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A Profound Question for Hadron Physics

• Origin of the QCD Mass Scale 

• Color Confinement 

• Spectroscopy:  Tetraquarks, Pentaquarks, Gluonium, Exotic 
States 

• Universal Regge Slopes: n, L,  both Mesons and Baryons 

• Massless Pion: Bound State 

• Dynamics and Spectroscopy 

• QCD Coupling at all Scales 

• QCD Vacuum —Do QCD Condensates Exist?
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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.
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Mesons and Baryons: Same Regge Slope M2 / J !
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Superconformal Algebra
2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Color Confinement, Hadron Dynamics, and Hadron Spectroscopy 
from Light-Front Holography and Superconformal Algebra

 Stan Brodsky
Emergent Mass 

Trento ECT*, 2018

Supersymmetry in QCD

• A hidden symmetry of Color SU(3)C in hadron 
physics

• QCD: No squarks or gluinos!

• Emerges from Light-Front Holography and 
Super-Conformal Algebra

• Color Confinement

• Massless Pion in Chiral Limit
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General remarks about orbital angular mo-
mentum
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Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!
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in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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LF : Matrix in Fock Space
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nonperturbative QCD!
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Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions
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PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs
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Transverse density in 
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graviton

Vanishing Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

Terayev, Okun: B(0) Must vanish because of  
Equivalence Theorem 

P. Lowdon, K. Chiu, Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, sjb

LF Proof 



Coulomb  potential  
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Semiclassical first approximation to QED  
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Schrödinger Eq.
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2
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GeV units external to QCD: Only Ratios of Masses Determined



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Maldacena
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Color Confinement, Hadron Dynamics, and Hadron Spectroscopy 
from Light-Front Holography and Superconformal Algebra

 Stan Brodsky
Emergent Mass 

Trento ECT*, 2018

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

Positive-sign dilaton • de Teramond, sjbe'(z) = e+2z2



2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
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• Action for massive scalar modes on AdSd+1:
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Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4
�(z) = Czd/2J��d/2(zM)



AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)
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Figure 1: Comparison of the light-front holographic prediction [1] M
2(n, L, S) =

4�(n+ L+ S/2) for the orbital L and radial n excitations of the meson spectrum with
experiment. See Ref. [2]

1 Introduction

A remarkable empirical feature of the hadronic spectrum is the near equality of the

slopes of meson and baryon Regge trajectories. The square of the masses of hadrons

composed of light quarks is linearly proportional not only to L, the orbital angular

momentum, but also to the principal quantum number n, the number of radial nodes in

the hadronic wavefunction as seen in Fig. 1. The Regge slopes in n and L are equal, as in

the meson formula M
2
M
(n, L, S) = 4�(n+L+S/2 from light front holographic QCD [1],

but even more surprising, they are observed to be equal for both the meson and baryon

trajectories, as shown in Fig. 2. The mean value for all of the slopes is  =
p
� = 0.523

GeV. See Fig. 3.

4

Equal Slope in n and LM2(n,L, S) = 42(n + L + S/2)

mq = 0
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Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!



Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8
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0
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0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!

• Wick Theorem applies, but few amplitudes since all k+ > 0.

• Jz Conservation at every vertex

• Unitarity is explicit

• Loop Integrals are 3-dimensional

• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD

Z 1

0
dx

Z
d2k?

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

at order gn|
X

initial

Sz �
X

final

Sz |  n

K. Chiu, sjb

T = HI +HI
1

M2
initial �M2

intermediate + i✏
HI + cdots



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,~k?

1� x,�~k?



A.P.  Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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Pion Form Factor from AdS/QCD and Light-Front Holography



Higgs Zero Mode!

Yukawa Higgs coupling of confined quark to Higgs zero mode gives  

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

xq

< h >

ūu gq < h >=
mq

xq
mq =

m2
q

xq

gq ̄q(x) q(x)h(x)

HLFKE =
P

i

⇥~k2
?+m2

q

xq

⇤
i
= M2 = [

P
i k

µ
q ]

2

Coupling of confined quarks to Higgs Zero Mode  <h>



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2 = h |
X

a

m2
a/xa| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�m2
q

x +
m2

q
1�x

�
e�

1
2� ⇣2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S = M2

K± + 4�
✓

n +
J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

mu = md = 46 MeV, ms = 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism

Effective mass from m(p2) Tandy, Roberts, et al



Color Confinement, Hadron Dynamics, and Hadron Spectroscopy 
from Light-Front Holography and Superconformal Algebra

 Stan Brodsky
Emergent Mass 

Trento ECT*, 2018

Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent

•QCD scale appears - unique LF potential

•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

•Zero-mass pion for zero mass quarks!

