

Outline

§ Consumer's Guide to Lattice Nucleon Calculations
§ Isovector Tensor Charges
> Impacts on transversity distribution
> BSM interactions in beta decay
§ Flavor-Dependent Tensor Charges
> nEDM applications

Lattice 101

§ Lattice QCD is an ideal theoretical tool for investigating the strong-coupling regime of quantum field theories § Physical observables are calculated from the path integral $\langle 0|O(\bar{\psi},\psi,A)|0\rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{iS(\bar{\psi},\psi,A)}O(\bar{\psi},\psi,A)$ in **Euclidean** space

Are We There Yet?

- § Lattice gauge theory was proposed in the 1970s by Wilson
- > Why haven't we solved QCD yet?
- § Progress is limited by computational resources 1980s Today

§ Greatly assisted by advances in algorithms
 > Physical pion-mass ensembles are not uncommon!

Successful Examples

§ Lattice flavor physics provides precise inputs from the SM
 A. El-Khadra, Sep. 2015, INT workshop "QCD for New Physics at the Precision Frontier"
 > Very precise results in many meson systems

errors (in %) (preliminary) FLAG-3 averages

§ We are beginning to do precision calculations in nucleons

The Trouble with Nucleons

Nucleons are more complicated than mesons because...

§ Noise issue

- $\boldsymbol{\gg}$ Signal diminishes at large $t_{\rm E}$ relative to noise
- $\boldsymbol{\nsim}$ Get worse when quark mass decreases

§ Excited-state contamination

- Nearby excited state: Roper(1440)
- § Hard to extrapolate in pion mass
- $\sim \Delta$ resonance nearby; multiple expansions, poor convergence...
- > Less an issue in the physical pion-mass era
- § Requires larger volume and higher statistics
- Ensembles are not always generated with nucleons in mind
 High-statistics: large measurement and long trajectory

The Trouble with Nucleons

Nucleons are more complicated than mesons because...

Nucleon Matrix Elements

§ Pick a QCD vacuum

≈ Gauge/fermion actions, flavour (2, 2+1, 2+1+1), m_{π} , *a*, *L*, ...

§ Construct correlators (hadronic observables)

Requires "quark propagator" Invert Dirac-operator matrix (rank O(10¹²))

 $\begin{aligned} & \$ \text{ Analysis (extract couplings)} \\ & \mathcal{C}^{3\text{pt}}(t_{f}, t, t_{i}) = |\mathcal{A}_{0}|^{2} \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_{0}(t_{f}-t_{i})} \\ & +\mathcal{A}_{0}\mathcal{A}_{1}^{*} \langle 0|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{0}(t-t_{i})} e^{-M_{1}(t_{f}-t)} + \mathcal{A}_{0}^{*}\mathcal{A}_{1} \langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_{1}(t-t_{i})} e^{-M_{0}(t_{f}-t)} \\ & +|\mathcal{A}_{1}|^{2} \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{1}(t_{f}-t_{i})} \\ & \mathcal{C}^{2\text{pt}}(t_{f}, t_{i}) = |\mathcal{A}_{0}|^{2} e^{-M_{0}(t_{f}-t_{i})} + |\mathcal{A}_{1}|^{2} e^{-M_{1}(t_{f}-t_{i})} + \dots \end{aligned}$

§ An example from PNDME

\sim Move the excited-state systematic into the statistical error $C^{\operatorname{3pt}}(t_f, t, t_i) = |\mathcal{A}_0|^2 \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f - t_i)}$ $+\mathcal{A}_0\mathcal{A}_1^*\langle 0| = e^{-M_0(t-t_i)}e^{-M_1(t_f-t)}$ $+\mathcal{A}_0^*\mathcal{A}_1\langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f-t)}$ $+|\mathcal{A}_1|^2\langle 1|\mathcal{O}_{\Gamma}|1\rangle e$ >> Much stronger effect at finer lattice spacing!

