While the short-distance hard quark and
gluon subprocesses are calculable perturbatively, the hadronic DAs are intrinsically nonperturbative. To determine
them, we must resort to experimental measurements, lattice calculations or QCD models.

The simplest and most extensively studied hadronic DA is the twist-2 DA of the pion. It represents the probability
amplitude of finding the valence qq̄ Fock state in the pion with the quark (antiquark) carrying a fraction x (1� x) of
the total pion momentum. The pion lightcone distribution amplitude (LCDA) is defined as

�⇡(x) =
i

f⇡

Z
d⇠

2⇡
e
i(x�1)⇠�·P

h⇡(P )| ̄(0)� · ��5�(0, ⇠�) (⇠�)|0i (1)

with the normalization
R 1
0 dx�⇡(x) = 1, where the two quark fields are separated along the lightcone with �

µ =

(1, 0, 0,�1)/
p
2, and x (1 � x) denotes the momentum fraction of the quark (antiquark). The twist-2 pion DA can

be constrained from experimental measurements of e.g. the pion form factor [2], and then as an input can be used
to test QCD in, for example, ��⇤ ! ⇡

0 from BaBar and Belle [3, 4]. Some experiments proposed [5] at J-PARC
might also be of use. At large momentum transfer, the pion DA is well known to follow a universal asymptotic
form [6]: �⇡(x, µ ! 1) ! 6x(1� x). However, there have been some debates over the shape of the pion DA at lower

⇤Electronic address: jianhui.zhang@ur.de
†Electronic address: jwc@phys.ntu.edu.tw
‡Electronic address: xji@umd.edu
§Electronic address: ljin.luchang@gmail.com
¶Electronic address: hwlin@pa.msu.edu
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DSE	&	lQCD	predictions	are	
practically	indistinguishable;	
Favor	no-humped	behavior	

•  Lattice	simulation:	arxiv:	1702.00008(林慧雯)	
•  X-d	Ji,	large	momentum	effective	theory	
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q+qbar:	Emergent	

c+cbar:	Higgs	conformal	

s+sbar:		
on	the	border	

Emergent	Mass	vs.	Higgs	Mechanism	

•  When	does	Higgs	mechanism	
begin	to	influence	mass	
generation?	

•  limit	mquark→	∞	
	φ(x)	→	δ(x-½)	

•  limit	mquark	→	0	
	φ(x)	∼	(8/π)	[x(1-x)]½	

•  Transition	boundary	lies	just	
above	mstrange,	the	related	ps	
meson	mass	is	around	700MeV	

•  Comparison	between	
distributions	of	light-quarks	and	
those	involving	strange-quarks	is	
obvious	place	to	find	signals	for	
strong-mass	generation	

Parton	distribution	amplitudes	of	S-wave	heavy-quarkonia	
Minghui	Ding,	et	al,	Phys.	Lett.	B	753	(2016)	pp.	330-335	

μ=2GeV	
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Example-III 
Mass	dependence	of	electromagnetic	form	factors	

Muyang	Chen’s	talk,	Friday	
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Measure pion elastic form factor in space-like region 

(G.R.	Farrar	and	D.R.Jackson,	PRL43	(1979)	246;	
	P.	Lepage	and	S.	Brodsky,	PLB	87	(1979)	359)	

Performing	asymptotic	valence-quark	
distribution	amplitude	6x(1-x)	
																Q2F=0.15					at	Q2=4GeV2	
A	factor	2.7	smaller	than	the	empirical	value	
0.41GeV2	quoted	at	Q2=2.45GeV2	
A	factor	3	smaller	than	the	case	of	BSE	

Hard scattering amplitude 

Parton Distribution Amplitude 

O↵-shell persistence of composite pions and kaons

Si-Xue Qin,1 Chen Chen,2 Cédric Mezrag,1 and Craig D. Roberts1

1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Instituto de F́ısica Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, Brazil

(Dated: 08 February 2017)

In order for a Sullivan-like process to provide reliable access to a meson target as t becomes
spacelike, the pole associated with that meson should remain the dominant feature of the quark-
antiquark scattering matrix and the wave function describing the related correlation must evolve
slowly and smoothly. Using continuum methods for the strong-interaction bound-state problem, we
explore and delineate the circumstances under which these conditions are satisfied: for the pion, this
requires �t . 0.6GeV2, whereas �t . 0.9GeV2 will su�ce for the kaon. These results should prove
useful in planning and evaluating the potential of numerous experiments at existing and proposed
facilities.

