

Collaborators: 2015-Present

Students, Postdocs, Profs.

- 1. Ya LU (Nanjing U.)
- 2. Zhao-Qian YAO (Nanjing U.)
- 3. Yin-Zhen XU (Nanjing U.)
- 4. Chen CHEN (UNESP São Paulo, USTC & IIT);
- 5. Muyang CHEN (NKU, PKU)
- 6. Zhu-Fang CUI (Nanjing U.);
- 7. J. Javier COBOS-MARTINEZ (U Michoácan);
- 8. Minghui DING (ANL, Nankai U.);
- 9. Fei GAO (Valencia, Peking U.);
- 10. L. Xiomara GUTIÉRREZ-GUERRERO (MCTP)
- 11. Bo-Lin LI (Nanjing U.)
- 12. Cédric MEZRAG (INFN-Roma) ;
- 13. Khépani RAYA (U. Huelva, U Michoácan);
- 14. Eduardo ROJAS (Antioquia U.)
- 15. Jorge SEGOVIA (IFAE&BIST, Barcelona);
- 16. Chao SHI (ANL, Nanjing U.)
- 17. Shu-Sheng XU (Nanjing U.)
- 18. Adnan Bashir (U Michoácan);

- 19. Daniele Binosi (ECT*)
- 20. Stan Brodsky (SLAC);
- 21. Volker Burkert (Jlab)
- 22. Lei Chang (Nankai U.);
- 23. Xiao-Yun Chen (Jinling Inst. Tech., Nanjing)
- 24. Bruno El-Bennich (São Paulo);
- 25. Tanja Horn (Catholic U. America)
- 26. Yu-Xin Liu (PKU);
- 27. Joannis Papavassiliou (U.Valencia)
- 28. M. Ali Paracha (NUST, Islamabad)
- 29. Jia-Lun Ping (Nanjing Normal U.)
- 30. Si-xue QIN (Chongqing U.);
- 31. Jose Rodriguez Quintero (U. Huelva);
- 32. Sebastian Schmidt (IAS-FZJ & JARA);
- 33. Peter Tandy (KSU);
- 34. Shaolong Wan (USTC) ;
- 35. Qing-Wu Wang (SICHUAN U)
- 36. Pei-Lin Yin (NJUPT)
- 37. Hong-Shi Zong (Nanjing U)

Emergent Phenomena in the Standard Model

- Existence of our Universe depends critically on the following empirical facts:
- Proton is massive
 - *i.e.* the mass-scale for strong interactions is vastly different to that of electromagnetism
- Proton is absolutely stable
 - Despite being a composite object constituted from three valence quarks
- Pion is unnaturally light (not massless, but lepton-like mass)
 - Despite being a strongly interacting composite object built from a valencequark and valence antiquark

Emergence: low-level rules producing high-level phenomena, with enormous apparent complexity

Strong Interactions in the Standard Model

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i(\gamma^\mu D_\mu)_{ij} - m \,\delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- Only apparent scale in chromodynamics is mass of the quark field
- Quark mass is said to be generated by Higgs boson.
- In connection with everyday matter, that mass is 1/250th of the natural (empirical) scale for strong interactions, viz. more-than two orders-of-magnitude smaller
- Plainly, the Higgs-generated mass is very far removed from the natural scale for strongly-interacting matter
- Nuclear physics mass-scale 1 GeV is an emergent feature of the Standard Model
 - No amount of staring at L_{QCD} can reveal that scale
- Contrast with quantum electrodynamics, *e.g.* spectrum of hydrogen levels measured in units of m_e , which appears in L_{QED}

$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i (i(\gamma^{\mu} D_{\mu})_{ij}) \qquad)\psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a Whence Mass?$

- Classical chromodynamics ... non-Abelian local gauge theory
- Remove the current mass ... there's no energy scale left
- No dynamics in a scale-invariant theory; only kinematics ... the theory looks the same at all length-scales ... there can be no clumps of anything ... hence bound-states are impossible.
- Our Universe can't exist
- > Higgs boson doesn't solve this problem ...
 - normal matter is constituted from light-quarks
 - the mass of protons and neutrons, the kernels of all visible matter, are 100-times larger than anything the Higgs can produce
- Where did it all begin?

