CTEQ-TEA parton distribution functions now and in the future

Pavel Nadolsky

Southern Methodist University

CTEQ-TEA (Tung et al.) working group

Shanghai Jiao Tong University: J. Gao

Kennesaw State University: M. Guzzi

Michigan State University: J. Huston,

J. Pumplin, D. Stump, C. Schmidt, J. Winter,

C.-P. Yuan

Southern Methodist University: Tim Hobbs,

P. Nadolsky, B. T. Wang, K. P. Xie **Xinjiang University:** S. Dulat, T.-J. Hou, I. Sitiwaldi

Frequently asked questions

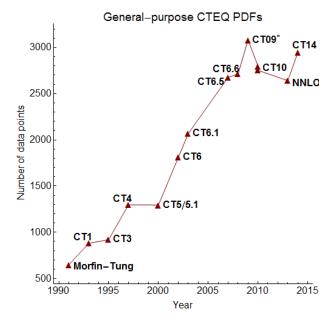
- 1. What is the meaning (definition) of my PDF?
- 2. Do I measure what I claim to be measuring?
- 3. How large are higher-order contributions?
- 4. How should the PDF uncertainties be estimated?
- 5. How much am I biased by my parametrization of PDFs?
- 6. Are there hidden PDF uncertainties?

These questions are best understood for unpolarized collinear PDFs ⇒this talk and Tim Hobbs' talk

They must be addressed when trying to measure the nuclear, polarized, meson, TMD PDFs

Coordinated Theoretical Experimental study of QCD

Initiated around 1990 to stimulate interactions between


- Experimentalists and theorists, especially at the newly built Tevatron
- High-energy physics and hadronic physics communities

This is achieved by various initiatives:

- **Global analysis** (the term coined by J. Morfin and Wu-Ki Tung) constrains PDFs or other nonperturbative functions with data from diverse hadronic experiments
- Workshops and summer schools

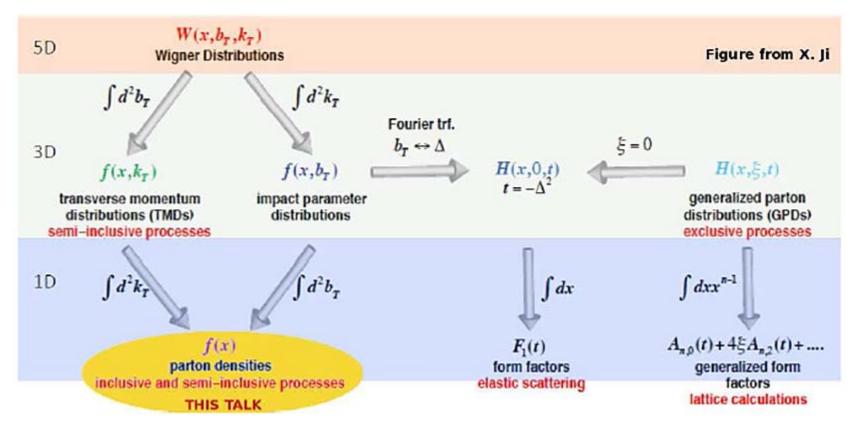
. . .

 Annual Wu-Ki Tung award for junior researchers working on intersections of experiment and theory [nomination deadline August 15 each year]

2018: new experiments (LHC, EIC, LHeC,...)! New objectives!

 $f_{a/h}(x,Q)$

Unpolarized collinear parton distributions $f_{a/h}(x, Q)$ are associated with probabilities for finding a parton *a* with the "+" momentum xp^+ in a hadron *h* with the "+" [momentum p^+ for $p^+ \to \infty$, at a resolution scale Q > 1 GeV

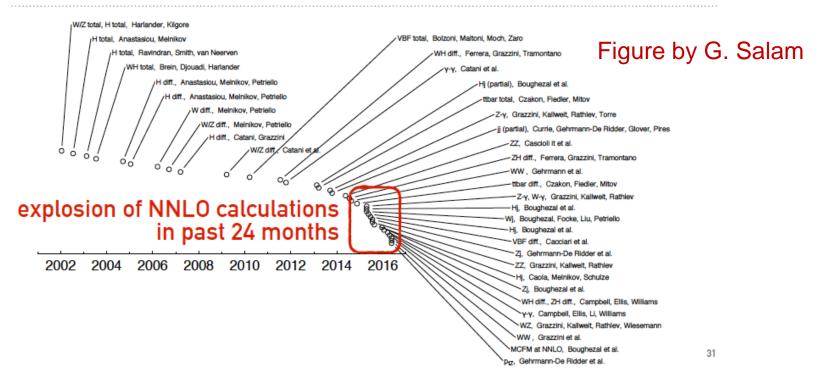

PDFs: key nonperturbative functions for LHC predictions

$$\sigma_{pp \to \ell \bar{\ell} X} = \sum_{a,b=q,\bar{q},g} \int_0^1 d\xi_1 \int_0^1 d\xi_2 \,\widehat{\sigma}_{ab \to Z \to \ell \bar{\ell}} \left(\frac{x_1}{\xi_1}, \frac{x_2}{\xi_2}; \frac{Q}{\mu}\right) f_{a/p}(\xi_1, \mu) f_{b/p}(\xi_2, \mu) + \mathcal{O}\left(\Lambda_{QCD}^2/Q^2\right)$$

\$\hfi\[\fi\]_{ab→Z→ℓ\tect{\ell}\$} is the hard-scattering cross section
 \$f_{a/p}(\xi, \mu)\$ are the PDFs
 \$Q^2 = (k_3 + k_4)^2\$, \$x_{1,2} = (Q/\sqrt{s}) e^{±y_V}\$— measurable quantities
 \$\xi_1\$, \$\xi_2\$ are partonic momentum fractions (integrated over)
 \$\mu\$ is a factorization scale (=renormalization scale from now on)

Parton distribution functions $f_{a/p}(x,Q)$...

