

Parton distribution amplitudes of neutral pseudoscalar mesons

Minghui Ding

Nankai University, Tianjin, China

Mapping Parton Distribution Amplitudes and Functions. ECT*, Trento, Italy, September 10-14, 2018.

The quark structure of hadrons

 Hadron structure functions: LFWFs, GPDs, TMDs, PDFs, PDAs, FFs etc..¹

- Form factors: the closest thing we have to a snapshot.
 - e.g. F(Q²): momentum transfer Q.
- The 1D picture of how quarks move within a hadron:
 - PDFs and PDAs.
 - e.g. q(x):
 longitudinal momentum fraction x.
- A multidimensional view of hadron structure:
 - LFWFs, GPDs, TMDs etc..
 - e.g. ψ(x, k_⊥): longitudinal x and transverse momentum fraction k_⊥.

¹ C. Lorce and B. Pasquini. Wigner distributions and quark orbital angular momentum. Int. J. Mod. Phys. Conf. Ser. 20 (2012) 84-91.

The quark structure of hadrons

● LFWFs ⇒ Leading-twist PDAs

$$\phi(\mathbf{x}) = \frac{1}{16\pi^3} \int dk_{\perp}^2 \psi^{\uparrow\downarrow}(\mathbf{x}, k_{\perp}^2) \,. \tag{1}$$

● LFWFs ⇒ Unpolarised TMDs

$$f_{1}(x,k_{\perp}^{2}) = \frac{1}{16\pi^{3}} \sum_{\lambda_{q},\lambda_{\overline{q}}} |\psi^{\lambda_{q},\lambda_{\overline{q}}}(x,k_{\perp}^{2})|^{2}$$
$$= \frac{1}{16\pi^{3}} (|\psi^{\uparrow\downarrow}|^{2} + |\psi^{\downarrow\uparrow}|^{2} + |\psi^{\uparrow\uparrow}|^{2} + |\psi^{\downarrow\downarrow}|^{2})$$
(2)

• Unpolarised TMDs \Longrightarrow PDFs

$$q(x) = \int dk_{\perp}^2 f_1(x, k_{\perp}^2) \tag{3}$$

¹ C. Lorce and B. Pasquini. Wigner distributions and quark orbital angular momentum. Int. J. Mod. Phys. Conf. Ser. 20 (2012) 84-91.

PDAs in theory

Leading-twist PDAs

意間大學 Nankai University

$$\phi(\mathbf{x}) = \frac{1}{16\pi^3} \int dk_{\perp}^2 \psi^{\uparrow\downarrow}(\mathbf{x}, k_{\perp}^2) \,. \tag{4}$$

PDAs in theory

- QCD sum rules:
 - V.L. Chernyak and A.R. Zhitnitsky, Nucl. Phys. B 201, 492 (1982).
 - P.Ball, and V.M. Braun, Phys.Rev. D54 (1996) 2182-2193, Nucl.Phys. B543 (1999) 201-238.
 - V.M. Braun, S.E. Derkachov, G.P. Korchemsky, and A.N. Manashov, Nucl.Phys. B553 (1999) 355-426.
 - A.P. Bakulev, S.V. Mikhailov, and N.G. Stefanis, Phys.Lett. B508 (2001) 279-289, Phys.Lett. B590 (2004) 309-310.

Light-front QCD:

- G.P. Lepage and S.J. Brodsky, Phys. Lett. B 87, 359 (1979).
- ★ S.J. Brodsky, and G.F. de Teramond, Phys.Rev.Lett. 96 (2006) 201601.
- NJL model:
 - * E.R. Arriola, and W. Broniowski, Phys.Rev. D66 (2002) 094016.