... becomes ... Where did it all come from?

 $\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} \right)$

$$)\psi_j - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a$$

1

- Classical chromodynamics
 - non-Abelian local gauge theory
 - local gauge invariance
- But no confinement without a mass-scale
 - Three quarks can still be colour-singlet
 - Colour rotations will keep them colour singlets
 - But they need have no proximity to one another
 ... proximity is meaningless in a scale-invariant theory
- Whence mass ... equivalent to whence a mass-scale ... equivalent to whence a confinement scale
- Understanding the appearance of mass in QCD is quite likely inseparable from the task of understanding confinement.

$$T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu} \quad \text{Trac}$$

Trace Anomaly

Classically, in a scale invariant theory

the energy-momentum tensor must be traceless: $T_{\mu\mu} \equiv 0$

- Regularisation and renormalisation of (ultraviolet) divergences in <u>Quantum</u> Chromodynamics introduces a mass-scale ... dimensional transmutation: mass-dimensionless quantities become dependent on a mass-scale, ζ
- $\Rightarrow \alpha \rightarrow \alpha(\zeta) \text{ in QCD's (massless) Lagrangian density, } L(m=0)$ $\Rightarrow \partial_{\mu}D_{\mu} = \delta L/\delta\sigma = \alpha\beta(\alpha) dL/d\alpha = \beta(\alpha) \frac{1}{4}G_{\mu\nu}G_{\mu\nu} = T_{\rho\rho} =: \Theta_0$ $QCD\beta \text{ function}$

Quantisation of renormalisable four-dimensional theory forces nonzero value for trace of energy-momentum tensor

Where is the mass?

$$T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu} \quad \text{Trace}$$

Trace Anomaly

Knowing that a trace anomaly exists does not deliver a great deal ... Indicates only that a mass-scale must exist

Can one compute and/or understand the magnitude of that scale?

One can certainly *measure* the magnitude ... consider proton:

$$\langle p(P) | T_{\mu\nu} | p(P) \rangle = -P_{\mu} P_{\nu}$$

$$\langle p(P) | T_{\mu\mu} | p(P) \rangle = -P^2 = m_p^2$$

$$= \langle p(P) | \Theta_0 | p(P) \rangle$$

> In the chiral limit the entirety of the proton's mass is produced by the trace anomaly, Θ_0

... In QCD, Θ_0 measures the strength of gluon self-interactions

... so, from one perspective,

 m_p is (somehow) completely generated by glue.

On the other hand ...

 $T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu}$

Trace Anomaly

In the chiral limit

$$\langle \pi(q)|T_{\mu\nu}|\pi(q)\rangle = -q_{\mu}q_{\nu} \Rightarrow \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

- Does this mean that the scale anomaly vanishes trivially in the pion state, *i.e.* gluons contribute nothing to the pion mass?
- > Difficult way to obtain "zero"!
- Easier to imagine that "zero" owes to cancellations between different operator contributions to the expectation value of Θ₀.
- Of course, such precise cancellation should not be an accident. It could only arise naturally because of some symmetry and/or symmetry-breaking pattern.

Whence "1" and yet "0"?

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

No statement of the question "How does the mass of the proton arise?" is complete without the additional clause "How does the pion remain massless?"

- Natural visible-matter mass-scale must emerge simultaneously with apparent preservation of scale invariance in related systems
 - Expectation value of Θ_0 in pion is always zero, irrespective of the size of the natural mass-scale for strong interactions = m_p

Whence "1" and yet "0"?