... the best-known nonperturbative functions introduced in QCD

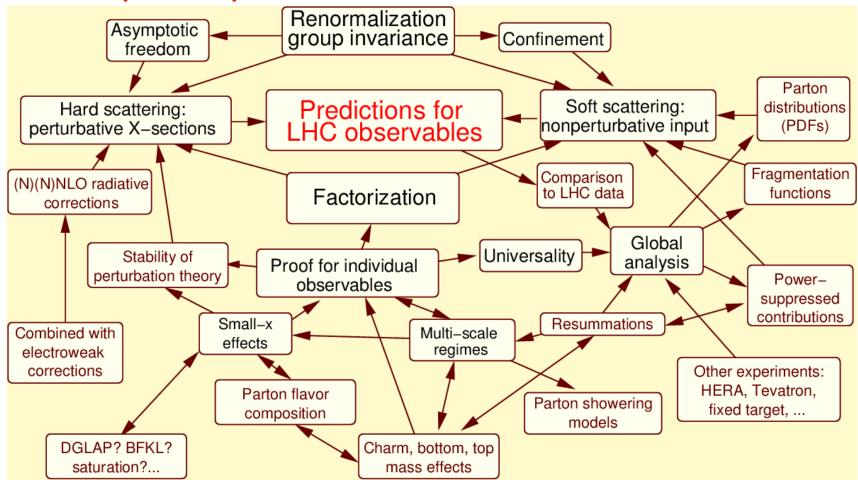


... can be obtained from Wigner distribution functions $W_{a/p}(x, p, s)$... provide the baseline input for studies of polarized, nuclear, TMD, ... PDFs

Perturbative QCD loop revolution

NNLO hadron-collider calculations v. time

as of mid June 2016



Since 2005, generalized unitarity and related methods dramatically advanced the computations of **perturbative** NLO/NNLO/N3LO hard cross sections $\hat{\sigma}$.

To make use of it, accuracy of PDFs $f_{a/p}(x, \mu)$ must keep up

2018-09-10

Concepts of perturbative QCD at the LHC

At the (N)NNLO accuracy level, multiple aspects affect the PDF behavior

Classes of PDFs

General-purpose

For (N)NLO calculations with $N_f \leq 5$ active quark flavors

```
From several groups:
ABMP'16
CTEQ-Jlab (CJ'2015)
HERA2.0
CT14 (\rightarrow 17p)
MMHT'14 (\rightarrow 16)
NNPDF3.1
```

 Specialized

 For instance, for CT14:

 CT14 LO

 CT14 $N_f = 3, 4, 6$

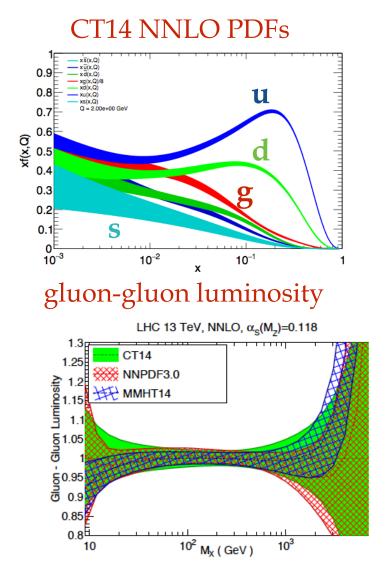
 CT14 HERA2

 [arXiv:1609.07968]

 CT14 Intrinsic charm

 CT14 QCD+QED

 [1509.02905]


 CT14 Monte-Carlo

ATLAS & CMS exploratory

Combined [1509.03865] PDF4LHC'15=CT14+MMHT'14+NNPDF3.0

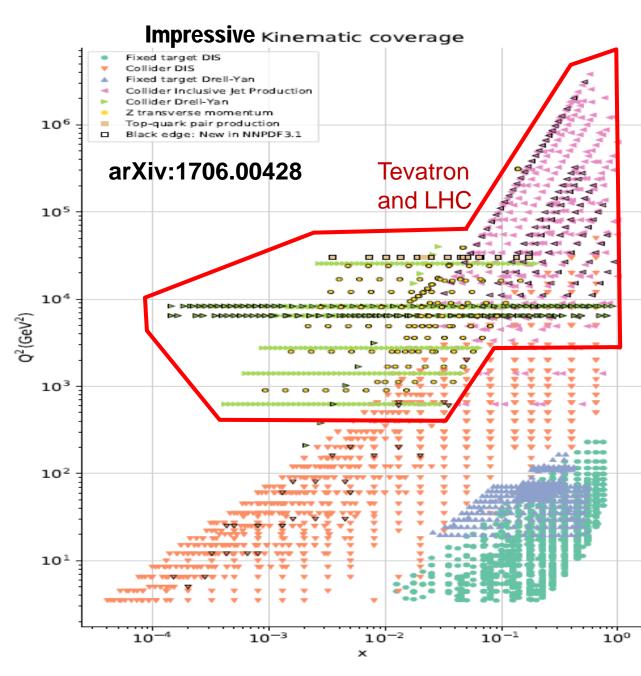
CT14 Parton distributions

+ 2015 major release on general-purpose PDFs, CT14 NNLO/NLO sets including alternative α_s series and $N_f = 3,4,6$ [1506.07443]

- combined HERA charm production, H1 FL data in NC DIS
- early LHC Run I data on W/Z charged lepton rapidity and asymmetry data;
- old D0 W-electron asymmetry data superseded by the new one with full luminosity;
- inclusive jet production from ATLAS and CMS
- more flexible parametrization for gluon, d/u at large-x, both d/u and dbar/ubar at small-x, 28 eigenvectors comparing to 25 for CT10

http://hep.pa.msu.edu/cteq/public/index.html

Toward a new generation of PDFs ["CT17preliminary" PDFs]