•Regge slope same for n and L  -- not usual HO

•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

•Phenomenology: LFWFs, Form factors, electroproduction

•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d

2

dx2
+

g

x2
+

4uw � v
2

4
x

2
�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

(dAFF)



fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale! 



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q
+} = 2H, {S, S

+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  +[�@x +
f

x
], Q+ =  [@x +

f

x
], S =  +x, S+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



a


a

Supersymmetric Superconformal QM  
(Fubini & Rabinovici, NPB245 (84) 17)

graded algebra of two fermionic operators (super charges)     Q, Q†

with

in matrix 
notation a a

minimum conformal realization -> particle with 2 degrees of freedom with:

H operates on 
two component 

states

Q =  †
✓
� @

@x
+

f

x

◆
, Q† =  

✓
@

@x
+

f

x

◆  ,  † spinor operators with

{ †, } = I, [ †, ] = �3｛

with same eigenvalue 



Consider Rw = Q + wS; w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @2

x + w2x2 + 2wf � w +
4(f + 1

2 )2 � 1
4x2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R
+
w} = 2H + 2w2

K + 2wfI � 2wB

G22 =
�
� @2

x + w2x2 + 2wf + w +
4(f � 1

2 )2 � 1
4x2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2(n,L) = 42(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K

� = 2



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal  
Quantum Mechanics 

Same   !
S=0, P=+

� = 2
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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Same slope
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meson
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de Tèramond, Dosch, Lorcè, sjbSuperconformal Quantum Mechanics 
Light-Front Holography

Universal slopes in n, L
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

Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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Q2(GeV2)

JADE determination of �s(MZ)

M =
⇥

TH ⇥�⌅i

M ⇤ f(⇥CM)
QNtot�4

�
initial ⇤

H
i =

�
final ⇤

H
j

Harmonic Oscillator Confinement 
Normalized to anomalous 

moment

F p
2 (Q2)

� = 0.49 GeV

G. de Teramond, sjb 

From overlap of L = 1 and L = 0 LFWFs



Using SU(6) flavor symmetry and normalization to static quantities
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C



]

uu

ū

uu

uu
L = 0

L = 1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! (qq)
3̄C ! 3̄C

( )

( ) ( )
[

JPC = 2++

JP =
3

2

+ JPC = 1++

L = 0

�+(1232)

L = 1, S = 1

u u

u ū

f2(1270)

S = 1

S = 0

Superconformal Algebra 4-Plet 

Vector ()+ Scalar [] Diquarks

Tetraquark

Meson Baryon

d̄

a1(1260)



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Baryon        TetraquarkMeson



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry



a


a

Superpartners for states with one c quark

predictions             beautiful agreement!M. Nielsen, sjb



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



Regge slope for heavy-light mesons, baryons:  
increases with heavy quark mass

R(GeV)



]

R†
� q ! [q̄q̄]

3C ! 3C

[

S = 0

c̄ c

c c

Double-Charm Baryon (SELEX)

⌅+
CC(3520)

JP =
1

2

+

JPC = 0++

hc(3525)

c

⌘0c

c

c c̄ q̄

R†
� q̄ ! [qq]

3̄C ! 3̄C

S = 0

Predict Tetraquark Tcc̄qq̄

MT ⇠ 3520 MeV]

] ][[

[

dd

d
LB = 0

LB = 1

LM = 1, S = 0

LT = 0

Scalar Diquarks

JPC = 1+�



SELEX (3520± 1 MeV ) JP = 1
2

� |[cd]c >
Two decay channels: ⌅+

cc ! ⇤+
c K

�⇡+, pD+K�





Color Confinement, Hadron Dynamics, and Hadron Spectroscopy 
from Light-Front Holography and Superconformal Algebra

 Stan Brodsky
Emergent Mass 

Trento ECT*, 2018

Production of a Double-Charm Baryon

X

SELEX  high xF < xF >= 0.33

pp ⌅ p + H + p

H, Z0, �b

b⌃ ⇤ 1/Q

Must have �Lz = ±1 to have nonzero F2

Use charge radius R2 = �6F ⇧1(0)

and anomalous moment ⇥ = F2(0)



Groote, Koshkarev, sjb:  SELEX& LHCb could both be correct!

