Studying meson and proton structure at the CERN M2 beam line

Vincent Andrieux

University of Illinois at Urbana-Champaign CERN

ECT* Mapping parton distribution amplitudes and functions September 10^{th} - 14^{th}

Motivations

- $M_\pi \sim 140 MeV$
- Spin 0
- 2 light valence quarks
- 2 TMD PDFs at LT

<u>Kaon</u>

- $M_K \sim 490 MeV$
- Spin 0
- 1 light and 1 "heavy" valence quarks
- 2 TMD PDFs at LT

Proton

- $M_{p} \sim 940 MeV$
- Spin 1/2
- 3 light valence quarks
- 8 TMD PDFs at LT

3~QCD objects, different structures, different properties, understanding differences and similarities teaches us about QCD

Drell-Yan:

Prompt photon production:

- 90's: NA3, NA10, E615
- 10's: COMPASS-II
- 20's: New Experiment

- 90's NA24, W70
- 20's New experiment

DIS with leading N:

- 90's: H1, ZEUS
- 10's: JLAB TDIS
- 30's: EIC

Almost all what we know about pion structure

Example with three fits:

- Large untainties or not even at all
- Not enough data to directly constrain all PDFs → use of: Momentum Sum rules, constituent quark model...
- Sea no direct constraints

More data is needed, with better control of uncertainties, and full error treatment.

GRV: M. Gluck et al, Z.Phys.C 53 (1992) 651-655

SMRS: P.J. Sutton et al, Phys.Rev.D 45 (1992) 2349-2359

How to access the sea

- Wide x coverage
- Estimation of pion flux introduce a strong model dependence

Drell-Yan NA3

- Limited statistics: 4.7k $\pi^-\text{-event}$ (shown) and 1.7k $\pi^+\text{-event}$
- Heavy nuclear target (Pt)

- High intensities available
- Almost pure π^- beam
- $\bullet\,$ Reasonable contribution of π^+ for positive beam

COMPASS-like spectrometer for initial simulation studies

Choice of target

- Isoscalar for sea-valence separation
- Minimize nuclear effect: Carbon
- Embbedded in an absorber for high intensity
- Segmented with vertex tagging for flux and resolution

Expected accuracy compared to NA3 result

- Collect at least a factor 10 more statistics than presently available
- Aim at the <u>first precise direct</u> measurement of the pion sea contribution

$$\begin{split} \Sigma_{\textit{val}} &= \sigma^{\pi^- C} - \sigma^{\pi^+ C}: \text{ only valence-valence} \\ \Sigma_{\textit{sea}} &= 4\sigma^{\pi^+ C} - \sigma^{\pi^- C}: \text{ no valence-valence} \end{split}$$

Renewed interest in pion structure

- Recent reanalysis at NLL
- Agreement restored between DSE and data
- Sea and gluon from GRS
- Nuclear effects ignored

- First MC global QCD analysis ("model dependence")
- Hera data (DIS with leading neutron) included
- Clear impact on sea and gluon distribution

Direct data would constrain the circled area and check the method.

Tagged DIS at JLab \rightarrow See talk by C. Keppel

• Same approach as H1 and Zeus:

- Test of pion cloud
- Caveat: Model depedence from the unknown pion flux

Provide complementary data at large x

Same process is also foreseen for the future EIC to reach very low \boldsymbol{x}

Pion induced Drell-Yan statistics

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c^2) $$	DY events
E615	20cm W	252	π^+ π^-	$\begin{array}{c} 17.6 \times 10^{7} \\ 18.6 \times 10^{7} \end{array}$	4.05 - 8.55	5,000 30,000
NA2	30cm H_2	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.1 - 8.5	40 121
	6cm Pt	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.2 - 8.5	1,767 4,961
NA10	120cm D_2	286 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.35 - 8.5	7,800 3,200
	12cm W	286 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.35 - 8.5	49,600 29,300
COMPASS 2015 COMPASS 2018	110cm NH_3	190	π^{-}	$7.0 imes10^7$	4.3 - 8.5	35,000 52,000
This exp	100cm C	190	π^+	$1.7 imes 10^7$	4.3 – 8.5 3.8 – 8.5	23,000 37,000
		190	π^{-}	$6.8 imes10^7$	4.3 – 8.5 3.8 – 8.5	22,000 34,000
	24cm W	190	π^+	$0.2 imes 10^7$	4.3 – 8.5 3.8 – 8.5	7,000 11,000
	ZHOIT VV	190	π^{-}	$1.0 imes10^7$	4.3 - 8.5 3.8 - 8.5	6,000 9,000