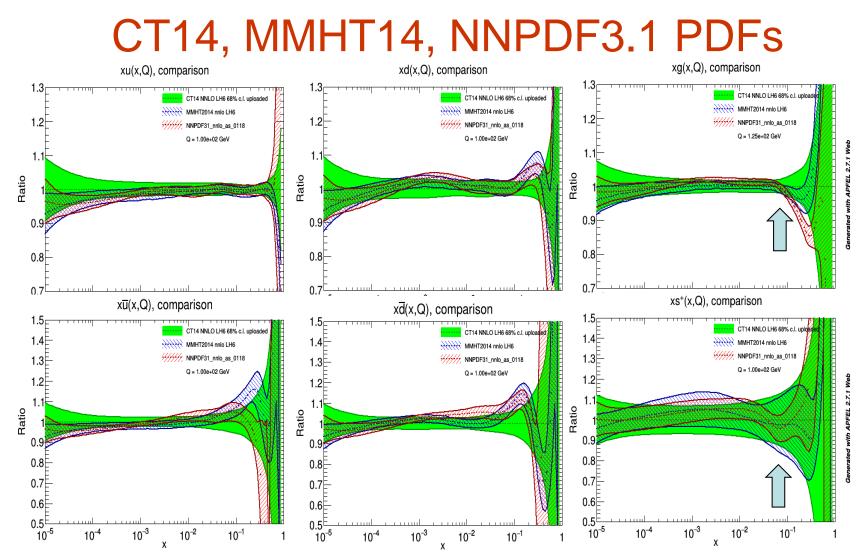

Will the [high-luminosity] LHC fully constrain the PDFs?

2017-18: explicit and implicit advancements

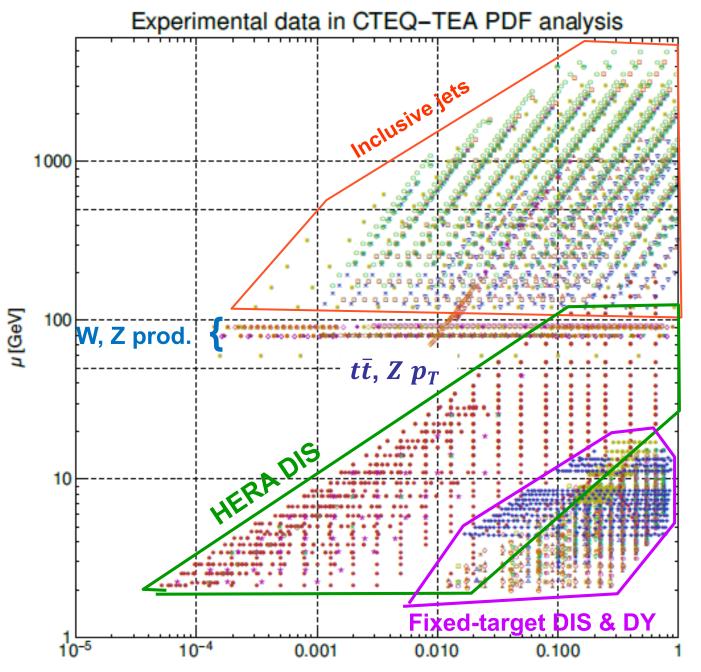
All major groups rush toward implementing LHC data on **jet**, **W/Z**, $Z p_T t\bar{t}$ production in the PDF analysis

- ABMP'16 (arXiv:1701.05838) includes a large LHC W/Z data set, got closer to the other PDF sets ⇒ S. Moch
- The NNPDF3.1 set has been released (arXiv:1706.00428), including a compatible subset of the new LHC data
- CT1X and MMHT'XX to be released within a few months, once compatibility of the new experiments is understood

However, reduction of the current PDF uncertainties is conditioned on understanding of (dis)agreement between the available data sets and improved control of theoretical and methodological uncertainties


NNPDF3.1: the most extensive data set to date

3431 non-LHC (75%)+ 854 LHC data points (25%)


A **subset** of available LHC data on $\ell \overline{\ell}$, jet, **Z** p_T , $t\overline{t}$ production, analyzed at NNLO

Z p_T , $t\bar{t}$ moderately improve on NNPDF3.0 constraints on g(x, Q) at x relevant for SM Higgs production

CT, MMHT also include D0 Run-2 jet production, get only slightly weaker constraints on g(x, Q)

Central PDFs of 3 sets are compatible. The NNPDF3.1 uncertainty is moderately reduced on g(x, Q) at x > 0.05, $s + \bar{s}$ at all x. The effect of the LHC data on the error bands does not exceed dependence on the definition of the PDF uncertainty (CT vs. MMHT vs. NNPDF).

CT17pre analysis includes new LHC experiments on W/Z, high- p_T Z, jet, $t\bar{t}$ production

