Meson Form Factors and Deep Exclusive Meson Production Experiments

Neutral Particle Spectrometer

Mapping Parton Distribution Amplitudes and Functions

Tanja Horn

THE CATHOLIC UNIVERSITY of AMERICA

ECT*, Trento, Italy, 10-14 September 2018

- The pion is responsible for the long-range part of the nuclear force, acting as the basis for meson exchange forces and playing a critical role as an elementary field in nuclear structure Hamiltonians
- As the lightest meson, it must be a valence q q bound state, but understanding its structure through QCD has been exceptionally challenging
 - > *E.g.*, with constituent quarks Q: in the nucleon $m_Q \sim \frac{1}{3}m_N \sim 310$ MeV, in the pion $m_Q \sim \frac{1}{2}m_{\pi} \sim 70$ MeV, in the kaon (with one s quark) $m_Q \sim 200$ MeV This is not real.
 - The mass of bound Goldstone boson states increases as \sqrt{m} with the mass of the constituents
 - In both DSE and LQCD, the mass function of quarks is the same, regardless what hadron the quarks reside in – This is real. It is the Dynamical Chiral Symmetry Breaking (D_χSB) that makes the pion and kaon masses light.
 - We exist because Nature has supplied two light quarks that combine to form the pion, which is unnaturally light and so easily produced

See also talk by C.D. Roberts

Pion and kaon form factors are of special interest in hadron structure studies

The pion is the lightest QCD quark system and also has a central role in our understanding of the dynamic generation of mass - kaon is the next simplest system containing strangeness

Clearest test case for studies of the transition from non-perturbative to perturbative regions

- Recent advances and future prospects in experiments
 - > Dramatically improved precision in F_{π} measurements

12 GeV JLab data have the potential to quantitatively reveal hard QCD's signatures

Form factor data and measurements go hand-in-hand with activities on theory side, e.g.

Distribution amplitudes – normalization fixed by pion wave function whose dilation from conformal limit is a signature of DCSB

Meson Form Factor Data Evolution

Electroproduction formalism

٠

4

Experimental Determination of the π^+ Form Factor

<u>Through π -e elastic scattering</u>

- □ At low Q², F_{π^+} can be measured directly via high energy elastic π^+ scattering from atomic electrons
 - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia et al, NPB277, 168 (1986)]
 - These data used to constrain the pion charge radius: $r_{\pi} = 0.657 \pm 0.012$ fm

- The maximum accessible Q² is roughly proportional to the pion beam energy
 - Q² = 1 GeV² requires 1000 GeV pion beam

Experimental Determination of the π^+ Form Factor

Through pion electroproduction

- $\square F_{\pi^+} \text{ measured indirectly using the "pion cloud" of the proton via the <math>p(e,e'\pi^+)n$ process
 - At small -t, the pion pole process dominates the longitudinal cross section, σ_L
 - In the Born term model, F_{π}^2 appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2,t)$$

[In practice one uses a more sophisticated model]

Requirements:

- Full L/T separation of the cross section isolation of σ_L
- Selection of the pion pole process
- Extraction of the form factor using a model
- Validation of the technique model dependent checks

L/T Separation Example

- $\label{eq:separation} \Box \ \sigma_L \ is \ isolated \ using \ the \ Rosenbluth \ separation \ technique$
 - Measure the cross section at two beam energies and fixed W, Q², -t
 - Simultaneous fit using the measured azimuthal angle (φ_π) allows for extracting L, T, LT, and TT
- Careful evaluation of the systematic uncertainties is important due to the 1/ε amplification in the σ_L extraction
 - Spectrometer acceptance, kinematics, and efficiencies

Magnetic spectrometers a must for such precision cross section measurements

This is only possible in Hall C at JLab

Extraction of F_{π} from σ_{L} Jlab data

□ JLab 6 GeV F_{π} experiments used the VGL/Regge model as it has proven to give a reliable description of σ_{L} across a wide kinematic domain

[Vanderhaeghen, Guidal, Laget, PRC 57, (1998) 1454]