Instanton model:

- * A.E. Dorokhov, JETP Lett. 77 (2003) 63-67, Pisma Zh.Eksp.Teor.Fiz. 77 (2003) 68-72.
- Lattice QCD:
 - * G. Martinelli, and C.T. Sachrajda, Phys.Lett. B190 (1987) 151-156, Phys.Lett. B217 (1989) 319-324.
 - D. Daniel, R. Gupta, and D.G. Richards, Phys. Rev. D43 (1991) 3715-3724.
 - V.M. Braun, M. Gockeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stuben, and J.M. Zanotti, Phys.Rev. D74 (2006) 074501.
 - ★ UKQCD Collaboration, Phys.Lett. B641 (2006) 67-74.
- Dyson-Schwinger Equations:
- etc.

Leading twist

- Twist: t = l s, l: the scaling dimension, s: spin projection.¹
- ψ : I=3/2, ψ_+ : s=1/2, ψ_- : s=-1/2.

$$\psi_{+} = \frac{1}{2}\gamma_{-}\gamma_{+}\psi, \quad \psi_{-} = \frac{1}{2}\gamma_{+}\gamma_{-}\psi$$
(5)

• Operator $\overline{\psi}\gamma_{\mu}\psi$:

$$\begin{aligned} twist &- 2: \quad \overline{\psi}_+ \gamma_+ \psi_+ \\ twist &- 3: \quad \overline{\psi}_+ \gamma_\perp \psi_- + \overline{\psi}_- \gamma_\perp \psi_+ \\ twist &- 4: \quad \overline{\psi}_- \gamma_- \psi_- \end{aligned}$$
 (6)

Matrix elements:

$$\langle 0|\psi(-z)\hat{O}\psi(z)|\pi(P)\rangle$$
 (7)

Ô: operator of twist t = 2, 3, 4.
 Twist-2 operator: ψ
₊ Ôψ₊, and Ô ∈ {γ₊,γ₊γ₅, σ_{+⊥}, σ_{+⊥}γ₅}.
 Twist-2 PDA:

$$\langle 0|\psi(-z)\gamma_5\gamma_\mu\psi(z)|\pi(P)\rangle$$

= $f_\pi P_\mu \int_0^1 dx e^{-i(2x-1)z\cdot P}\phi(x)$ (8)

¹V. Braun, G. Korchemsky and D. Mueller. The uses of conformal symmetry in QCD. Prog. Part. Nucl. Phys. 2003.

Leading twist PDAs

Matrix elements:

$$\langle 0|\psi(-z)\gamma_{5}\gamma \cdot n\psi(z)|\pi(P)\rangle = f_{\pi}n \cdot P \int_{0}^{1} dx e^{-i(2x-1)z \cdot P} \phi(x) ,$$

$$= tr_{CD}Z_{2} \int_{dq}^{\Lambda} e^{-iz \cdot q - iz \cdot (q-P)} \gamma_{5}\gamma \cdot n\chi(q;P) .$$

$$(9)$$

• Projecting Bethe-Salpeter wave function onto the light front:

$$f_{\pi}\phi(\mathbf{x}) = tr_{CD}Z_2 \int_{dq}^{\Lambda} \delta(\mathbf{n} \cdot q_+ - \mathbf{x} \mathbf{n} \cdot P) \gamma_5 \gamma \cdot n_{\chi}(q; P) \,. \tag{10}$$

- *n*, light-like four-vector, $n^2 = 0$.
- f_{π} , decay constant.
- ► $\chi(q; P)$, Bethe-Salpeter wave function, the solution of Bethe-Salpeter equation.

Partonic Structure of Neutral Pseudoscalars

• The flavor-chiral symmetries:

 $SU(3)_R \otimes SU(3)_L \otimes U(1)_V \otimes U(1)_A,$ $SU(3)_R \otimes SU(3)_L \rightarrow SU(3)_V.$

• π⁰.

- Nambu-Goldstone boson and bound-state.
- Dynamical chiral symmetry breaking(DCSB).

η, η'.

- U(1)_A: non-Abelian axial anomaly.
- Flavor mixing with strange quark.

η_c, η_b.

Heavy quarkonium.