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

 \geq No statement of the question "How does the mass of the proton arise?" is complete without the additional clause "How does the pion remain massless?" Elucidate the entire array 🕨 Natu usly with stems of empirical consequences - E> /e of of the mechanism responsible th $= m_{p}$ craig Roberts so that the theory can be validated

Ideas: Old & New 19692: Old & New

Observations ... 1

Quantum field theories provide only known realisation of the Poincaré algebra with a particle interpretation

 \Longrightarrow Observable 1-particle states are characterised by just two invariants

 \checkmark eigenvalues of M² – mass-squared operator

✓ eigenvalues of $W^2 - W_{\mu}$ is Pauli-Lubanski four-vector

 $\,\circ\,W_{\mu}$ contains no information about angular momentum

Consequences:

The only *unambiguous* labels attached to a hadron state are its

- Total Mass (conserved)
- Total Spin (J^2 conserved & quantised = boson or fermion)
- Any separation of either quantity into contributions from various constituent species (or other subcomponents)
 - is frame and scale dependent

Observations ... 2

- Only light-front wave functions possess a probability interpretation
- Computations using bare-parton Fock-space expansion are useful in the neighbourhood Λ²_{OCD}/Q² ~ 0:
 - Operators simple
 - But wave functions complicated and very difficult (impossible?) to compute
- At accessible energies, better to use dressed-parton Fock-space
 - Operators complicated; but sound approximations calculable
 - (countable infinity of parton contributions)
 - And wave functions simple
- Interpretation of given observable depends on the basis employed

 K. G. Wilson, Walhout, Harindranath, Zhang, Perry, Glazek: Phys. Rev. D 49 (1994) pp. 6720-6766 ... Arguing for the use of quasiparticle operators: As is always the case, the division of the Hamiltonian into a free part and an interaction part is arbitrary; however, it is also true that the convergence of a perturbative expansion depends crucially on how this choice is made.

> Clearest/simplest picture will likely change with the resolution scale

Observations ... 3

Simultaneous elucidation of the content and consequences of

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

cannot be achieved by focusing on a particular reference frame

- Example: massless pion doesn't have a rest frame
- Poincaré-invariant result:

$$m_{\pi}^2 = 2 m_{\zeta} \frac{-\langle qq \rangle_{\zeta}}{f_{\pi}^2}$$

ALL the pion's mass-squared originates with

QCD Lagrangian's Higgs-generated current-quark mass term

- **But** there is a <u>huge emergent</u> magnification factor $\sim 250 \text{ m}_{\zeta}$

Particle Data Group

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

gluon REFERENCES

YNDURAIN	95	PL B345 524	F.J. Yndurain	(MADU)
ABREU	92E	PL B274 498	P. Abreu et al.	(DELPHI Collab.)
ALEXANDER	91H	ZPHY C52 543	G. Alexander et al.	(OPAL Collab.)
BEHREND	82D	PL B110 329	H.J. Behrend et al.	(CELLO Collab.)
BERGER	80D	PL B97 459	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	80C	PL B97 453	R. Brandelik et al.	(TASSO Collab.)

Pinch Technique: Theory and Applications Daniele Binosi & Joannis Papavassiliou Phys. Rept. 479 (2009) 1-152

Gluon Gap Equation

Bridging a gap between continuum-QCD and ab initio predictions of hadron observables, D. Binosi et al., arXiv:1412.4782 [nucl-th], Phys. Lett. B742 (2015) 183-188

ECT* - Emergent mass & Consequences in SM (51p)

In QCD: Gluons

QCD's Running Coupling

Process independent strong running coupling Binosi, Mezrag, Papavassiliou, Roberts, Rodriguez-Quintero arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7

The QCD Running Coupling, A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. **90** (2016) 1-74

Process-<u>independent</u> effective-charge in QCD

Process independent strong running coupling Binosi, Mezrag, Papavassiliou, Roberts, Rodriguez-Quintero arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7

The QCD Running Coupling, A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. **90** (2016) 1-74

Parameter-free prediction:

- Curve completely determined by results obtained for gluon & ghost two-point functions using continuun and lattice-regularised QCD.
- Near precise agreement between process-independent

 $\hat{\alpha}_{PI}$ and α_{g1} & $\hat{\alpha}_{PI} \approx \alpha_{HM}$

Perturbative domain:

$$\begin{split} \alpha_{g_1}(k^2) &= \alpha_{\overline{\text{MS}}}(k^2)(1+1.14 \,\alpha_{\overline{\text{MS}}}(k^2)+\ldots)\,,\\ \widehat{\alpha}_{\text{PI}}(k^2) &= \alpha_{\overline{\text{MS}}}(k^2)(1+1.09 \,\alpha_{\overline{\text{MS}}}(k^2)+\ldots)\,,\\ \text{difference} &= (1/20) \,\alpha_{\overline{\text{MS}}}^2 \end{split}$$