1. Introduction. The notion that a nucleon possesses a
meson cloud is not new [1]. In e↵ect, this feature is kin-
dred to the dressing of an electron by virtual photons in
quantum electrodynamics [2] or the existence of dressed
quarks with a running mass generated by a cloud of glu-
ons in quantum chromodynamics (QCD) [3–7]. Natu-
rally, any statement that each nucleon is accompanied
by a meson cloud is only meaningful if observable conse-
quences can be derived therefrom. A first such suggestion
is canvassed in Ref. [8], which indicates, e.g. that a calcu-
lable fraction of the nucleon’s anti-quark distribution is
generated by its meson cloud. Mirroring this e↵ect, one
may argue that a nucleon’s meson cloud can be exploited
as a target and thus, for instance, the so-called Sullivan
processes can provide a means by which to gain access
to the pion’s elastic electromagnetic form factor [9–13],
Fig. 1(a), and also its valence-quark parton distribution
functions (PDFs) [14–16], Fig. 1(b).

One issue in using the Sullivan process as a tool for ac-
cessing a “pion target” is that the mesons in a nucleon’s
cloud are virtual (o↵-shell) particles. This concept is
readily understood when such particles are elementary
fields, e.g. photons, quarks, gluons. However, providing
a unique definition of an o↵-shell bound-state in quantum
field theory is problematic.

Physically, for both form factor and PDF extractions,
t < 0 in Figs. 1, so the total momentum of the ⇡

⇤ is
spacelike.1 Therefore, in order to maximise the true-
pion content in any measurement, kinematic configura-
tions are chosen in order to minimise | � t|. This is
necessary but not su�cient to ensure the data obtained
thereby are representative of the physical pion. Addi-
tional procedures are needed in order to suppress non-
resonant (non-pion) background contributions; and mod-
ern experiments and proposals make excellent use of, e.g.
longitudinal-transverse cross-section separation and low-
momentum tagging of the outgoing nucleon.

1
We use a Euclidean metric: {�µ, �⌫} = 2�µ⌫ ; �5 = �4�1�2�3,
tr[�5�µ�⌫�⇢�� ] = �4✏µ⌫⇢� ; �µ⌫ = (i/2)[�µ, �⌫ ]; a · b =P4

i=1 aibi; and Pµ spacelike ) P 2 > 0.

1

FIG. 1: Triangle diagram for the form factor.

FIG. 2

I. MOMENTUM ASSIGNMENT

The definition of the form factor is shown in Fig. 1, where

k1 = k � P

2
, (1)

k2 = k +
P

2
� Q

2
, (2)

k3 = k +
P

2
+

Q

2
. (3)

Because of the momentum conservation, the triangle diagram has two independent momenta P and Q with

Pi = P � Q

2
, (4)

Pf = P +
Q

2
. (5)

The components of P and Q are defined as

P = (0, 0, P3, iP4), (6)

Q = (0, 0, Q3, iQ4), (7)

FIG. 1. Sullivan processes, in which a nucleon’s pion cloud
is used to provide access to the pion’s (a) elastic form factor
and (b) parton distribution functions. t = �(k � k0)2 is a
Mandelstam variable and the intermediate pion, ⇡⇤(P = k �
k0), P 2 = �t, is o↵-shell.

Notwithstanding their ingenuity, such experimental
techniques cannot directly address the following ques-
tion: supposing it is sensible to speak of an o↵-shell
pion with total-momentum P , where P

2 = (v � 1)m2
⇡,

m⇡ ⇡ 0.14 GeV, so that v � 0 defines the pion’s virtu-
ality, then how do the qualities of this system depend
on v? If the sensitivity is weak, then ⇡

⇤(v) is a good
surrogate for the physical pion; but if the distributions
of, e.g. charge or partons, change significantly with v ,
then the processes in Figs. 1 can reveal little about the
physical pion. Instead, they express features of the entire
compound reaction. Since there is no unique definition
of an o↵-shell bound-state, the question we have posed
does not have a precise answer. However, as will become
clear, that does not mean there is no rational response.