- $\circ \quad \mbox{Feynman propagator replaced by} \\ \pi \mbox{ and } \rho \mbox{ trajectories}$
- Model parameters fixed by pion photoproduction data
- Free parameters: $\Lambda^2_{\pi}, \Lambda^2_{\rho}$

$$F_{\pi}(Q^{2}) = \frac{1}{1 + Q^{2} / \Lambda_{\pi}^{2}}$$

Fit of σ_{L} to model gives F_{π} at each Q²

Off-shellness considerations

S-X Qin, C.Chen, C. Mezrag, C.D. Roberts, Phys. Rev. C97 (2018), no. 1, 015203

In the Sullivan process, the mesons in the nucleon cloud are virtual (off-shell) particles

- Recent calculations estimate the effect in the BSE/DSE framework – as long as λ(ν) is linear in v the meson pole dominates
 - Within the linearity domain, alterations of the meson internal structure can be analyzed through the amplitude ratio
- Off-shell meson = On-shell meson for t<0.6 GeV² (v =30) for pions and t<0.9 GeV²(v_s~3) for kaons

This means that pion and kaon form factor can be accessed through the Sullivan process

Experimental Validation

Experimental studies over the last decade have given <u>confidence</u> in the electroproduction method yielding the physical pion form factor

- ❑ Experimental studies include:
 - Take data covering a range in –t and compare with theoretical expectation
 - $\circ \quad \mathsf{F}_{\pi} \text{ values do not depend on } \mathsf{-t} \\ \text{confidence in applicability of model to} \\ \text{the kinematic regime of the data}$
 - Verify that the pion pole diagram is the dominant contribution in the reaction mechanism
 - R_L approaches the pion charge ratio, consistent with pion pole dominance

[Huber et al, PRL112 (2014)182501]

 Extract F_π at several values of t_{min} for fixed Q²

Extension to systems containing strangeness: the K^+ Form Factor

- Like for pions, elastic K⁺ scattering from electrons used to measure charged kaon for factor at low Q²
 - CERN SPS used 250 GeV kaons to measure form factor up to $Q^2 = 0.13 \text{ GeV}^2$ [Amendolia et al, PLB 178, 435 (1986)]
 - These data used to constrain the kaon RMS radius: $r_K = 0.58 \pm 0.04$ fm

- □ Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K+)A?
 - > Need to quantify the role of the kaon pole

$F_{\pi+}(Q^2)$ and $F_{K+}(Q^2)$ in 2018

□ Factor ~3 from hard QCD calculation evaluated with asymptotic valencequark Distribution Amplitude (DA) [L. Chang, et al., PRL 111 (2013) 141802; PRL 110 (2013) 1322001]

- Trend consistent with time like meson form factor data up to Q²=18 GeV² [Seth et al, PRL 110 (2013) 022002]

Recent developments: when comparing the hard QCD prediction with a pion valence-quark DA of a form appropriate to the scale accessible in experiments, magnitude is in better agreement with the data

[I. Cloet, et al., PRL 111 (2013) 092001]

Pion and Kaon transverse Charge Density

Transverse charge densities allow interpretation of FFs in terms of physical charge density and are also related to the Generalized Parton Distributions

$$\rho_{\pi}(b) = \frac{1}{\pi R^2} \sum_{n=1}^{\infty} F_{\pi}(Q_n^2) \frac{J_0(X_n \frac{b}{R})}{[J_1(X_n)]^2} \qquad Q_n \equiv \frac{X_n}{R}$$

Uncertainty in the analysis dominated by incompleteness error

Estimated using the monopole as upper bound and a light front model as lower bound

 \square ρ_{π} and ρ_{p} coalesce for 0.3 fm < b < 0.6 fm; and so does ρ_{K} +

□ It would be interesting to extract the transverse charge density for different flavors

Impact of future data

Transverse density assuming very different behavior of the form factor

[M. Chen, M Ding, L. Chang, C.D. Roberts, arXiv:1808.09461 (2018)]