QCD Effective Charge

Data = process dependent effective charge [Grunberg:1982fw]:

 α_{g1} , defined via Bjorken Sum Rule

QCD Effective Charge

- $\succ \hat{\alpha}_{PI}$ is a new type of effective charge
 - direct analogue of the Gell-Mann–Low effective coupling in QED, *i.e.* completely determined by the gauge-boson two-point function.
- $\succ \hat{\alpha}_{PI}$ is
 - process-independent
 - known to unify a vast array of observables
- $\succ \hat{\alpha}_{PI}$ possesses an infrared-stable fixed-point
 - Nonperturbative analysis demonstrating absence of a Landau pole in QCD
- QCD is IR finite, owing to dynamical generation of gluon mass-scale, which also serves to eliminate the Gribov ambiguity
- > Asymptotic freedom \Rightarrow QCD is well-defined at UV momenta
- > QCD is therefore unique amongst known 4D quantum field theories
 - Potentially, defined & internally consistent at all momenta

Maris, Roberts and Tandy <u>nucl-th/9707003</u>, Phys.Lett. B**420** (1998) 267-273

-Treiman relation Pion's Bethe-Salpeter amplitude This means that π necessarily Solution of the Bethe-Salpeter equation has dressed-quark L=0 & L=1 components in any frame $\Gamma_{\pi^j}(k;P) = \tau^{\pi^j} \gamma_5 \left| iE_{\pi}(k;P) + \gamma \cdot PF_{\pi}(k;P) \right|$ Twist-3 on light-front $+ \gamma \cdot k \, k \cdot P \, G_{\pi}(k;P) + \sigma_{\mu\nu} \, k_{\mu} P_{\nu} \, H_{\pi}(k;P) \Big|$ > Dressed-quark propagator $S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)}$ Axial-vector Ward-Takahashi identity entails $f_{\pi}E_{\pi}(k; P = 0) = B(k^2)$ Miracle: two body problem solved, **Owing to DCSB** & Exact in almost completely, once solution of Chiral QCD one body problem is known Craig Roberts. QCD - Carrying our Weight

Pion's Goldberger

Rudimentary version of this relation is apparent in Nambu's Nobel Prize work

Model independent Gauge independent Scheme independent

$T_{\pi}(p^2) = B(p^2)$ The most fundamental on of Goldstone Craig Roberts. QCD - Carrying our Weight

This algebraic identity is why QCD's pion is massless in the chiral limit

Enigma of mass

The quark level Goldberger-Treiman relation shows that DCSB has a very deep and far reaching impact on physics within the strong interaction sector of the Standard Model; viz.,

Goldstone's theorem is fundamentally an expression of equivalence between the one-body problem and the two-body problem in the pseudoscalar channel.

- This emphasises that Goldstone's theorem has a pointwise expression in QCD
- Hence, pion properties are an almost direct measure of the dressed-quark mass function.
- Thus, enigmatically, the properties of the massless pion are the cleanest expression of the mechanism that is responsible for almost all the visible mass in the universe.

Revealing Mass

Consequences ... 1

- > Mass is dynamically generated in QCD: Scale $\sim \Lambda_{QCD}$
 - − Empirically $\Lambda_{QCD} \approx 0.2 \text{ GeV}$... Standard Model can't predict this value.
- ➢ Gluon self-interactions make $\Lambda_{QCD} \approx 0.2$ GeV possible. They do not guarantee it.
- Understanding of observables (almost always) depends on frame of reference and scale of probe
 - gluons and quarks \rightarrow dressed quasiparticles:
 - massless in perturbation theory
 - possess mass functions which are large at infrared momenta $\leq m_g \approx 2 \Lambda_{QCD}$
 - at hadronic scale: wave functions, cross-sections, etc. are most readily understood using evolving quasiparticle operators for dressed-g, -q
 - Each contains a (distinct) countable infinity of partons
- \Rightarrow All bound-states have GeV-scale masses
- ⇒ Except Nambu-Goldstone modes
- ✓ DCSB: whilst constituents are massive, NG-modes are (nearly) massless