х

15

Experiments in the CT14 HERA2 fit

10#	Experimental dataset		N_d
101	BCDMS F_2^p	[47]	337
102	BCDMS F_2^d	[48]	250
104	NMC F_2^d/F_2^p	[49]	123
108	$\begin{array}{c} \text{CDHSW} \stackrel{p}{F_2^p} \\ \text{CDHSW} \stackrel{p}{F_3^p} \end{array}$	[50]	85
109	CDHSW F_3^p	[50]	96
110	$CCFR F_2^p$	[51]	69
111	$CCFR xF_3^p$	[52]	86
124	NuTeV $\nu\mu\mu$ SIDIS	[40]	38
125	NuTeV $\bar{\nu}\mu\mu$ SIDIS	[40]	33
126	$CCFR \nu \mu \mu$ SIDIS	[41]	40
127	$CCFR \bar{\nu}\mu\mu$ SIDIS	[41]	38
145 147		[54]	10
147	Combined HERA charm production (1.504 fb^{-1}) HERA1+2 Combined NC and CC DIS (1 fb^{-1})	[39]	47
160	HERA1+2 Combined NC and CC DIS (1 fb ⁻¹) H1 F_L (121.6 pb ⁻¹)	[6] [55]	$\frac{1120}{9}$
169	H1 F_L (121.6 pb)	ခခ	9
ID#	Experimental dataset		N_d
201	E605 DY	[mol	1 1 1
		[56]	119
203	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$	[57]	15
203 204	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$	[57] [58]	15 184
203 204 225	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹)	[57] [58] [59]	15 184 11
203 204 225 227	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹)	[57] [58]	15 184
203 204 225 227 234	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹)	[57] [58] [59] [60] [61]	15 184 11 11 9
203 204 225 227 234 240	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_{\mu}(\eta^{\mu})$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹)	[57] [58] [59] [60] [61] [62]	15 184 11 11
203 204 225 227 234 240 241	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹)	[57] [58] [59] [60] [61] [62] [62]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ \end{array} $
$\begin{array}{r} 203 \\ 204 \\ 225 \\ 227 \\ 234 \\ 240 \\ 241 \\ 260 \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [63]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ \end{array} $
$\begin{array}{r} 203 \\ 204 \\ 225 \\ 227 \\ 234 \\ 240 \\ 241 \\ 260 \\ 266 \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [63] [64]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ \end{array} $
$\begin{array}{r} \hline 203 \\ \hline 204 \\ \hline 225 \\ \hline 227 \\ \hline 234 \\ \hline 240 \\ \hline 241 \\ \hline 260 \\ \hline 266 \\ \hline 267 \\ \hline \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [63] [63] [64] [65]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ \end{array} $
$\begin{array}{r} \hline 203 \\ \hline 204 \\ \hline 225 \\ \hline 227 \\ \hline 234 \\ \hline 240 \\ \hline 241 \\ \hline 260 \\ \hline 266 \\ \hline 267 \\ \hline 268 \\ \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [63] [63] [64] [65] [66]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ \end{array} $
$\begin{array}{r} \hline 203 \\ \hline 204 \\ \hline 225 \\ \hline 227 \\ \hline 234 \\ \hline 240 \\ \hline 241 \\ \hline 260 \\ \hline 266 \\ \hline 267 \\ \hline \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [63] [63] [64] [65]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 11 \end{array} $
$\begin{array}{r} \hline 203 \\ \hline 204 \\ \hline 225 \\ \hline 227 \\ \hline 234 \\ \hline 240 \\ \hline 241 \\ \hline 260 \\ \hline 266 \\ \hline 267 \\ \hline 268 \\ \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹) CDF Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (1.13 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [63] [63] [64] [65] [66]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ \end{array} $
$\begin{array}{r} \hline 203 \\ \hline 204 \\ \hline 225 \\ \hline 227 \\ \hline 234 \\ \hline 240 \\ \hline 241 \\ \hline 260 \\ \hline 266 \\ \hline 266 \\ \hline 267 \\ \hline 268 \\ \hline 281 \\ \hline \end{array}$	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV M/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹) CDF Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (1.13 fb ⁻¹) DØ Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (0.7 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [62] [63] [63] [64] [65] [66] [67]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ 13 \\ \end{array} $
203 204 225 227 234 240 241 260 266 267 268 281 504	E866 DY, $\sigma_{pd}/(2\sigma_{pp})$ E866 DY, $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ CDF Run-1 $A_e(\eta^e)$ (110 pb ⁻¹) CDF Run-2 $A_e(\eta^e)$ (170 pb ⁻¹) DØ Run-2 $A_\mu(\eta^\mu)$ (0.3 fb ⁻¹) LHCb 7 TeV W/Z muon forward- η Xsec (35 pb ⁻¹) LHCb 7 TeV $W A_\mu(\eta^\mu)$ (35 pb ⁻¹) DØ Run-2 $Z \ d\sigma/dy_Z$ (0.4 fb ⁻¹) CMS 7 TeV $A_\mu(\eta)$ (4.7 fb ⁻¹) CMS 7 TeV $A_e(\eta)$ (0.840 fb ⁻¹) ATLAS 7 TeV W/Z Xsec, $A_\mu(\eta)$ (35 pb ⁻¹) DØ Run-2 $A_e(\eta)$ (9.7 fb ⁻¹) CDF Run-2 incl. jet $(d^2\sigma/dp_T^j dy_j)$ (1.13 fb ⁻¹)	[57] [58] [59] [60] [61] [62] [62] [62] [62] [63] [64] [65] [66] [66] [67] [36]	$ \begin{array}{r} 15 \\ 184 \\ 11 \\ 11 \\ 9 \\ 14 \\ 5 \\ 28 \\ 11 \\ 11 \\ 41 \\ 13 \\ 72 \\ \end{array} $

New experiments in the CT17pre fit

- 1. LHCb 7 TeV Z/W muon rapidity 1505.07024
- 2. LHCb 8 TeV Z rapidity 1503.00963
- 3. CMS 8 TeV W lept. asymmetry 1603.01803
- 4. LHCb 8 TeV Z/W muon rapidity 1511.08039
- 5. ATLAS 7 TeV Z p_T 1512.02192
- 6. CMS incl. jet 7 TeV, R=0.7 1406.0324
- 7. ATLAS incl. jet at 7 TeV, R=0.6 1410.8857
- 8. CMS incl. jet at 8 TeV, R=0.7 1609.05331
- 9. ATLAS 8 TeV $t\bar{t} p_T$ 1511.04716
- 10. ATLAS 8 TeV $t\bar{t}$ $m_{t\bar{t}}$ 1511.04716
- 11. CMS 8 TeV $t\bar{t} d^2\sigma/dp_{Tt} dy_t$ 1703.01630

 N_d is the number of data points

CT17p: preliminary PDFs with new LHC data

Issues:

- Experimental, theoretical, and procedural **systematic** uncertainties dominate the PDF uncertainty in many cases
 - Tensions between some experimental data sets
 - Large QCD uncertainties in some kinematic regions (e.g., large y)

The CT17pre analysis examines how the PDFs depends on... ... settings of NNLO calculations

(SACOT- χ heavy-quark scheme, QCD scales, m_c , numerical codes,...)