Also 100 of thousands of J/ψ available for free

Vincent Andrieux (UIUC/CERN)

Trento Sep-2018

Parallel studies

Energy loss: \rightarrow See talk by S. Platchkov

- Multiple scattering of incoming quark in large nuclei
- No energy loss in the final state
- $\rightarrow\,$ Fixed target regime especially suited
- $\rightarrow\,$ Comparison between DY and J/ψ complementary information

Flavour dependent EMC effect:

Iso-vector ρ^0 mean field generated in $N \neq Z$ nuclei can modify nucleon's u and d PDF differently

- NA3 π on Pt favours flavour dependence
- Omega π on W not conclusive
- $\rightarrow\,$ Meson induced Drell-Yan process tags flavours

Parallel measurement: EMC effects

Using two π beam charges and two targets, one can add constraints on the EMC flavour dependence

Should play a significant role in nPDFs uncertainties and EMC effect

What do we know about kaon structure?

Sole measurement from NA3 J. Badier *et al.*, PLB93 354 (1984)

- Limited statistics: 700 events with K⁻
- Sensitivity to SU(3)_f breaking
- Mostly only model predictions

Interesting observation: At hadronic scale gluons carry only 5% of K's momentum vs ${\sim}30\%$ in π

- Scarce data on *u*-valence
- No measurements on gluons
- No measurements on sea quarks

How to improve the situation?

Unique opportunities with RF separated beam

- Deflection with 2 cavities
- Relative phase = $0 \rightarrow dump$
- Deflection of wanted particle given by $\Delta\phi\approx\frac{\pi fL}{c}\frac{m_w^2-m_u^2}{p^2}$

To keep good separation:

L should increase as p^2 for a given $f \rightarrow$ limits the beam momentum

Initial expectations before further R&D:

 \sim 80 GeV Kaon beam \sim 110 GeV Anti-proton beam

Kaon RF separated

DY cross-section

- Highest beam energy to access low x
- Highest beam energy to increase signal/bgd ratio
- Favorable also COMPASS-like apparatus

Prompt photon cross-section

Improvement of acceptance

Requirements: Active absorber

- Trackers
- Magnetic field
- Good resolution for vertexing
- Large area
- Capabilitity to collect e^+e^- DY pairs

Initial detector consideration: Combination of

• Baby-Mind detector

M. Antonova et al. arXiv:1704.08079

• W-Si detectors, a la BNL

AnDY Phenix MPCEX Phenix NCC

Projections for Kaon structure

- More data points and more precise compared to NA3
- Discriminating power between models
- 1 year with 2 $\times\,10^7~s^{-1}$ 100 GeV K $^-$ beam
- π taken simultanously

Unique and Promising

S-i. Nam PRD 86, 074005, 2012

C. Chen et al., PRD 93 074021, 2016

Projections for valence/sea separation for Kaons

• First measurement of sea in kaons

- \bullet Requires an additional year with K^+ beam to complement the former K^- data
- Assuming the intensity for K^+ and K^-: $2 \times 10^7 \ s^{-1}$

Purely strong interaction: all partons contribute on the same footing

Using two kaon beam charges, one can access:

- $\bar{u}^{K}u^{N}\propto\sigma^{K^{-}}_{J/\psi}-\sigma^{K^{+}}_{J/\psi}$
- Infer the kaon gluon distribution in a model dependent way

${\rm J}/\psi$ subprocess contribution as obtained from the Color Evaporation Model

Gluon structure in Kaon through prompt photon production

- Model independent way
- Large cross-section
- Large acceptance
- Experimentally difficult (huge background)