2. Pions: on- and o↵-shell. All correlations with pion-
like quantum numbers, both resonant and continuum,
are accessible via the inhomogeneous pseudoscalar Bethe-
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EIC	projections	

JLab12	
Realistic	PDA	

VMD	

Conformal	limit	PDA	

From	C.	Roberts	
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  Ultraviolet scale---pion gamma 
transition form factor at lowest-order 
pQCD and leading twist 2 

Messure π0-γ transition form factor  
in space like region 

2f⇡F (Q2) =
m

2
⇢

m2
⇢ +Q2

(1)

Q
2
F (Q2) = 2f⇡

1

3

Z 1

0

'
(2)
⇡ (x)

1� x
(2)

With the input of weight function

⇢I(z) =
1

2

✓
1

1 + e
�z+z0

t

� 1

1 + e
z+z0

t

◆

the PDA can be well expressed by

'(x) = 6x(1�x)
⇣
1 + a2C

3/2
2 (2x� 1) + a4C

3/2
4 (2x� 1) + a6C

3/2
6 (2x� 1) + a8C

3/2
8 (2x� 1)

⌘

We find the following modified weight function

⇢I,m(z) =
3

4
(1� z

2)
⇣
1 + 6a2C

3/2
2 (z) + 15a4C

3/2
4 (z) + 28a6C

3/2
6 (z) + 45a8C

3/2
8 (z)

⌘

can produce the above PDA exactly.

The coe�cients in PDA can be evoluted to any scale as

an(µ) = an(µ0)

✓
↵(µ)

↵(µ0)

◆� �n
�0

(3)

with �0 = 11� 2
3Nf , �j =

4
3

⇣
3 + 2

(j+1)(j+2) � 4
Pj+1

k=1
1
k

⌘
and ↵[µ] is the running coupling.

⇢(z, µ2 = Q
2)

Z 1

0

dxx
m
'(x) ⇠

Z

dk

(n · k)mtr[...] (4)

1

4⇡2f⇡
Q

2
G(Q2 ! 1) = 2f⇡

Z 1

0

dx
'(x)

3(1� x)
(5)

p
1� x (6)

1� x (7)

Z
dx

'(x)

x
(8)

1

See	Khepani’s	talk(DSE	approach)	
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f0�w0� (1)

2f⇡F (Q2) =
m

2
⇢

m2
⇢ +Q2

(2)

With the input of weight function

⇢I(z) =
1

2
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◆
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2 (z) + 15a4C

3/2
4 (z) + 28a6C

3/2
6 (z) + 45a8C

3/2
8 (z)

⌘

can produce the above PDA exactly.

The coe�cients in PDA can be evoluted to any scale as

an(µ) = an(µ0)

✓
↵(µ)

↵(µ0)

◆� �n
�0

(3)

with �0 = 11� 2
3Nf , �j =

4
3

⇣
3 + 2

(j+1)(j+2) � 4
Pj+1

k=1
1
k

⌘
and ↵[µ] is the running coupling.

⇢(z, µ2 = Q
2)

Z 1

0

dxx
m
'(x) ⇠

Z

dk

(n · k)mtr[...] (4)

1

4⇡2f⇡
Q

2
G(Q2 ! 1) = 2f⇡

Z 1

0

dx
'(x)

3(1� x)
(5)

p
1� x (6)

1� x (7)

Z
dx

'(x)

x
(8)

1
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can produce the above PDA exactly.

The coe�cients in PDA can be evoluted to any scale as
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4
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k
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and ↵[µ] is the running coupling.

⇢(z, µ2 = Q
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Z 1

0

dxx
m
'(x) ⇠

Z

dk

(n · k)mtr[...] (4)
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Z 1

0

dx
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(5)

p
1� x (6)

1� x (7)

Z
dx

'(x)

x
(8)

1

μ=2GeV	
without	evolution	

f0�'(x) = Z2trCD

Z

dk
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Mass-dependence	of	pseudoscalar	meson	elastic	form	factors	
Muyang	Chen,	et.al,	arXiv:1808.09461	

•  A	consistent	rainbow-ladder	truncation	
•  Minimum	exist	around	0.5GeV,	the	gluon	mass	
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Mass-dependence	of	pseudoscalar	meson	elastic	form	factors	
Muyang	Chen,	et.al,	arXiv:1808.09461	
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•  Gluon	mass	generation…	
•  QCD	is	well-defined	at	UV	momenta	owing	
to	asymptotic	freedom;	QCD	is	IR	finite,	
owing	to	dynamical	generation	of	gluon	
mass-scale;	

• Maximum	wavelength	for	gluon/quark;	
•  Critical	behavior	for	the	wave	function…
•  Transition from dynmaical breaking to 
explicit prekaing.	
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to	asymptotic	freedom;	QCD	is	IR	finite,	
owing	to	dynamical	generation	of	gluon	
mass-scale;	

• Maximum	wavelength	for	gluon/quark;	
•  Critical	behavior	for	the	wave	function…
•  Transition from dynmaical breaking to 
explicit prekaing.	