... selection of experiments and kinematic cuts

For instance, g(x, Q) at x > 0.05 is already constrained in CT14/MMHT14 by D0 Run-2 incl. jet data which is not in NNPDF3.1. Disagreements exist within available ATLAS/CMS experiments and between some LHC and non-LHC experiments

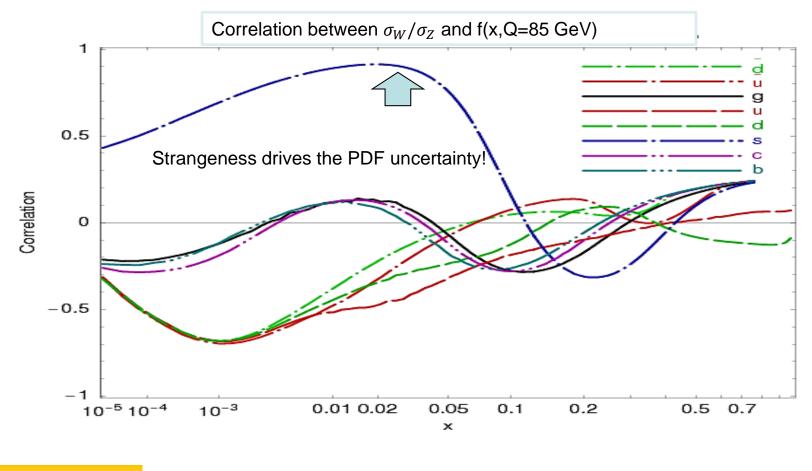
... the fitting procedure

Definition of PDF uncertainties Parametrization forms PDF error analysis (Hessian vs. Monte-Carlo) How sensitive is an experiment to a PDF? Can we estimate it **before** doing the global fit?

Yes, using new statistical tools:

Generalized correlations

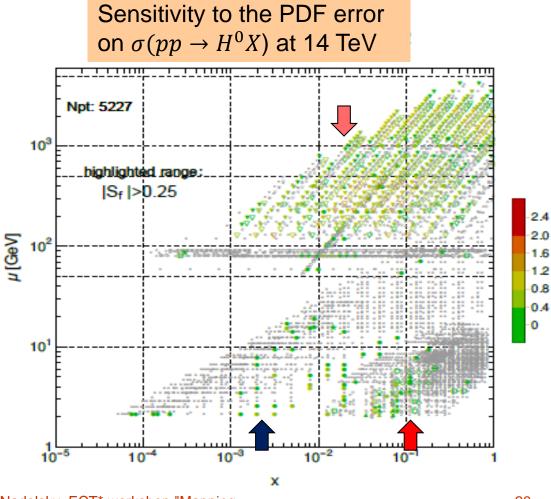
 (sensitivities S_f) comparing
 experimental and PDF
 uncertainties for fitted data
 points



2. PDF reweighting
 3. Hessian profiling

Statistical methods to identify the PDF dependence

1. PDF-driven correlations with theory cross sections [arXiv:0802.0007] If the **theory** cross section σ is sensitive to a given PDF f, the Hessian correlation $\cos \varphi$ is close to ± 1

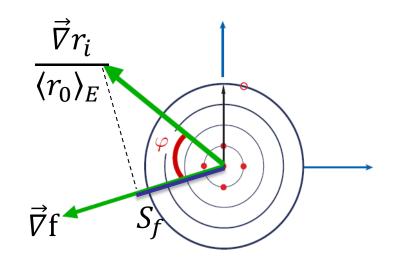


Statistical methods to identify the PDF dependence

2. Sensitivity of a data point

[B.W. Wang, T.J. Hobbs, et al., arXiv:1803.02777; program PDFSense]

If a **data point** is sensitive to a given PDF f, then the sensitivity $|S_f|$ of this data point to f is much larger than 0 [say, $|S_f| > 0.25$]. S_f is defined on the next slide.

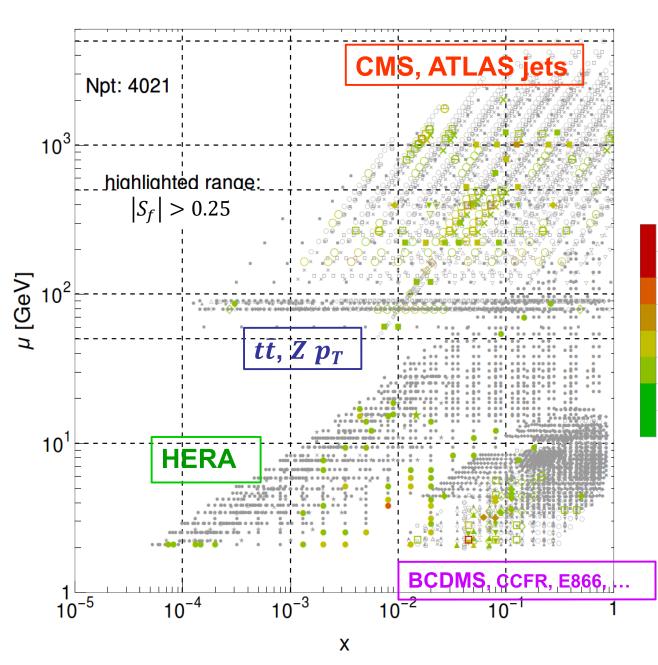


Correlation C_f and sensitivity S_f

The relation of data point i on the PDF dependence of f can be estimated by:

• $C_f \equiv \operatorname{Corr}[\rho_i(\vec{a})), f(\vec{a})] = \cos\varphi$ $\vec{\rho}_i \equiv \vec{\nabla} r_i / \langle r_0 \rangle_E$ -- gradient of r_i normalized to the r.m.s. average residual in expt E; $(\vec{r}_i) = (\vec{r}_i) \cdot (\vec{r}_i)$

 $\left(\vec{\nabla}r_i\right)_k = \left(r_i(\vec{a}_k^+) - r_i(\vec{a}_k^-)\right)/2$



 C_f is **independent** of the experimental and PDF uncertainties. In the figures, take $|C_f| \ge 0.7$ to indicate a large correlation.