Consequences ... 2

- QCD's unique Gell-Mann–Low effective coupling 2.0
 - ✓ Infrared finite ... α (~ 0) ≈ π
 - ✓ Landau pole of perturbation theory is eliminated by emergence of gluon mass
 - ✓ Cross-sections are free of infrared divergences
- PDAs of ground-state S-wave mesons and baryons are broad, concave functions
 - Numerous empirical consequences \Rightarrow empirically verifiable
 - Hadron elastic and transition form factors
- Emergent vs Explicit (Higgs) mass generation
 - s-quark defines a boundary:
 - emergent mass generation dominates for $m < m_s$
 - but explicit (Higgs) mass is most important for m > m_s
 - s-quark/u-quark comparisons in parton distributions
 are a sensitive probe of emergent mass and its distribution

Consequences ... 3

- Existence of strong nonpointlike scalar and axial-vector diquark correlations in the nucleon.
 - Scalar-diquark-only picture of nucleon structure is ruled-out.
 - Axial-vector correlations are essential
- Empirically verifiable consequences
 - Example ... proton's tensor charges:
 - δ_Td ≠ 0 ⇒ rules-out scalar-diquark-only nucleon
 - $\delta_T u \approx 4 | \delta_T d|$ can be understood as result of highlycorrelated proton wave function

Hybrids & Exotics

Spectrum of light hadrons

Known spectrum of light hadrons is simple

- Qualitatively matches the pattern established by the constituentquark models of Gell-Mann and Zweig (1964)
 - Mesons built from a constituent-quark-antiquark (Q Q) pair
 - Baryons constituted from three constituent quarks (QQQ) where *Q* is associated with any one of the light *u*-, *d*-, *s*-quarks.
- Gell-Mann and Zweig also raised possibility that more complicated bound-states are possible, e.g.
 - $QQ\overline{Q}\overline{Q} \& Q\overline{Q}QQQ$ (they didn't know about glue)

No candidates were then known

But after \sim 50 years, in systems involving the heavier *c*- and *b*-quarks, that has now changed

X, Y, Z ... pentaquarks

34

Spectrum of light hadrons

Early '70s ... "discovery" of quantum chromodynamics (QCD)

- Non-Abelian, relativistic quantum gauge field theory
- 8 self-interacting gauge bosons (gluons) mediate the interactions between current quarks
- > New possibilities arose, viz. systems with valence glue,
 - hybrid (& exotic) mesons $GQ\overline{Q}$
 - hybrid baryons QQQG,
 - even glueballs GG.

Distinction is lost between force and matter fields

- "G" is a "constituent gluon" degree of freedom
- Unknown quantity
- Character will only become known once such systems are detected
- Today's tabulations of hadron masses identify at least three plausible hybrid-meson candidates below 2 GeV
 - Dedicated searches for such states are underway at modern facilities (e.g. COMPASS @ CERN, GlueX @ JLab)

Models & Hybrids

- Over time, numerous models have been employed to calculate spectrum of light hybrid mesons
- > Approaches are distinguished by, *inter alia*:
 - Disparate treatments/definitions of G
- Resulting spectra disagree
- Nevertheless
 - Development of a reliable continuum method for calculating hybrid meson properties would be very valuable
 - For interpretation of empirical observations
 - Provide insights into results obtained via the numerical simulation of lattice regularised QCD (IQCD)

Basic Hypothesis

- A hybrid meson is not qualitatively different from any other strong interaction bound-state, viz. it can be described by a Poincarécovariant bound-state equation built with the dressed-parton degrees of freedom that are generated by solutions of gap equations in the matter and gauge sectors.
- Within quantum field theory, there is no alternative to this position. Stated simply, we search for a bound-state solution in the gluon-quark-antiquark scattering problem.
- Lattice-QCD analyses of hybrids and glueballs formulate the problem in the same way.
- The only difference between the lattice starting point and ours is that we work in momentum space, whereas lattice studies are in configuration space.