Very different production kinematics:  
LHCb (central region)  

SELEX (Forward, High xF ) where Λc  , Λb were discovered  

Radiative Decay:

LHCb(3621) ! SELEX(3520) + �
strongly suppressed: [

100 MeV
Mc

]
7

Also: Different diquark structure possible for LHCb:

NA3: Double J/ψ Hadroproduction measured at High xF

SELEX (3520± 1 MeV ) JP = 1
2

� |[cd]c >
Two decay channels: ⌅+

cc ! ⇤+
c K

�⇡+, pD+K�

⌅++
cc ! ⇤+

c K
�⇡+⇡+

|(cc)u >

LHCb (3621± 1 MeV ) JP
=

1
2

�
or

3
2

� |(cu)c >

Karliner and Rosner
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Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz frame  

• Quantization at Fixed Light-Front Time 

• Causality: Information within causal horizon 

• Light-Front Holography: AdS5 = LF (3+1) 

• Single fundamental hadronic mass scale κ: but retains the 
Conformal Invariance of the Action (dAFF)!  

• Unique color-confining LF Potential! 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

�2 = x(1� x)b2
�

⌧



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS

Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD 
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjbm⇢ =
p

2
mp = 2

� ⌘ 2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV
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Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ 

• Causality: Information within causal horizon:  Light-Front 

• Light-Front Holography: AdS5 = LF (3+1) 

• Introduce Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF) 

• Unique Dilaton in AdS5:   

• Unique color-confining LF Potential 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9
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Features of LF Holographic QCD
• Color Confinement, Analytic form of confinement potential 

• Massless pion bound state in chiral limit 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincare’ Invariant 

•Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

•Supersymmetric 4-Plet:  Meson-Baryon  Tetraquark Symmetry 

•Light-Front Wavefunctions 

•Form Factors, Structure Functions, Hadronic Observables 

•OPE: Constituent Counting Rules 

•Hadronization at the Amplitude Level 

•Analytic First Approximation to QCD 

•Systematically improvable:  Basis LF Quantization (BLFQ)

Many phenomenological tests



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

Color Confinement, Hadron Dynamics, and Hadron Spectroscopy 
from Light-Front Holography and Superconformal Algebra

 Stan Brodsky
Emergent Mass 

Trento ECT*, 2018

Invariance Principles of Quantum Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme —               
Principle of Maximum Conformality (PMC) 

• Mass-Scale Invariance:                                     
Conformal Invariance of the Action (DAFF) 

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


The Renormalization Scale Ambiguity for Top-Pair Production 
Eliminated Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu  
 SJB

Conventional guess for renormalization scale and range

Measured 
asymmetry

PMC Prediction

Top quark forward-backward asymmetry predicted by pQCD NNLO 
within 1 σ of CDF/D0 measurements using PMC/BLM scale setting 

BLM/PMC:  Scheme-Independent, same as Gell-Mann-Low in pQED

Conventional Prediction



PMC + PadèRe+e−(s) Computed

Padè

B-L Dun,  X-G. Wu,  J.M, Shen, sjb

Extending the Predictive Power of pQCD

Scale Ambiguity, Scheme Dependence,                
Renormalons Eliminated

αn
s βn

0 , n!
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DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

Elements of the solution: 
(A) Light-Front Quantization: causal, frame-independent vacuum 

(B) New understanding of QCD “Condensates” 
(C) Higgs Light-Front Zero Mode 

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology



Two Definitions of Vacuum State

Instant Form: Lowest Energy Eigenstate of Instant-
Form Hamiltonian

Front Form: Lowest Invariant Mass Eigenstate of Light-Front 
Hamiltonian

Frame-independent eigenstate at fixed LF time τ = t+z/c 
within  causal horizon

Eigenstate defined at one time t over all space; 
Acausal! Frame-Dependent

Frame-independent description of the causal physical universe!



k+ = k0 + k3 � 0 since |~k|  k0

zero !!

All LF propagators have positive k+

P+ Momentum Conserved

< 0|Tµ⌫ |0 >= 0

Graviton does not couple to LF vacuum!