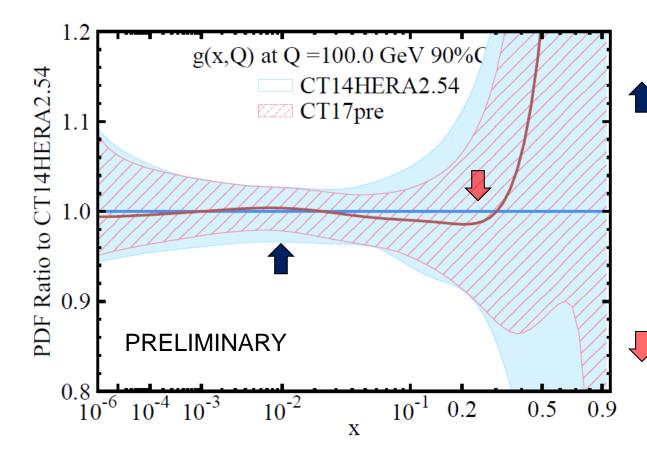
•
$$S_f \equiv |\vec{\rho}_i| \cos \varphi = C_f \frac{\Delta r_i}{\langle r_0 \rangle_E}$$
 -- projection of $\vec{\rho}_i(\vec{a})$ on $\vec{\nabla} f$

 S_f is proportional to $\cos\varphi$ and the ratio of the PDF uncertainty to the experimental uncertainty. We can sum $|S_f|$. In the figures, take $|S_f| > 0.25$ to be significant.

$|S_f|$ for sig(H0), 14 TeV, CT14HERA2NNLO

Higgs boson production

HERA DIS still has the dominant sensitivity!


CMS 8 TeV jets is the next expt. after HERA

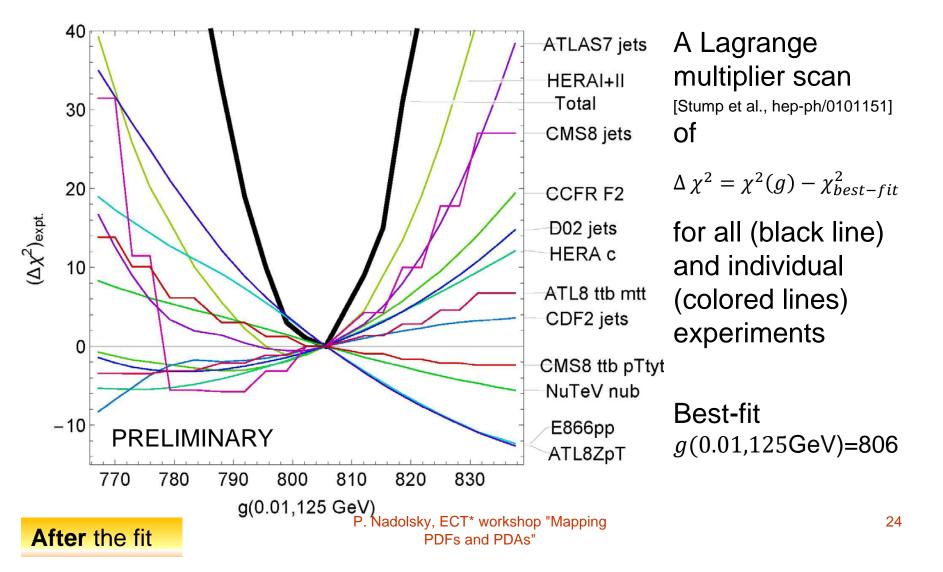
- 1.2 sensitive to
- 1.0 σ_H (14 TeV); jet scale
- ^{0.8} uncertainty dampens
- ${}^{0.6}_{0.4}$ |*S*_{*f*}| for jets

0

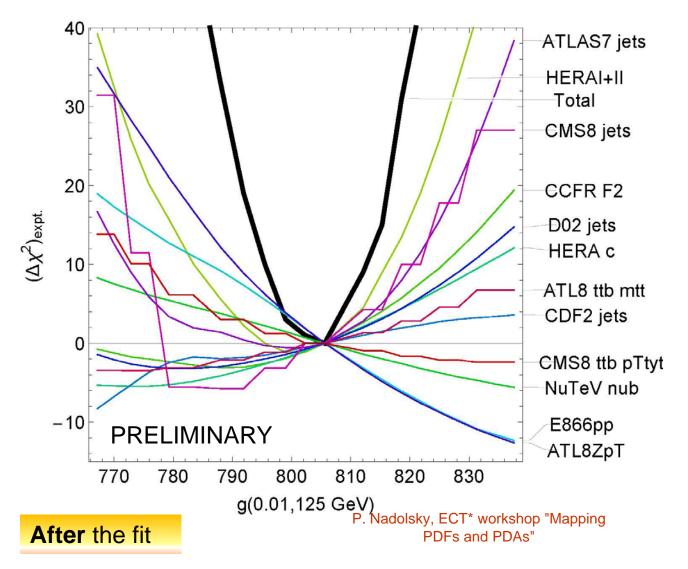
- ^{0.2} Good correlations C_f
 - with some points in E866, BCDMS, CCFR, CMS WASY, $Z p_T$ and $t\bar{t}$ production; but not as many points with high $|S_f|$ in these processes