- Particles: π^0 , η , η' , η_c , η_b .
- Physical quantities:
 - Leading-twist Parton distribution amplitudes (PDAs).
- The science questions:
 - $u\overline{u} \rightarrow b\overline{b}$: a picture connects Goldstone mode with heavy-heavy systems.
 - η, η' : flavor mixing states.

 $f_{\pi}\phi(\mathbf{x}) = tr_{CD}Z_2 \int_{dq}^{\Lambda} \delta(\mathbf{n} \cdot q_+ - \mathbf{x} \mathbf{n} \cdot \mathbf{P}) \gamma_5 \gamma \cdot \mathbf{n}\chi(\mathbf{q}; \mathbf{P}).$ (11)

Methods computing PDAs with DSEs

- Moments: $\langle x^m \rangle = \int_0^1 dx x^m \phi(x)$
 - Perturbation theory integral representations (PTIRs)¹:
 - ★ Infinite number of Mellin moments.
 - **\star** Combine denominators \Rightarrow the integral over feynman parameters.
 - * Represent the Bethe-Sapeter wave function with parameters.
 - Brute-force" approach²:
 - ★ Limited number of Mellin moments.
- Spectral function: $\chi(q, P) = \int_{-1}^{1} dz \int_{0}^{\infty} d\gamma \frac{g(z, \gamma)}{(q^2 + zq \cdot P + \frac{1}{4}P^2 + M^2 + \gamma)^3}$
 - Maximum entropy method (MEM)³:
 - ★ Well-known method to solve the ill-posed inversion problem.
 - Extract the weight function of Bethe-Salpeter wave function.

¹L. Chang, I.C. Cloet, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, and P.C. Tandy, Phys. Rev. Lett. 110, 132001 (2013),1301.0324.

² M. Ding, F. Gao, L. Chang, Y.X. Liu, and C.D. Roberts, Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia, Phys.Lett. B753 (2016) 330-335.

³F. Gao, L. Chang, and Y.X. Liu, A novel algorithm for extracting the parton distribution amplitude from the Euclidean Bethe-Salpeter wave function. arXiv:1611.03560.

Pion PDA

• Pion PDA from DSE¹²:

¹ L. Chang, I.C. Cloet, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, and P.C. Tandy, Phys. Rev. Lett. 110, 132001 (2013).

² Jian-Hui Zhang, Jiunn-Wei Chen, Xiangdong Ji, Luchang Jin, and Huey-Wen Lin, arXiv:1702.00008v2.

Pion EFF and TFF

¹L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, and P.C. Tandy, Phys. Rev. Lett. 111 (2013) no.14, 141802.

² K. Raya, L. Chang, A. Bashir, J.J. Cobos-Martinez, L.X. Gutiérrez-Guerrero, C.D. Roberts, and P.C. Tandy. Phys.Rev. D93 (2016) no.7, 074017.

PDAs of η_c and η_b

• Moments of PDAs:

$$\langle x^m \rangle = \int_0^1 dx x^m \phi_{\eta_c/\eta_b}(x) = \frac{1}{f_{\eta_c/\eta_b}} tr_{CD} Z_2 \int_{dq}^\Lambda \frac{(n \cdot q_+)^m}{(n \cdot P)^{m+1}} \gamma_5 \gamma \cdot n \chi_{\eta_c/\eta_b}(q; P) \,. \tag{14}$$

- ▶ "Brute-force" approach.
- Calculate directly, limited number of moments.
- A factor $1/(1 + q^2r^2)^{\frac{m}{2}}$ is introduced for $\langle x^m \rangle$, and each moment is a function of *r*, with reliable results extrapolated to $r^2 = 0$.
- Reconstruct the PDAs from their moments.
- Quarkonia properties
 - Current-quark masses were chosen in order to fit $m_{\eta c} = 2.98$ GeV, $m_{\eta b} = 9.39$ GeV.
 - Decay constants

	DSEs	expt. ¹	IQCD ²	CQM ³
f _{ηc}	0.262	0.238	0.279	0.841
f_{η_b}	0.543		0.472	0.728

¹K. Olive et al. Particle data group collaboration. Chin. Phys. C, 2014.