Needs to be studied case by case

a = **0.09 fm**, 310-MeV pion

Nucleon Matrix Elements

Lattice-QCD calculation of $\langle N | \overline{q} \Gamma q | N \rangle$

§ Systematic Uncertainty (nonzero *a*, finite *L*, etc.)

Contamination from excited states
 Nonperturbative renormalization

 e.g. RI/SMOM scheme in MS at 2 GeV

 Extrapolation to the continuum limit

 (m > m^{phys} I > co < g > 0)

 $(m_{\pi} \rightarrow m_{\pi}^{\text{phys}}, L \rightarrow \infty, a \rightarrow 0)$

Isovector Tensor Charge

\mathcal{PNDME}

Precision Neutron-Decay Matrix Elements (2010-)

https://sites.google.com/site/pndmelqcd/

Tanmoy Bhattacharya Rajan G

Vincenzo Cirigliano

Saul Cohen Anosh Joseph

Yong-Chull Jang

Boram Yoon

§ Much effort has been devoted to controlling systematics
§ A state-of-the art calculation (PNDME): 2016

<i>a</i> (fm)	V	M _π L	M_{π} (MeV)	t _{sep}	# Meas.
0.12	24 ³ × 64	4.55	310	8,10,12	64.8k
0.12	$24^3 \times 64$	3.29	220	8,10,12	24k
0.12	$32^3 \times 64$	4.38	220	8,10,12	7.6k
0.12	$40^3 \times 64$	5.49	220	8,10,12,14	64.6k
0.09	32 ³ × 96	4.51	310	10,12,14	7.0k
0.09	48 ³ × 96	4.79	220	10,12,14	7.1k
0.09	64 ³ × 96	3.90	130	10,12,14	56.5k
0.06	$48^3 \times 144$	4.52	310	16,20,22,24	64.0k
0.06	64 ³ × 144	4.41	220	16,20,22,24	41.6k
We thank MILC collaboration for sharing their 2+1+1 HISO lattices					

§ A state-of-the art calculation (PNDME)

⇒ Extrapolate to the **continuum** limit ($m_{\pi} \rightarrow m_{\pi}^{\text{phys}}$, $L \rightarrow \infty$, $a \rightarrow 0$) PNDME, 1606.07049

§ **2018**: 4 lattice spacings, 2 physical pion mass, $M_{\pi} \leq 320$ MeV

<i>a</i> (fm)	V	$M_{\pi}L$	$oldsymbol{M}_{\pi}$ (MeV)	t _{sep}	# Meas.
0.15	$16^3 \times 48$	3.93	310	5,6,7,8,9	122 . 7K
0.12	24 ³ × 64	4.55	310	8,10,12	64.8k
0.12	$24^3 \times 64$	3.29	220	8,10,12	60.5K
0.12	$32^3 \times 64$	4.38	220	8,10,12	47.6K
0.12	$40^3 \times 64$	5.49	220	8,10,12,14	128.6K
0.09	32 ³ × 96	4.51	310	10,12,14	114 . 9K
0.09	48 ³ × 96	4.79	220	10,12,14	123 . 4K
0.09	64 ³ × 96	3.90	130	8,10,12,14,16	165.1K
0.06	$48^3 \times 144$	4.52	310	18,20,22,24	64.0K
0.06	64 ³ × 144	4.41	220	18,20,22,24	41.6K
0.06	96 ³ × 192	3.80	130	16,18,20,22	43.2K

§ Much effort has been devoted to controlling systematics
 § A state-of-the art calculation (PNDME)
 PNDME, 1806. 09006
 Extrapolate to the physical limit (varying ansatz)

$$g_T(a, m_\pi, L) = c_1 + c_2 m_\pi^2 + c_3 a + c_4 e^{-m_\pi L}$$

§ Usually more than one LQCD calculation

✤ For example, tensor charge

✤ Lattice results should agree in the continuum limit

MICHIGAN STATE

Precision Nucleon Couplings

From Charges to PDFs

§ Improved transversity distribution with LQCD $g_{ au}$

→ Global analysis with 12 extrapolation forms: $g_T = 1.006(58)$

 \clubsuit Use to constrain the global analysis fits to SIDIS π^\pm production data from proton and deuteron targets