Continuum Bound-State Problem

- ▶ QQ mesons in quantum mechanics can't possess following (exotic) quantum numbers: $J^{PC} = 0^{+-}$, 0^{--} , 1^{-+} , etc.
- Not so in Poincaré-covariant treatments of two-valence-body bound states owing to existence of additional degree of freedom

 relative time between the valence-quark and –antiquark => k·P ≠ 0
- However, extant studies of exotic mesons using simple Ansätze or truncations for Bethe-Salpeter kernel produce unrealistic spectra
 - exotic mesons with masses so light that they should already have been seen empirically when, in fact, signals for such states are currently weak and lie at significantly higher masses.
- Furthermore, 2-body Bethe-Salpeter equation does not readily distinguish between regular mesons and hybrids with same J^{PC}.
- > Weaknesses: not remedied by using more sophisticated kernels
- Strong signal that hybrid mesons must contain explicit valencegluon degree-of-freedom

New Perspective on Hybrid Mesons Shu-Sheng Xu, *et al*. arXiv:1805.06430 [nucl-th]

New Window on Hybrids/Exotics

C = 1PI gluon-quark scattering amplitude

> Question:

Does QCD support bound-states with valence gluons?

Exotic/Hybrid meson = $g q \overline{q}$

If so, then distinction is lost between force and matter fields

Three valence-body problem in quantum field theory: Novel formulation based on observation gluon-quark vertex can be represented in terms of a gluon-quark scattering amplitude

 Described in Symmetry preserving truncations of the gap and Bethe-Salpeter equations, Binosi, Chang, Papavassiliou, Qin, Roberts, <u>arXiv:1601.05441</u> [nucl-th], Phys. Rev. D 93 (2016) 096010/1-7

New Perspective on Hybrid Mesons Shu-Sheng Xu, et al. arXiv:1805.06430 [nucl-th]

New Perspective on Hybrid Mesons

Recall two things ...

- Textbook derivations of the two-body Bethe-Salpeter equation in analyses of two-particle scattering and relationship between the scattering matrix and kernel
- Role that coloured quark-quark (diquark) correlations play in simplifying the baryon three-body problem
- Then, reinterpretation of gluon-quark vertex suggests that gluon-quark [q_g=gq] & degenerate gluon-antiquark [q_g=gq] correlations play important role in solving 3-body problem for hybrids
- > Conjecture: Hybrids = highly-correlated $q_g \overline{q} \leftrightarrow q \overline{q}_g$ bound-states

New Perspective on Hybrid Mesons Shu-Sheng Xu, et al. arXiv:1805.06430 [nucl-th]

New Perspective on Hybrids

- Suppose strong q_g and q_g correlations exist, then ...
 - Hybrids mesons explained by:
 - Coupled-channels
 Faddeev-like bound-state
 equation

 $\Psi=\Psi_1+\Psi_2,$

 $\Psi_1 = q_g \overline{q} \& \Psi_2 = q \overline{q}_g$

- Challenges:
 - Confirm existence of tight gluon-quark correlations
 - Determine their properties

Craig Roberts. QCD - Carrying our Weight

 p_{a}

 $p_{\overline{q}_{g}}$

gq correlation Faddeev amplitude propagator

Gluon-Quark Correlations

Adapt logic used to establish existence and properties of diquark correlations:

Search for a pole solution to a leading-order (rainbow-ladder) truncation of vertex equation

▶ i.e. for a solution of the following homogeneous Bethe-Salpeter equation, $\Gamma^a_{\mu} = t^a \Gamma_{\mu}$, $k=p-\ell$: $t^a \Gamma_{\mu}(p;Q)\Lambda_+ = -\int_{d\ell} \mathcal{G}(k^2) t^b \gamma_{\rho} S(\ell_+)$ bare 3-gluon vertex $\times t^c \Gamma_{\lambda}(\ell;Q) D_{\lambda\tau}(\bar{\ell}_-) \int_{3g}(k^2) {}_{0}V^{bca}_{\rho\tau\mu}(k,\bar{\ell}_-,\bar{p}_-)\Lambda_+$ valence gluon 3g vertex dressing factor continuum & lattice: 3g vertex greatly suppressed on $k^2 < 1 \text{ GeV}^2$