No competitors

$$\frac{dN}{d\Omega} = \frac{3}{4\pi} \frac{1}{\lambda+3} \left(1 + \lambda \cos^2(\theta) + \mu \sin(2\theta) \cos(\phi) + \frac{\nu}{2} \sin^2(\theta) \cos(2\phi) \right)$$

In naive Drell-Yan model, no k_T and no QCD processes involving gluons:

$$\lambda=$$
 1, $\mu=$ 0, $u=$ 0

The Lam-Tung relation, derived from the fermionic nature of quarks, predicts:

 $1 - \lambda - 2\nu = 0$

Analog of DIS Callan-Gross relation for Drell-Yan C.S. Lam and W.K. Tung, Phys. Rev. D 18, 2447 (1978)

. . .

QCD Lam-Tung relation

- Recent evidence in terms of QCD: radiative effects describe well data at large q_T
 - J.-C. Peng et al. PLB 758, 384 (2016)
 - M. Lambertsen and W. Vogelsang PRD93, 114013 (2016)

 \rightarrow See talk by J.-C. Peng

- Boer Mulders expected at low $q_{\mathcal{T}}
 ightarrow$ fixed target regime
- Verify Lam-Tung relation for Kaon beam
- To single out Boer Mulders effects very precise data are necessary

So far, I talked only about mesons but what about the nucleon?

At LO QCD, the nucleon can be decomposed into 8 twist-2 TMD PDFs.

Using a transversally polarised target, one can access in SIDIS as well as in Drell-Yan:

- Sivers
- Transversity
- Pretzelosity

Drell-Yan and SIDIS cross-section modulations

$$\begin{aligned} \text{SIDIS:} \\ & \frac{d\sigma}{dxdydzd\phi_{S}d\phi_{h}dP_{hT}^{2}} \stackrel{\text{LO}}{=} \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\epsilon)} \left(1\frac{\gamma^{2}}{2x}\right) \sigma_{U}^{*} \left\{1 + \epsilon A_{UU}^{\cos(2\phi_{h})}\cos(2\phi_{h}) + S_{T} \left[A_{UT}^{\sin(\phi_{h}-\phi_{S})}\sin(\phi_{h}-\phi_{S}) + \epsilon A_{UT}^{\sin(\phi_{h}+\phi_{S})}\sin(\phi_{h}-\phi_{S}) + \epsilon A_{UT}^{\sin(3\phi_{h}-\phi_{S})}\sin(3\phi_{h}-\phi_{S})\right] \\ & + S_{T} P_{I} \left[\sqrt{1-\epsilon^{2}}\cos(\phi_{h}-\phi_{S})A_{LT}^{\cos\phi_{h}-\phi_{S}}\right] \right\} \end{aligned}$$

DY:

$$\begin{aligned} &\frac{d\sigma}{d^4 q d\Omega} \stackrel{\text{LO}}{=} \frac{\alpha^2}{Fq^2} \hat{\sigma_U} \left\{ \left(1 + \cos^2(\theta) + \sin^2(\theta) A_{UU}^{\cos(2\phi)} \cos(2\phi) \right) \right. \\ &+ S_T \left[(1 + \cos^2(\theta)) A_{UT}^{\sin(\phi_S)} \sin(\phi_S) \right. \\ &+ \sin^2(\theta) \left(A_{UT}^{\sin(2\phi + \phi_S)} \sin(2\phi + \phi_S) + A_{UT}^{\sin(2\phi - \phi_S)} \sin(2\phi - \phi_S) \right) \end{aligned}$$

	DY:					SIDIS:		
$A_{UU}^{\cos{(2\phi)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1,p}^{\perp q}$	Boer-Mulders	$A_{UU}^{\cos{(2\phi_h)}}$	$\propto h_{1, ho}^{\perp q}$	\otimes	$H_{1q}^{\perp h}$
$A_{UT}^{\sin{(\phi_S)}}$	$\propto f_{1,h}^{q}$	\otimes	$f_{1T,p}^{\perp q}$	Sivers	$A_{UT}^{\sin{(\phi_h-\phi_S)}}$	$\propto f_{1T,p}^{\perp q}$	\otimes	D_{1q}^h
$A_{UT}^{\sin{(2\phi-\phi_S)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1,p}^q$	Transversity	$A_{UT}^{\sin{(\phi_h+\phi_S)}}$	$\propto h_{1,p}^q$	\otimes	$H_{1q}^{\perp h}$
$A_{UT}^{\sin{(2\phi+\phi_S)}}$	$\propto h_{1,h}^{\perp q}$	\otimes	$h_{1T,p}^{\perp q}$	Pretzelosity	$A_{UT}^{\sin{(3\phi_h-\phi_S)}}$	$\propto h_{1T,p}^{\perp q}$	\otimes	$H_{1q}^{\perp h}$