² C.McNeile et al. Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD. Physical Review D, 2012.

³J.Segovia et al. $J^{PC} = 1^{--}$ hidden charm resonances. Physical Review D, 2008.

PDAs of η_c and η_b

• $\phi_{\eta_c}(\mathbf{X}), \phi_{\eta_b}(\mathbf{X})^4$

- Piecewise convex-concave-convex function.
- Deviate noticeably from $\phi_{NRQCD}(x) = \delta(x 1/2).$
- Ordering of PDAs peak heights and widths: $(<_N \text{ means narrower than}) \phi^{asy}(x) = 6x(1-x).$

 $\phi_{\eta_b} <_N \phi_{\eta_c} <_N \phi^{asy} <_N \phi_{\pi}$

- $\Lambda_{QCD}/m_q(\zeta) \rightarrow 0, \, \phi(x) \rightarrow \delta(x-1/2).$
- Critical current quark mass $m_q^c(\zeta = 2GeV) = 0.15GeV, \phi(x) = \phi^{asy}(x).$

⁴M. Ding, F. Gao, L. Chang, Y.-X. Liu, and C. D. Roberts, Phys. Lett. B 753, 330 (2016).

PDAs evolution

• PDA of η_c evolution with $\tau = 1/\zeta$

ERBL evolution¹²

$$\phi(x;\tau) = \phi^{asy}(x) \left[1 + \sum_{j=2,4,...}^{\infty} a_j^{3/2}(\tau) C_j^{(3/2)}(2x-1) \right]$$

$$a_j^{3/2}(\tau) = a_j^{3/2}(\tau_2) \left[\frac{\alpha_s(\tau_2)}{\alpha_s(\tau)} \right]^{\gamma_j^{(0)}/\beta_0} .$$
(15)

PDA evolution with renormalisation scale:

•
$$\Lambda_{QCD}/\zeta \rightarrow 0, \, \phi(x) \rightarrow \phi^{asy}(x).$$

¹G.P.Lepage and S.J.Brodsky. Exclusive processes in perturbative quantum chromodynamics. Physical Review D, 1980.

²A.Efremov and A.Radyushkin. Factorization and asymptotic behaviour of pion form factor in QCD. Physics Letters B, 1980.

TFF of η_c

• Transition form factor $\gamma \gamma^* \rightarrow \eta_c$ in BaBar¹.

• TFF from DSEs².

Asymptotic behaviour can be analyzed by PDAs:

$$\lim_{Q^2 \to \infty} Q^2 G_{\eta_c}(Q^2) = 4\pi^2 \int_0^1 dx \frac{\frac{4}{9} f_{\eta_c} \phi_{\eta_c}(x)}{1 - x}$$
(16)

BaBar Collaboration. Measurement of the $\gamma\gamma^* \to \eta_c$ transition form factor. Phys.Rev. D81 (2010) 052010.

²K. Raya, M. Ding, A. Bashir, L. Chang and C.D. Roberts. Partonic structure of neutral pseudoscalars via two photon transition form factors, Phys.Rev. D95 (2017) 074014.

Flavor mixing in η and η'

- SU(3) flavour symmetry is broken: $m_s > m_{u/d}$.
- Physical η η' states are mixtures of the octet and singlet states.
- $\eta \eta'$ mixing scheme with quark flavor basis².

$$\begin{pmatrix} |\eta\rangle\\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}}(|u\overline{u}\rangle + |d\overline{d}\rangle)\\ |s\overline{s}\rangle \end{pmatrix},$$
(17)

• Ideal mixing:
$$\theta = 0$$
, $|\eta\rangle = \frac{1}{\sqrt{2}}(|u\overline{u}\rangle + |d\overline{d}\rangle)$, $|\eta'\rangle = |s\overline{s}\rangle$.

¹M. Thomson. Modern particle physics. Cambridge University Press, 2013.