Gluon-Quark Correlations

- > Any kernel that provides good description of π and ρ -meson properties (masses, decay constants, etc.):
 - Generates quark+quark correlations in all possible J^{PC} channels
 - Diquarks play crucial role in determining structure and interactions of baryons
 - Generates gluon+quark correlations
 - Dressed valence gluon and valence quark both have running masses, large in infrared

$$- M_q^{IR} \approx \frac{1}{3} m_{proton}$$

•
$$Mass_{(g+q)} \approx m_{proton} \approx 1 \text{ GeV}$$

	0^{-+}	1^{-+}	$1^{}$	0^{+-}	$0^{}$
RL direct	1.28(9)	1.80(4)	1.64(10)	1.73(13)	1.74(3)
ACM improved	1.62(6)	1.75(8)	1.86(10)	1.87(14)	1.90(3)
$lQCD_R - 16^3$	1.72(2)	1.73(2)	1.84(2)	2.03(1)	
$lQCD_R - 20^3$	1.69(2)	1.72(2)	1.77(6)	1.99(2)	
$lQCD - 16^3$	2.14(1)	2.15(2)	2.26(2)	2.45(1)	
$lQCD - 20^3$	2.12(2)	2.16(2)	2.21(6)	2.43(2)	

IQCD. Rows 5, 6: m_{π} > 0.4 GeV ... Dudek *et al*.: <u>arXiv:1004.4930</u> [hep-ph] These simulations overestimate mass of pion's first radial excitation by $\delta_{\pi 1}$ = 0.43 GeV

IQCD. Rows 3, 4: = Rows 5, $6 - \delta_{\pi 1}$

	0^{-+}	1^{-+}	1	0^{+-}	0
RL direct	1.28(9)	1.80(4)	1.64(10)	1.73(13)	1.74(3)
ACM improved	1.62(6)	1.75(8)	1.86(10)	1.87(14)	1.90(3)
$lQCD_R - 16^3$	1.72(2)	1.73(2)	1.84(2)	2.03(1)	
$lQCD_R - 20^3$	1.69(2)	1.72(2)	1.77(6)	1.99(2)	
lQCD - 16^3	2.14(1)	2.15(2)	2.26(2)	2.45(1)	
$lQCD - 20^3$	2.12(2)	2.16(2)	2.21(6)	2.43(2)	

Faddeev Equation with [gq] correlations

- Bound-states exist in all channels
- ✓ Notably: 0⁻⁺ & 1⁻⁻ hybrids are structurally distinct from those accessible using the 2-body Bethe-Salpeter equation in these channels, as in all such previous studies
- However, in comparison with IQCD predictions:
- ✤ All states too light, especially 0⁻⁺, and 1⁻⁺-1⁻⁻ ordering is reversed.
- Wide variations of model parameters do not alter this outcome.

Hitherto, such problems typical of continuum studies

Craig Roberts. QCD - Carrying our Weight

- Mismatch between RL-direct (Row 1) and IQCD results
 - Reconsider each element in our formulation of hybrid meson problem
- > Analyses of improvements to RL truncation indicate origin:
 - [gq] correlation amplitude was computed in RL truncation
 - RL truncation underestimates DCSB in bound-state amplitudes
- Consequently, anomalous chromomagnetic moment (ACM) associated with this correlation is underestimated
 - ACM enhancement essential to explain, e.g. $a_1 \rho$ splitting
- Introduce correction factor
 - Multiplication of ACM term in [gq] correlation by constant, κ_{gq}

> Ask question: Can any value of κ_{gq} yield match with IQCD?