Gluon PDF before and after including the LHC data [CT14HERA2 vs. CT17pre NNLO]

 $x \approx 0.01$: g(x, Q) mildly increases within the uncertainty


⇒ slightly larger Higgs production rates at 14 TeV

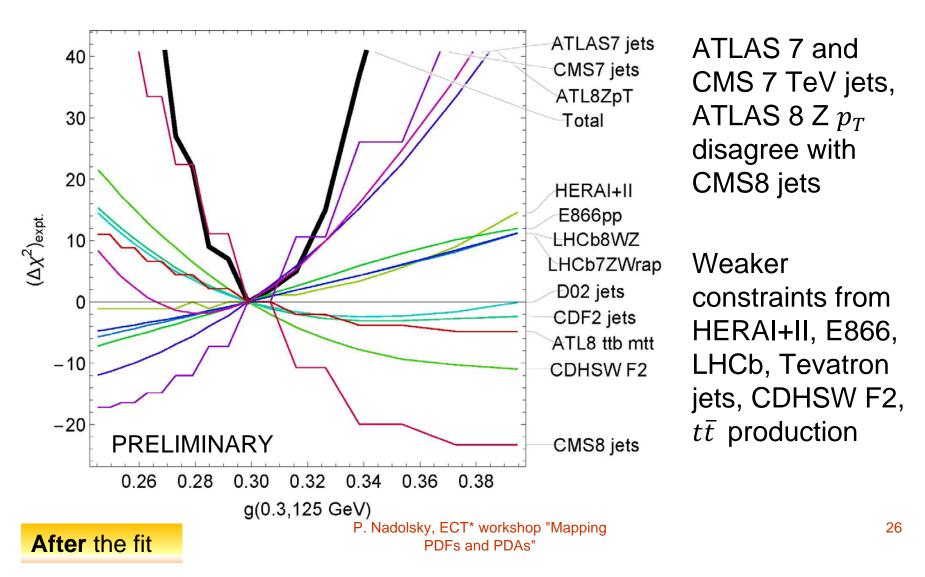
Minor reduction in the gluon PDF uncertainty


 $0.05 \leq x \leq 0.3$: g(x, Q)mildly decreases; lower gg luminosities for $M_X > 700$ GeV

After the fit

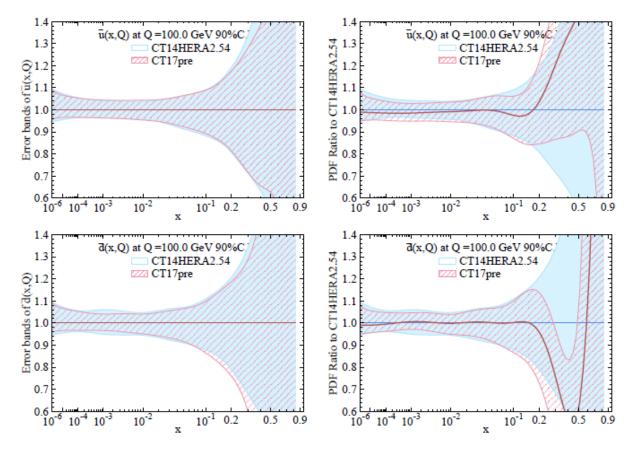
Which experiments constrain the gluon? x = 0.01, Q = 125 GeV [Higgs region]

Which experiments constrain the gluon? x = 0.01, Q = 125 GeV [Higgs region]



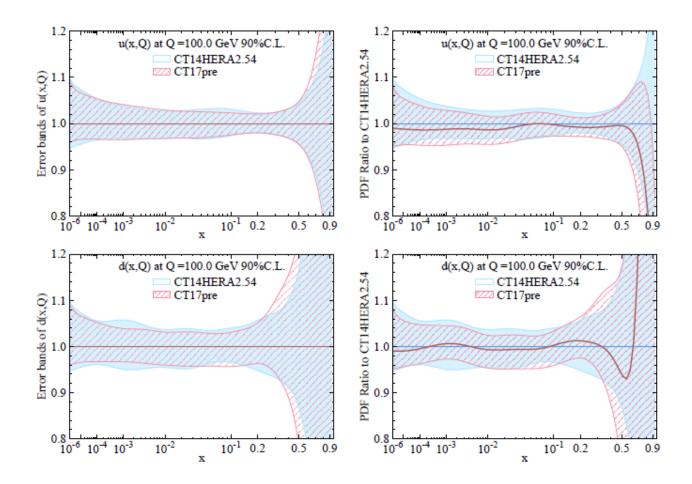
The LM scans broadly confirm S_f estimates

HERAI+II, ATLAS7 jets, CMS8 jets impose the tightest constraints; are in agreement

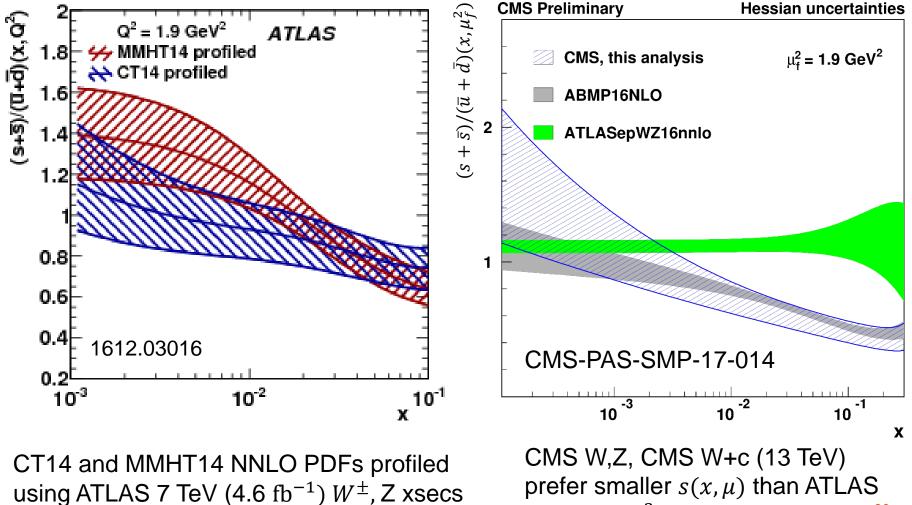

```
E866, ATLAS 8 Z
p_T prefer higher
gluon 25
```