JLab12: F_{π} measurements

- CEBAF 10.9 GeV electron beam and SHMS small angle capability and controlled systematics are essential for extending precision measurements to higher Q²
- **The JLab 12 GeV** π^+ experiments:
 - **E12-06-101**: determine F_{π} up to Q²=6 GeV² in a dedicated experiment
 - Require t_{min} <0.2 GeV² and $\Delta \epsilon$ >0.25 for L/T separation
 - Approved for 52 PAC days with "A" rating, high impact

E12-06-101 spokespersons: G. Huber, D. Gaskell

- **E12-07-105**: probe conditions for factorization of deep exclusive measurements in π^+ data to highest possible Q²~9 GeV² with SHMS/HMS
 - Potential to extract F_{π} to the highest Q²~9GeV² achievable at Jlab 12 GeV
 - Approved for 40 PAC days with "A-" rating E12-07-105 spokespersons: T. Horn, G. Huber

JLab12: F_{π} kinematic reach

JLab 12 GeV and HMS+SHMS in

Hall C allow for:

- > Measurements of σ_1 up to Q²=8-9 GeV²
- Reliable F_π extractions from existing data to the highest possible Q²
- Validation of F_{π} extraction at highest Q^2

Projected precision using R from VR model and assumes pole dominance

JLab 12 GeV experiments have the potential to access the perturbative scaling regime quantitatively – may also provide info on log corrections.

These results would also have implications for nucleon structure interpretation.

JLab12: Opportunities for $F_{K+}(Q^2)$ Measurements

E12-09-011: Possible K⁺ form factor extraction to highest possible Q²

E12-09-011spokespersons: T. Horn, G. Huber, P. Markowitz

- Extraction like in the pion case by studying the model dependence at small t
- Comparative extractions of F_π at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data
- Recent theoretical efforts to understand role of the strange quark
 - [F. Gao et al., Phys. Rev. D 96 (2017) no. 3, 034024]
 - [P.T.P. Hutauruk et al., Phys. Rev. C 94 (2016) 035201]
 - [C. Chen et al., Phys. Rev. D 93 (2016) no. 7, 074021]

[S-S Xu et al., arXiv:1802.09552 (2018)]

[T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

[M. Carmignotto et al., Phys. Rev. C97 (2018) no.2, 025204]

JLab12: Opportunities for F_{K+}(Q²) Measurements

E12-09-011: Possible K⁺ form factor extraction to highest possible Q²

E12-09-011spokespersons: T. Horn, G. Huber, P. Markowitz

- Extraction like in the pion case by studying the model dependence at small t
- Comparative extractions of F_π at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data
- Recent theoretical efforts to understand role of the strange quark
 - [F. Gao et al., Phys. Rev. D 96 (2017) no. 3, 034024]
 - [P.T.P. Hutauruk et al., Phys. Rev. C 94 (2016) 035201]
 - [C. Chen et al., Phys. Rev. D 93 (2016) no. 7, 074021]
 - [S-S Xu et al., arXiv:1802.09552 (**2018**)]

[M. Carmignotto et al., Phys. Rev. C97 (2018) no.2, 025204]

from 2018/19 run

First Exclusive Kaons from 2018 Data!

Exploring the 3D Nucleon Structure

- After decades of study of the partonic structure of the nucleon we finally have the experimental and theoretical tools to systematically move beyond a 1D momentum fraction (x_{Bi}) picture of the nucleon.
 - High luminosity, large acceptance experiments with polarized beams and targets.
 - Theoretical description of the nucleon in terms of a 5D Wigner distribution that can be used to encode both 3D momentum and transverse spatial distributions.
- Deep Exclusive Scattering (DES) cross sections give sensitivity to electron-quark scattering off quarks with longitudinal momentum fraction (Bjorken) x at a transverse location b.

 Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross sections depend on transverse momentum of hadron, P_{h⊥}, but this arises from both intrinsic transverse momentum (k_T) of a parton and transverse momentum (p_T) created during the [parton → hadron] fragmentation process.