TMD PDFs are **universal** but final state interaction (SIDIS) *vs.* initial state interaction (DY) \rightarrow **Sign flip** for naive T-odd TMD PDFs

$$\begin{array}{c} f_{1T}^{\perp q} \mid_{\text{SIDIS}} = -f_{1T}^{\perp q} \mid_{\text{DY}} \\ h_{1}^{\perp q} \mid_{\text{SIDIS}} = -h_{1}^{\perp q} \mid_{\text{DY}} \end{array}$$

Crucial test of TMD framework in QCD

COMPASS DY and SIDIS

Vincent Andrieux (UIUC/CERN)

Trento Sep-2018

COMPASS DY and SIDIS

Focus on Sivers sign change

Vincent Andrieux (UIUC/CERN)

Possibility to study valence proton TMD PDFs in a model free way

- cross-sections for \bar{p} induced-DY at 120 GeV \sim π^- induced-DY at 190 GeV
- Combined statistics from $\mu^+\mu^-$ and e^+e^- channels \sim 2 years of COMPASS-II data taking
- With active absorber: better acceptance in θ_{CS}

Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c²)	DY e $\mu^+\mu^-$	vents e^+e^-
This exp.	110cm NH_3	Þ	$3.5 imes 10^7$	100 120 140	4.0 - 8.5 4.0 - 8.5 4.0 - 8.5	28,000 40,000 52,000	21,000 27,300 32,500

Anti-proton beam: Synergy DY and SIDIS

Additional insight with \bar{p} on Boer Mulders (private exchange with Andreas Metz)

- Transversity modulation less affected by QCD effects
- Smooth matching between TMD approach and QCD
- \rightarrow Extract transversity from SIDIS $A_{UT}^{sin(\phi_h+\phi_S)} \propto h_{1,p}^q \otimes H_{1q}^{\perp h}$ measurements

Obtain Boer-Mulders $h_1^{\perp q}$ for proton and meson with antiproton and meson beams Complementary to SIDIS, where Cahn effects can be difficult to disentangle from Boer-Mulders effects

- Letter of Intent

 arXiv:1808.00848
 DY, Spectroscopy, muon-p
 elastics scattering, . . .
- A web page

• Can register to stay informed

New ideas and collaborators are welcome

Near term future: Current beams

• **Precise** determination of **pion structure** and valuable inputs for nuclear effects (nPDFs, EMC, J/ψ , ...)

Long term future: RF-separated beams

- Unprecedented studies of Kaon structure
- Unique opportunity to study proton valence TMD PDFs in a model free way

Many other valuables measurements described in the LoI for both short and long term future

BACKUP

Mass spectrum

Background less than 4% in 4.3 $< {\it M}_{\mu\mu}/({\it GeV}) < 8.5$

Target choice and sea-valence separation

With π^+ and π^- beam and isoscalar target:

$$\sigma(\pi^+ d) \propto \frac{4}{9} [u^{\pi} \cdot (\bar{u}_s^p + \bar{d}_s^p)] + \frac{4}{9} [\bar{u}_s^{\pi} \cdot (u^p + d^p)] + \frac{1}{9} [\bar{d}^{\pi} \cdot (d^p + u^p)] + \frac{1}{9} [d_s^{\pi} \cdot (\bar{d}_s^p + \bar{u}_s^p)]$$

$$\sigma(\pi^{-}d) \propto \frac{4}{9} [u_{s}^{\pi} \cdot (\bar{u}_{s}^{p} + \bar{d}_{s}^{p})] + \frac{4}{9} [\bar{u}^{\pi} \cdot (u^{p} + d^{p})] + \frac{1}{9} [\bar{d}_{s}^{\pi} \cdot (d^{p} + u^{p})] + \frac{1}{9} [d^{\pi} \cdot (\bar{d}_{s}^{p} + \bar{u}_{s}^{p})]$$