²T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D58,114006 (1998), Phys. Lett. B449, 339 (1999).

PDAs of η and η'

$$f_{\eta,\eta'}^{q,s}\phi_{\eta,\eta'}^{q,s}(\mathbf{x}) = Z_2 tr \int_q^{\Lambda} \delta(n \cdot q_+ - \mathbf{x} n \cdot P) \gamma_5 \gamma \cdot n \chi_{\eta,\eta'}^{q,s}(q,P)$$
(18)

Bethe-Salpeter wave function in the quark flavor basis

$$\chi_{\eta,\eta'}(\boldsymbol{k},\boldsymbol{P}) = \mathbb{F}^{q}\chi_{\eta,\eta'}^{q}(\boldsymbol{k},\boldsymbol{P}) + \mathbb{F}^{s}\chi_{\eta,\eta'}^{s}(\boldsymbol{k},\boldsymbol{P}),$$
(19)

• q: u - d - quark, and s the strange quark.

$$\mathbb{F}^{q} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad \mathbb{F}^{s} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} .$$
 (20)

• S: dressed-quark propagator; Γ: Bethe-Salpter amplitude.

$$\chi_{\eta,\eta'}^{q,s}(k,P) = S^{q,s}(k_{+})\Gamma_{\eta,\eta'}^{q,s}(k,P)S^{q,s}(k_{-}), \qquad (21)$$

Bethe-Salpeter wavefucntion

• *S*: dressed-quark propagator.

$$S^{q,s}(k) = Z^{q,s}(k^2,\zeta) / [i\gamma \cdot k + M^{q,s}(k^2,\zeta)],$$
(22)

$$S^{-1}(k) = Z_2(i\gamma \cdot k + m^{bm}) + Z_2^2 \int_q^{\Lambda} g^2 D_{\mu\nu}(k-q) \frac{\lambda^a}{2} S(q) \Gamma_{\nu}^a(q,k) \,.$$
(23)

• Γ: Bethe-Salpter amplitude.

$$\Gamma_{\eta,\eta'}(k,P) = \mathbb{F}^{q}\Gamma^{q}_{\eta,\eta'}(k,P) + \mathbb{F}^{s}\Gamma^{s}_{\eta,\eta'}(k,P), \qquad (24)$$

$$[\Gamma_{\eta,\eta'}(k,P)]_{tu} = Z_2^2 \int_q^{\Lambda} [S(q_+)\Gamma_{\eta,\eta'}(q,P)S(q_-)]_{sr} K_{tu}^{rs}(q,k,P) \,. \tag{25}$$

Anomaly Bethe-Salpeter kernel

Axial-vector Ward-Takahashi Identity:

$$P_{\mu}\Gamma^{a}_{5\mu}(k;P) = S^{-1}(k_{+})i\gamma_{5}\mathbb{F}^{a} + i\gamma_{5}\mathbb{F}^{a}S^{-1}(k_{-}) - 2iM^{ab}\Gamma^{b}_{5}(k;P) - \mathbb{A}^{a}(k;P), \quad (26)$$

$$\begin{aligned} \mathcal{K}_{tu}^{rs}(q,k,P) &= (\mathcal{K}_{L})_{tu}^{rs}(q,k,P) + (\mathcal{K}_{A})_{tu}^{rs}(q,k,P) \,, \\ (\mathcal{K}_{L})_{tu}^{rs}(q,k,P) &= -D_{\mu\nu}(k-q)[\gamma_{\mu}\frac{\lambda^{a}}{2}]_{ts}[\gamma_{\nu}\frac{\lambda^{a}}{2}]_{ru} \,, \\ (\mathcal{K}_{A})_{tu}^{rs}(q,k,P) &= -\xi(k-q)\{\cos\theta_{\xi}^{2}[\zeta\gamma_{5}]_{rs}[\zeta\gamma_{5}]_{tu} \\ &- \sin\theta_{\xi}^{2}\frac{1}{M_{u}^{2}}[\zeta\gamma\cdot P\gamma_{5}]_{rs}[\zeta\gamma\cdot P\gamma_{5}]_{tu}\} \end{aligned}$$

$$(27)$$

¹ M. S. Bhagwat, L. Chang, Y.-X. Liu, C. D. Roberts, and P. C. Tandy, Flavour symmetry breaking and meson masses, Phys. Rev. C76, 045203 (2007), 0708.1118.