See also talk by H. Moutarde

Towards GPD flavor decomposition: DVMP

□ Relative contribution of σ_L and σ_T to cross section are of great interest for nucleon structure studies

- described by 4 (helicity non-flip) GPDs:
 - *H*, *E* (unpolarized), \widetilde{H} , \widetilde{E} (polarized)
- Quantum numbers in DVMP probe individual GPD components selectively
 - Vector : $\rho^{\circ}/\rho + K^*$ select *H*, *E*
 - Pseudoscalar: π, η, K select the polarized GPDs, \tilde{H} and \tilde{E}
- Reaction mechanism can be verified experimentally - L/T separated cross sections to test QCD Factorization

Recent calculations suggest that leading-twist behavior for light mesons may be reached at Q²=5-10 GeV²

□ JLab 12 GeV can provide experimental confirmation in the few GeV regime

Results from 6 GeV JLab

Data demonstrate the technique of measuring the Q² dependence of L/T separated cross sections at fixed x/t to test QCD Factorization

- Consistent with expected factorization, but small lever arm and relatively large uncertainties
- > GPD models cannot reproduce ρ^0 data at small W

[L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A 52 (2016) no.6, 158]

Kaon L/T: First Comparison with Models

Here, compare with P. Kroll's GPD model (circles= σ_L , diamonds= σ_T)

> Separated cross section data over a large range in Q^2 are essential for:

- Testing factorization and understanding dynamical effects in both Q² and –t kinematics
- Interpretation of non-perturbative contributions in experimentally accessible kinematics

JLab12: confirming potential for nucleon structure studies with pion production

Considered for running **in 2020+** ²⁴

JLab12: confirming potential for nucleon structure studies with kaon production

E12-09-011 (KAONLT): Separated L/T/LT/TT cross section over a wide range of Q² and t

E12-09-011 spokespersons: T. Horn, G. Huber, P. Markowitz

JLab 12 GeV Kaon Program features:

- First cross section data for Q² scaling tests with kaons
- Highest Q² for L/T separated kaon electroproduction cross section
- First separated kaon cross section measurement above W=2.2 GeV

Now running in Hall C at Jlab (2018/19)

x	Q ²	W	-t
	(GeV²)	(GeV)	(GeV/c) ²
0.1-0.2	0.4-3.0	2.5-3.1	0.06-0.2
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

[blue points from M. Carmignotto, PhD thesis (2017)] 25

Transverse Contributions may allow for probing a new set of GPDs

See also talk by H. Moutarde

- □ 4 Chiral-odd GPDs (parton helicity flip)
- A large transverse cross section in meson production may allow for accessing helicity flip GPDs
 - Model predictions based on handbag in good agreement with 6 GeV data

[Goloskokov, Kroll, EPJ C65, 137 (2010); EPJ A**45**, 112 (**2011**)] [Goldstein, Gonzalez Hernandez, Liuti, J. Phys. G **39 (2012)** 115001] [Ahmad, Goldstein, Liuti, PRD **79 (2009)**]

□ JLab 12 GeV will provide relative σ_L and σ_T contributions to the π^0 cross section up Q²~6 GeV² to verify reaction mechanism

> Exclusive π^{0} data may also be helpful for constraining non-pole contributions in F_{π} extraction

[Favart, Guidal, Horn, Kroll, EPJA (2016)] [Bedlinskiy et al. PRL 109 (2012) 112001] 26

New Opportunities with the Neutral Particle Spectrometer (NPS)

□ The NPS is envisioned as a facility in Hall C, utilizing the well-understood HMS and the SHMS infrastructure, to allow for precision (coincidence) cross section measurements of neutral particles (γ and π^0).

- Approved experiments to date
 - O E12-13-010 Exclusive Deeply Virtual Compton and π^0 Cross Section Measurements in Hall C
 - O E12-13-007: Measurement of Semi-inclusive π^0 production as Validation of Factorization
 - O E12-14-003 Wide-angle Compton Scattering at 8 and 10 GeV Photon Energies
 - O E12-14-005 Wide Angle Exclusive Photoproduction of π^0 Mesons
 - O E12-17-008 Polarization Observables in Wide-Angle Compton Scattering
 - ❑ Conditionally approved experiments: TCS with transverse target

E12-13-010: Exclusive π^0 cross section

- □ Relative L/T contribution to π^0 cross section important in probing transversity
 - > If σ_T large: access to transversity GPDs
- \hfill Results from Hall A suggest that σ_L in π^0 production is non-zero up to Q²=2 GeV²
- $\hfill\square$ Need to understand Q²/t dependence for final conclusion on dominance of σ_T

Towards the Pion/Kaon Structure Function

Is there anything besides the meson elastic form factors that can be learned by isolating the One Pion Exchange Contribution?