- Assumption:
 - Charge conjugation and SU(2)_f for valence: $u_v^{\pi^+} = \bar{u}_v^{\pi^-} = \bar{d}_v^{\pi^+} = d_v^{\pi^+}$
 - Charge conjugation and $SU(3)_f$ for sea:

$$u_s^{\pi^+} = \bar{u}_s^{\pi^-} = u_s^{\pi^-} = \bar{u}_s^{\pi^+} = \bar{d}_s^{\pi^+} = d_s^{\pi^+} = \bar{d}_s^{\pi^-} = d_s^{\pi^+} = s_s^{\pi^+} = s_s^{\pi^-} = \bar{s}_s^{\pi^+} = \bar{s}_s^{\pi^-}$$

- Two linear combination
 - Only valence sensitive: $\Sigma_{\nu}^{\pi D} = -\sigma^{\pi^+ D} + \sigma^{\pi^- D} \propto \frac{1}{3} u_{\nu}^{\pi} (u_{\nu}^{p} + d_{\nu}^{p})$
 - Sea sensitive : $\Sigma_s^{\pi D} = 4\sigma^{\pi^+ D} \sigma^{\pi^- D}$

Kaon induced Drell-Yan statistics

Experiment	nt Target Beam Beam intensity type type (part/sec)		Beam energy (GeV)	DY mass (GeV/c²)	DY ev $\mu^+\mu^-$	vents e^+e^-	
NA3	6 cm Pt	K ⁻		200	4.2 - 8.5	700	0
This exp.	100 cm C	K ⁻	2.1×10^7	80 100 120	4.0 - 8.5 4.0 - 8.5 4.0 - 8.5	25,000 40,000 54,000	13,700 17,700 20,700
		K^+	2.1×10^7	80 100 120	4.0 - 8.5 4.0 - 8.5 4.0 - 8.5	2,800 5,200 8,000	1,300 2,000 2,400
This exp.	100 cm C	π^{-}	4.8×10^7	80 100 120	4.0 - 8.5 4.0 - 8.5 4.0 - 8.5	65,500 95,500 123,600	29,700 36,000 39,800

Achievable statistics of the new experiment, assuming 2×140 days of data taking with equal time sharing between the two beam charges. For comparison, the collected statistics from NA3 is also shown.

Requirements per topic

Program	Beam Energy [GeV]	Beam Intensity [/s]	Trigger Rate [kHz]	Beam Type	Target	Hardware Additions		с
Proton radius	100	$4\cdot 10^{6}$	100	μ^{\pm}	high-pr. H2	active TPC, SciFi trigger, silicon veto		
GPD E	160	107	10	μ^{\pm}	NH3↑	recoil silicon, modified PT magnet		
Anti-matter	190	$5\cdot 10^5$	25	p	LH2, LHe	recoil TOF	×	×
Spectroscopy \overline{p}	12, 20	$5\cdot 10^7$	25	P	LH2	target spectrometer: tracking, calorimetry	×	×
Drell-Yan conv	190	$6.8\cdot 10^7$	25	π^{\pm}	C/W	vertex detector		×
Drell-Yan RF	~ 100	10 ⁸	25-50	<i>К</i> ±, ₽	NH₃ ↑, C/W	"active absorber", vertex detector		×
Primakoff	~ 100	$5\cdot 10^6$	> 10	κ-	Ni		×	×
Prompt photon	100	$5\cdot 10^6$	10-100	κ+	LH2	hodoscope		×
Spectroscopy K^-	50-100	$3.7\cdot 10^6$	25	κ-	LH2	recoil TOF	×	×

Requirements for the future programs at the M2 beam line after 2021.. Standard muon beams are in blue, standard hadron beams in orange, and

RF-separated hadron beams in red. The common baseline is the COMPASS-II setup without RICH-1. "R" refers to RICH-1 and if possible RICH-0,

"C" to CEDARs.