Lin, Melnitchouk, Prokudin, Sato, 1710.09858, Phys. Rev. Lett. 120, 152502 (2018)

New Interactions

§ Neutron beta decay could be related to new interactions:

$$H_{\rm eff} = G_F \left(J_{V-A}^{\rm lept} \times J_{V-A}^{\rm quark} + \sum_i \varepsilon_i^{\rm BSM} \, \hat{O}_i^{\rm lept} \times \hat{O}_i^{\rm quark} \right)$$

 $\approx \varepsilon_s$ and ε_T are related to the masses of the new TeV-scale particles \approx Parameters sensitive to new physics $\overline{v} = \sqrt{\sigma_n}$

$$d\Gamma \propto F(E_e) \left[1 + A \frac{\overrightarrow{\sigma_n} \cdot \overrightarrow{p_e}}{E_e} + b \frac{m_e}{E_e} + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{\overrightarrow{\sigma_n} \cdot \overrightarrow{p_\nu}}{E_\nu} + \cdots \right]$$

Fierz interference term: Deviations from the leading-order *e*⁻ spectrum

Energy-dependent part of the **neutrino asymmetry parameter** with neutron spin

$$\{b,B\}_{\text{BSM}} = f_0(\varepsilon_{S,T}g_{S,T}) \qquad \text{Precision LQCD input} \\ (m_{\pi} \approx 140 \text{ MeV}, a \rightarrow 0) \\ \varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$$

New Interactions

§ Neutron beta decay could be related to new interactions:

$$H_{\rm eff} = G_F \left(J_{V-A}^{\rm lept} \times J_{V-A}^{\rm quark} + \sum_i \varepsilon_i^{\rm BSM} \, \hat{O}_i^{\rm lept} \times \hat{O}_i^{\rm quark} \right)$$

 $\approx \varepsilon_s$ and ε_T are related to the masses of the new TeV-scale particles

Paramete	Ongoing and Future Experiments	Expected Precision	\vec{v}	
$d\Gamma \propto F(E_e)$	UCNb & UCNB at LANL	10 ⁻³ to 10 ⁻⁴	e^{-p}	
Deviations f	Nab at ORNL	10 ⁻³	he	
leading-ord	FRMII in Munich,		arameter	
ſ	CENPA ⁶ He(b _{GT})	10 ⁻³ to 10 ⁻⁴	on LOCD input	
	$\{D,D\}_{BSM} - JO(ES,TUS,T)$	(<i>m</i> _≈)	$(m_{\pi} \approx 140 \text{ MeV}, a \rightarrow 0)$	
	$arepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$, ,	

Beta Decays & BSM

§ Given precision $g_{S,T}$ and O_{BSM} , predict new-physics scales Low-Energy $O_{\text{BSM}} = f_0(\varepsilon_{s,T} g_{s,T}) \longleftarrow \stackrel{\text{Precision LQCD input}}{(m_{\pi} \rightarrow 140 \text{ MeV}, a \rightarrow 0)}$

Plots by Vincenzo Cirigliano

Expt

 $\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$ Upcoming precision low-energy experiments LANL/ ORNL UCN neutron decay exp't $|B_1 - b|_{\rm RSM} < 10^{-3}$ $|b|_{\rm RSM} < 10^{-3}$ CENPA: ${}^{6}\text{He}(b_{GT})$ at 10^{-3} Also see talk by A. Garcia, E. Mereghetti

PNDME, PRD85 054512 (2012); 1306.5435; 1606.07049; 1806.09006

Flavor-Dependent Tensor Charges

Flavor-Dependent Quark Spín

§ New type of diagram is needed: "disconnected"

>> Historically, notoriously noisy to calculate on the lattice

- Recent developments offer new methods and increasing computational resources
 - Truncated solver, hopping-parameter expansion, hierarchical probing, ...