Anomaly strength and η - η' masses

- *m_η*(ξ) and *m_{η'}*(ξ) with the dependence of the non-Abelian anomaly strength ξ.
 Curves: *dashed*, *m_η*(ξ); *dash-dotted*, *m_{η'}*(ξ).
- The anomaly strength $\xi = 0$, 1.2 $m_{\eta}(\xi = 0) = m_{\pi} = 0.134 \text{GeV},$ 1.0 $m_{\eta'}(\xi = 0) = m_{s\overline{s}} = 0.70 \text{GeV}.$ 0.8 • The anomaly strength ξ increase, $M(\xi)$ $m_{\eta}(\xi)$ and $m_{\eta'}(\xi)$ increase. 0.6 • The anomaly strength $\xi = \xi_c$, 0.4 $m_n(\xi = \xi_c) = m_n,$ 0.2 $m_{n'}(\xi = \xi_c) = m_{n'}.$ 0.00 0.01 0.02 0.03 0.04 ξ

η and η' masses and decay constants

Meson mass:

- $m_{\eta} = 0.56 \text{GeV}$ and $m_{\eta'} = 0.96 \text{GeV}$, in experiment 0.55 GeV, 0.96 GeV, respectively.
- Decay constants:

	f_{η}^{q}	f_{η}^{s}	$f^{q}_{\eta'}$	$f^s_{\eta'}$
herein-direct	0.072	-0.092	0.070	0.104
herein-fit	0.074	-0.094	0.068	0.101
phen.1 2 3	0.090(13)	-0.093(28)	0.073(14)	0.094(8)

$$\begin{pmatrix} f_{\eta}^{q} & f_{\eta}^{s} \\ f_{\eta'}^{q} & f_{\eta'}^{s} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} f^{q} \\ f^{s} \end{pmatrix}, \quad (28)$$

 $\theta = 42.8^{\circ}.$ $f^q = 0.101 \, GeV = 1.08 f_{\pi}$ $f^s = 0.138 \, GeV = 1.49 f_{\pi}.$ (29)

• octet and singlet basis herein: $\theta_8 = -20^\circ, \ \theta_0 = -2.9^\circ, \ f^8 = 1.38 f_{\pi}, \ f^0 = 1.25 f_{\pi}.$ Compared with phenomenological analyses^{1 2 3}: $\theta_8 = -18(6)^\circ, \ \theta_0 = -6(6)^\circ, \ f^8 = 1.34(8) f_{\pi}, \ f^0 = 1.25(10) f_{\pi}.$

¹T. Feldmann, P. Kroll, and B. Stech, Phys. Lett. B 449, 339 (1999).

²M. Benayoun, L. DelBuono and H. B. O'Connell, Eur. Phys. J. C 17, 593 (2000).

³F. De Fazio and M. R. Pennington, JHEP 07, 051 (2000).

PTIRs

Moments of PDAs:

$$\langle x^{m} \rangle = \int_{0}^{1} dx x^{m} \phi_{\eta,\eta'}^{q,s}(x) = \frac{1}{f_{\eta,\eta'}^{q,s}} tr_{CD} Z_{2} \int_{dq}^{\Lambda} \frac{(n \cdot q_{+})^{m}}{(n \cdot P)^{m+1}} \gamma_{5} \gamma \cdot n \chi_{\eta,\eta'}^{q,s}(q; P) \,.$$
(30)

- Perturbation theory integral representations (PTIRs)¹.
- Represent the Bethe-Sapeter wave function with parameters.
- Infinite number of Mellin moments.
- Reconstruct the PDAs from their moments.