- □ Sullivan was the first to consider the "Drell" process, with π +X final states where m_X^2 grows linearly with Q²
- □ A simple calculation gives the minimum momentum transfer squared $t_{min} = (q k)_{min}^2 \rightarrow \infty$ as Q² → ∞
 - > The requirement of being near the pion pole at $t = m_{\pi}^2$ can never be satisfied and processes of this type play no role in the scaling region
 - Similar consideration for offshellness as for meson FF a well-constrained experimental analysis should be reliable in regions of -t

Pion and Kaon Structure Functions

- Significant reduction of uncertainties on sea quark and gluon distributions in the pion with inclusion of HERA leading neutron data
- Implications for "TDIS" (Tagged DIS) experiments at JLab

Pion and Kaon Structure Functions at EIC -Versatility is Key

- Obtain F₂ⁿ by tagging spectator proton from e-d, and extrapolate to on-shell neutron to correct for binding and motion effects.
- Obtain F₂^π and F₂^κ by Sullivan process and extrapolate the measured t-dependence as compared to DSE-based models.

Need excellent detection capabilities, and good resolution in –t

 \rightarrow See talk by T. Keppel

Global Fits with Existing Data and EIC Projections

□ 5 GeV(e⁻) x 100 GeV(p)

D 0.1 < y < 0.8

- EIC pseudodata fitted with existing data
- □ Work ongoing:
- Why did the curves shift?
- The pion D-Y data, even if not many, already do constrain the curves surprisingly well – due to the various sum rules?
- Curves to improve with the EIC projections, especially for kaon as will have similar-quality data.

Precision gluon constraints of pion and kaon pdfs are possible.

R. Trotta, V. Berdnikov, N. Mecholsky, T. Horn, I. Pegg, N. Sato et al., 2018+

EIC: F_{π} Measurements

- 1. VR model shows strong dominance of σ_L at small –t at large Q².
- 2. Assume σ_L dominance
- 3. Measure the π^2/π^+ ratio to verify it will be diluted (smaller than unity) if σ_T is not small,

or if non-pole backgrounds are large

Can we measure kaon form factor at EIC?

- □ 5 GeV(e⁻) x 100 GeV(p)
- Integrated luminosity: L=20 fb⁻¹/yr
- Identification of exclusive p(e,e'π⁺)n events
- □ 10% exp. syst. unc.
- R= σ_L/σ_T from VR model, and π pole dominance at small t confirmed in ²H π⁻/π⁺ ratios
- □ 100% syst. unc. in model subtraction to isolate σ_L

33

Summary

- Meson form factor measurements play an important role in our understanding of the structure and interactions of hadrons based on the principles of QCD
- > Meson form factor measurements in the space-like region at $Q^2 > 0.3 \text{ GeV}^2$
 - In general, require a model to extract the form factor at physical meson mass experimental validation of the extraction is essential
 - \circ K⁺ requires experimental verification of pole dominance in σ_L
 - \circ π^+ form factor: reliable measurements up to Q²=2.45 GeV² from JLab 6 GeV
- > JLab 12 GeV will dramatically improve the $\pi^+/K^+/\pi^0$ electroproduction data set
 - Pion and kaon form factor extractions up to high Q^2 possible (~9 and ~6 GeV²)
 - Kaon experiment scheduled to run in 2017/18
 - L/T separated cross sections important for transverse nucleon structure studies – may allow for accessing new type of GPDs
- Beyond 12 GeV, EIC provides interesting opportunities to map pion and kaon structure functions over a large (x, Q²) landscape – White Paper in progress...