Continuum Extrapolation

§ Up and down quark "disconnected" contribution

Quark Contribution

 g_T^s

-0.0027(16)

-0.0027(16)

-0.00319(72)

0.008(9)

§ Sum up both contributions

 $\frac{g_T^u}{0.790(27)}$

-0.0064(33)

0.784(28)

0.782(21)

0.774(66)

 g_T^d

-0.198(10)

-0.0064(33)

-0.204(11)

-0.219(17)

-0.233(28)

Calculation from one lattice ensemble only No cont. extrapolation errors

Connected Disconnected

PDNME'18 (Sum)

ETMC'17 [14]

PNDME'15 [5]

Qing-Wu Wang,¹ Si-Xue Qin,^{2,*} Craig D. Roberts,³ and Sebastian M. Schmidt⁴

Proton tensor charges from a Poincaré-covariant Faddeev equation

1806.01287

 $\delta_T u = 0.912^{(42)}_{(47)}, \quad \delta_T d = -0.218^{(4)}_{(5)}$

Electric Dipole Moment

§ Why do we care?

- CP-violating effect ⇒ Key ingredient for baryogenesis
 - \Rightarrow Why matter exists
- ➢ Extremely small in SM: ≈ 10⁻³¹ e-cm (expect to probe 10⁻²⁸ soon)
 ➢ Good candidate to constrain BSM models

$n \mathcal{TDM}$

Electric Dipole Moment

§ Quark EDM (d_a) in nucleon comes from

$$d_{N} = d_{u}g_{T}^{(n,u)} + d_{d}g_{T}^{(n,d)} + d_{s}g_{T}^{(n,s)}$$

 \Rightarrow Hadronic contribution: $\langle N | \bar{q} \sigma_{\mu\nu} q | N \rangle$, $q \in \{u, d, s\}$
§ Extrapolate to the continuum limit PNDME, 1808.07597
 $g_{T}^{u} = 0.784(28), g_{T}^{d} = -0.204(11), g_{T}^{s} = 0.0027(16)$
§ Implications for new physics? Wells, 2003;

Take <u>split SUSY</u> for example

Arkani-Hamed and Dimopoulos, 2004; Giudice and Romanino, 2004

Electric Dipole Moment

§ Quark EDM (d_q) in nucleon comes from

 $d_N = d_u g_T^{(n,u)} + d_d g_T^{(n,d)} + d_s g_T^{(n,s)}$ **>** Hadronic contribution: $\langle N | \bar{q} \sigma_{\mu\nu} q | N \rangle, q \in \{u, d, s\}$

§ Extrapolate to the continuum limit PNDME, 1808.07597

 $g_T^u = 0.784(28), g_T^d = -0.204(11), g_T^s = 0.0027(16)$

Wells, 2003;

§ Implications for new physics?✤ Take split SUSY for example

Arkani-Hamed and Dimopoulos, 2004; Giudice and Romanino, 2004

Solution Solution With the second se

ACME Coll., Science Vol. 343 no. 6168 pp. 269-272 (2014)

§ Exciting era using LQCD to study nucleon structure

- ➢ Well-studied systematics → precision nucleon structures
 ➢ Address neglected disconnected contributions
 - obtaining flavor-dependent quantities
- ✤ BSM applications with fundamental symmetry community and PDFs
- § Overcoming longstanding obstacle to full *x*-distribution (LP³)
- Progress made in first lattice pion PDF (1804.01483) & meson distribution amplitudes (1702.0008,1712.10025)
 More systematics study planned in the near future

§ Stay tuned for many more exciting results from LQCD

Thanks to MILC collaboration for sharing their 2+1+1 HISQ lattices The work of HL is sponsored by NSF CAREER Award under grant PHY 1653405

36TH INTERNATIONAL SYMPOSIUM ON LATTICE FIELD THEORY

https://web.pa.msu.edu/conf/Lattice2018/