$$\begin{split} S(k) &= \Sigma_{j=1}^{jm} [\frac{z_j}{i\gamma \cdot k + m_j} + \frac{z_j^*}{i\gamma \cdot k + m_j^*}] \\ \mathcal{F}(k;P) &= \mathcal{F}^i(k;P) + \mathcal{F}^u(k;P) ,\\ & \mathcal{F}^i(k,P) &= c_{\mathcal{F}}^j \int_{-1}^1 dz_{\rho_{\nu_{\mathcal{F}}^u}}(z) [a_{\mathcal{F}} \widehat{\Delta}^4_{N_{\mathcal{F}}^u}(k_z^2) ,\\ & + a_{\mathcal{F}}^2 \widehat{\Delta}^5_{N_{\mathcal{F}}^c}(k_z^2)] , \end{split} \tag{31}$$

¹ N. Nakanishi. Perturbation-Theoretical Integral Representation and the High-Energy Behavior of the Scattering Amplitude II*. Physical Review, 133, 5B, 1964.

PDAs of η and η'

- $\phi_{\eta}^{q}, \phi_{\eta}^{s}, \text{ and } \phi_{\eta'}^{q}, \phi_{\eta'}^{s}$
- Ordering of PDAs peak heights and widths: $(<_N \text{ means narrower than}) \phi_c(x) = 6x(1-x)$.

$$\phi_{\eta'}^{\boldsymbol{q}}, \phi_{\eta'}^{\boldsymbol{s}} <_{\boldsymbol{N}} \phi_{\boldsymbol{c}} <_{\boldsymbol{N}} \phi_{\eta}^{\boldsymbol{q}}, \phi_{\eta}^{\boldsymbol{s}} \qquad (33)$$

- Mass effect dominate.
- $\phi^q_{\eta,\eta'}$ behaves almost equivalently with $\phi^s_{\eta,\eta'}$.

TFFs of η and η'

• Transition form factor $\gamma \gamma^* \rightarrow \eta, \eta'^{123}$.

Asymptotic behaviour can be analyzed by PDAs:

$$\lim_{Q^2 \to \infty} Q^2 G_{\eta,\eta'}(Q^2) = 4\pi^2 \int_0^1 dx \frac{\frac{5}{9} f_{\eta,\eta'}^q \phi_{\eta,\eta'}^q(x) + \frac{\sqrt{2}}{9} f_{\eta,\eta'}^s \phi_{\eta,\eta'}^s(x)}{1 - x}$$
(34)

¹ CELLO Collaboration, A Measurement of the π^0 , η and η' electromagnetic form factors, Z.Phys. C49 (1991) 401-410. ² CLEO Collaboration, Measurements of the meson photon transition form factors of light pseudoscalar mesons at large momentum transfer, Phys.Rev. D57 (1998) 33-54.

³BaBar Collaboration. Measurement of the $\gamma\gamma^* \rightarrow \eta$ and $\gamma\gamma^* \rightarrow \eta'$ transition form factors. Phys.Rev.D84 (2011) 052001.

Summary and outlook

Summary:

- Leading twist PDA of π .
- Leading twist PDAs of η_c and η_b :
 - ★ Piecewise convex-concave-convex function.
 - ★ Deviate noticeably from $\delta(x 1/2)$.
 - * Narrower than conformal distribution 6x(1-x).
 - ★ Predict $\gamma\gamma^* \rightarrow \eta_c$ transition form factor G_{η_c} with large Q^2 .
- Leading twist PDAs of η and η' :
 - ★ PDAs of η are broader than conformal distribution 6x(1 x).
 - ★ PDAs of η' are narrower than conformal distribution 6x(1-x).
 - ★ Predict $\gamma\gamma^* \rightarrow \eta, \eta'$ transition form factor $G_{\eta,\eta'}$ with large Q^2 .

Outlook:

- PDFs, GPDs, TMDs, etc.
- Thanks!