	0^{-+}	1^{-+}	1	0^{+-}	0
RL direct	1.28(9)	1.80(4)	1.64(10)	1.73(13)	1.74(3)
ACM improved	1.62(6)	1.75(8)	1.86(10)	1.87(14)	1.90(3)
$lQCD_R - 16^3$	1.72(2)	1.73(2)	1.84(2)	2.03(1)	
$lQCD_R - 20^3$	1.69(2)	1.72(2)	1.77(6)	1.99(2)	
lQCD - 16^3	2.14(1)	2.15(2)	2.26(2)	2.45(1)	
$lQCD - 20^3$	2.12(2)	2.16(2)	2.21(6)	2.43(2)	

 \succ **YES**: κ_{gq} ... RL = 1 → 2.4 = ACM

- Magnification typical of result obtained with DCSB-improved kernels
- > ACM-improved calculations in Row 2:
 - Level ordering identical to IQCD (3, 4)
 - Absolute values of the masses are commensurate.

Hybrid Spectrum

New Perspective on Hybrid Mesons Shu-Sheng Xu, *et al.* <u>arXiv:1805.06430 [nucl-th]</u>

- Beyond-RL essential to agreement with IQCD
- Agreement is non-trivial
 - ▶ IQCD masses are rescaled by subtraction of $\delta_{\pi 1}$, a number which is completely unrelated to our calculations.
- No single IQCD mass was used as a constraint when fitting κ_{gq}
- Magnitude of our results set by
 - infrared values of the running gluon and quark masses
 - determined by π- and ρmeson properties
 - unrelated to hybrid channels.

New Perspective on Hybrids

- Faddeev equation approach to the valence-gluon+quark+antiquark bound-state problem in relativistic quantum field theory.
 - Strong correlations exist in the $[q_g=gq] \& [q_g=gq]$ channels
 - Hybrid mesons appear as highly-correlated $q_g q \leftrightarrow q q_g$
 - Since diquark correlations basic to determining baryon properties, existence & importance of kindred correlations in hybrids appears credible
- > Described a first analysis of hybrids from this new perspective
 - Established plausibility
 - More sophisticated treatments necessary before the validity of the formulation can be firmly established

> Meanwhile:

- Serve as a guide for subsequent continuum treatments of hybrid-meson three-body problem
- Computed, highly-correlated wave functions can be used to predict a range of hybrid decays and other processes
 - Elucidate empirical signatures for the presence and role of $q_g \& q_g$

- Challenge: Explain and Understand the Origin and Distribution of the Vast Bulk of Visible Mass
- Current Paradigm: Quantum Chromodynamics
- QCD is plausibly a mathematically well-defined quantum field theory, The only one we've ever produced
 - Consequently, it is a worthwhile paradigm for developing Beyond-SM theories
- Challenge is to reveal the content of strong-QCD
- > Tough Problem
- Progress and Insights
 - being delivered by amalga
 - Experiment
 - Phenomenology
 - Theory
- Must continue into eras of

Thankyou

10123

 一 辺

-

ch

同時

cł

-

1801

02

北北

201

今日辺

65

d

She

ch.

Hybrid Spectrum

New Perspective on Hybrid Mesons Shu-Sheng Xu, *et al*. <u>arXiv:1805.06430 [nucl-th]</u>

- ➢ 0⁻⁻ ... deserves special attention
- IQCD predicts lightest state in this channel above m_ρ + 2GeV
- [gq] Faddeev equation confirms 0⁻⁻ is ground-state heaviest hybrid
 - Corrects defect of RL-truncation analyses of exotics using the twobody Bethe-Salpeter equation
- Computed 0⁻⁻ mass nevertheless probably too light
 - Such a system is likely to possess large amount of angular momentum
 - Leads to significant DCSB-enhanced repulsion within the bound-state
 - Simple expedient for correcting associated defects of RL truncation may not be completely adequate.
 - Approach we have described will always produce a heavy 0⁻ state, but precise location must await future, more sophisticated analyses.

Contents

Emergent Phenomena in the Standard Model

Existence of our Universe depends critically on the following empirical facts:

- > Proton is massive
- Let the mass-scale for strong interactions is vasily different to that of electromagnetism
- Proton is absolutely stable
 Despite being a composite object constituted from three valence guarks
- Pion is unnaturally light (not massless, but lepton-like masa)
- Despite being a strongly interacting composite object built from a valencequark and wience antiquark.

Emergence: low-level rules producing high-level phenomena, with enormous apparent complexity