Vanishing gravitational coupling even in presence of zero modes

zero !!

g 

Front-Form Vacuum 
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Light-Front vacuum can simulate empty universe

• Independent of observer frame 

• Causal 

• Lowest invariant mass state M= 0. 

• Trivial up to k+=0 zero modes-- already normal-ordering 

• Higgs theory consistent with trivial LF vacuum (Srivastava, 
sjb) 

• QCD and AdS/QCD: “In-hadron”condensates (Maris, Tandy 
Roberts)  -- GMOR satisfied. 

• QED vacuum; no loops 

• Zero cosmological constant from QED, QCD, EW

Shrock, Tandy, Roberts, sjb
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-

ū

⇡� d

+

-⇡� d

+
-

ū

< ⇡|�̄µq�5q|0 >

Lz = +1, Sz = �1

Lz = 0, Sz = 0

Running constituent mass at vertex

-

Couples to

Angular 
Momentum 

Conservation

⇠ f⇡

< ⇡|q̄�5q|0 > ⇠ ⇢⇡

Jz =
nX

i

Sz
i +

n�1X

i

Lz
i

Light-Front Pion Valence Wavefunctions
Sz

ū + Sz
d = +1/2� 1/2 = 0

Sz
ū + Sz

d = �1/2� 1/2 = �1

Couples to



Ward-Takahashi Identity for axial current

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k + P/2)i�5 + i�5S
�1(k � P/2)

S�1(`) = i� · `A(`2) + B(`2) m(`2) =
B(`2)
A(`2)

Pµ �5�
µ

=
2im�5

Pµ < 0|q̄�5�
µq|⇡ >= 2m < 0|q̄i�5q|⇡ >

Identify pion pole at P 2 = m2
⇡

f⇡m2
⇡ = �(mu + md)⇢⇡

plus non-pole
�5µ

�5

GMOR satisfied, no VEV

Maris, Roberts, Shrock, Tandy, sjb



Revised Gell Mann-Oakes-Renner Formula in QCD

current algebra:  
effective pion field

QCD: composite  pion 
Bethe-Salpeter Eq.

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandy⇡� < 0|q̄�5q|⇡ >

m2
⇡ = � (mu + md)

f⇡
< 0|iq̄�5q|⇡ >

m2
⇡ = � (mu + md)

f2
⇡

< 0|q̄q|0 >

No VEV!



Effective Confinement potential from soft-wall AdS/QCD gives  Regge 
Spectroscopy plus higher-twist correction to current propagator 

e+e� ! X, ⌧ decay, QQ̄ phenomenology

�⇤ �⇤

Re+e�(s) = Nc

X

q

e2
q(1 + O

4

s2
+ · · · )

q

q̄

mimics dimension-4 gluon condensate                                           in 
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.
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Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on ⟨0|q̄q|0⟩, where |0⟩ is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value ⟨0|q̄q|0⟩.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
⟨q̄q⟩0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d , is the current-quark mass at a

renormalization scale ζ ; and ⟨q̄q⟩0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix
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• Bound-State Dyson Schwinger Equations  

• AdS/QCD 

• Implications for cosmological constant --                      
Eliminates  45 orders of magnitude 
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I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

Elements of the solution: 
(A) Light-Front Quantization: causal, frame-independent vacuum 

(B) New understanding of QCD “Condensates” 
(C) Higgs Light-Front Zero Mode 

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology
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Central Question: What is the source of Dark Energy?

(⌦⇤)EW = 0(⌦⇤)QCD = 0

Higgs Zero-Mode Curvature?�� = 0.76(expt)



Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and the 
proton rest frame 

• No dependence of hadron structure on observer’s frame 

• Jz Conservation, bounds on ΔLz    Chiu, sjb

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

Physics Independent of Observer’s Motion

Poincare’ Invariant

Roberts, Shrock, Tandy, sjb

Penrose, Terrell, Weisskopf
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Light-Front Holography:  First Approximation to QCD

• Color Confinement, Analytic form of confinement potential 

• Retains underlying conformal properties of QCD despite mass scale                          (DeAlfaro-Fubini-Furlan 
Principle) 

• Massless quark-antiquark pion bound state in chiral limit, GMOR 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincarè Invariant 

• Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

• Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions, Hadronic Observables 

• OPE: Constituent Counting Rules 

• Hadronization at the Amplitude Level:  Many Phenomenological Tests 

• Systematically improvable:  Basis LF Quantization (BLFQ)
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