Which experiments constrain the gluon? x = 0.3, Q = 125 GeV

PRELIMINARY


Preview of CT17pre $(\bar{u}$ **-PDF and** \bar{d} **-PDF**)

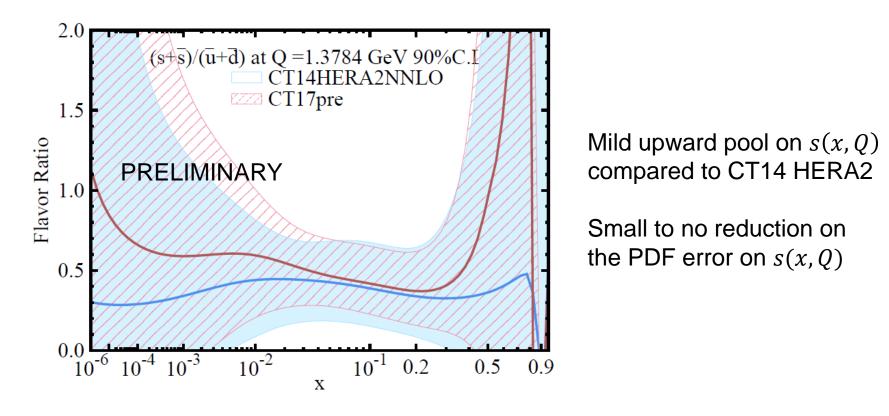
- Similarly, minor changes on \bar{u} and \bar{d} at small x region mainly come from LHCb W and Z rapidity data, at 7 and 8 TeV..
- The behavior of \bar{u} and \bar{d} as $x \to 1$ is parametrization form dependent.


Preview of CT17pre (**u-PDF and d-PDF**)

PRELIMINARY

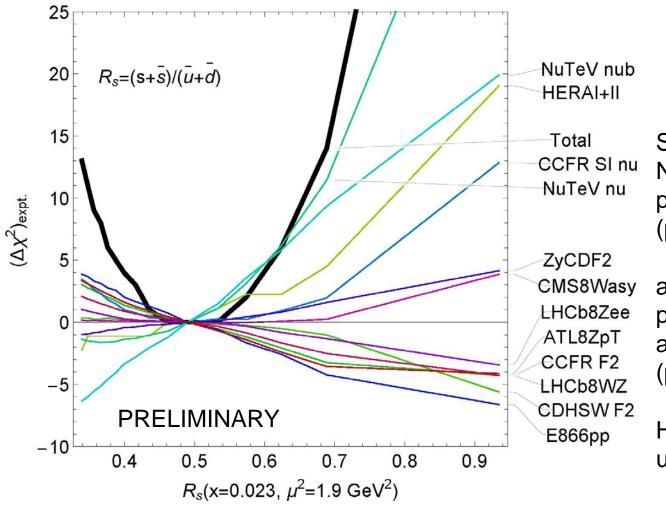
 Some changes on *u* and *d* at small x region and d around 0.2 mainly come from LHCb W and Z rapidity data, at 7 and 8 TeV.

Inconsistent conclusions in literature about strangeness preferred by the LHC data



for $x \gtrsim 10^{-3}$

prefer $s(x, 1.9 \text{ GeV}) \sim 1 @ x = 0.023$


29

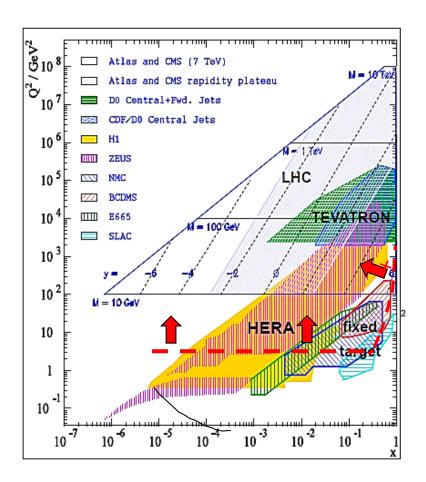
Effect of LHC data on strangeness: the actual CT17pre fit

$$R_s(CT17pre) = \frac{s+\bar{s}}{\bar{u}+\bar{d}} = 0.53 \pm 0.16$$
 (90% c.l.) at $x = 0.023$, $Q^2 = 1.9 \text{ GeV}^2$

Effect of LHC data on strangeness: the actual CT17pre fit

Some tension between NuTeV, CCFR dimuon production, HERAI+II (preferring $R_s < 0.6$);

and vector boson production at the LHC and Tevatron (preferring $R_s > 0.6$)


However, still large uncertainties

Is leading-power NNLO QCD theory sufficient for describing the CTEQ global data?

Can the higher-order/higher-twist corrections survive...

1. ... at small x in HERA DIS ("BFKL"; CT14HERA2)?

2. ... for subleading flavor combinations ("intrinsic charm"; **CT14IC**)?

CT14:

only DIS data above the red line with Q > 2 GeV, W > 3.5 GeV are accepted to ensure stable NNLO predictions

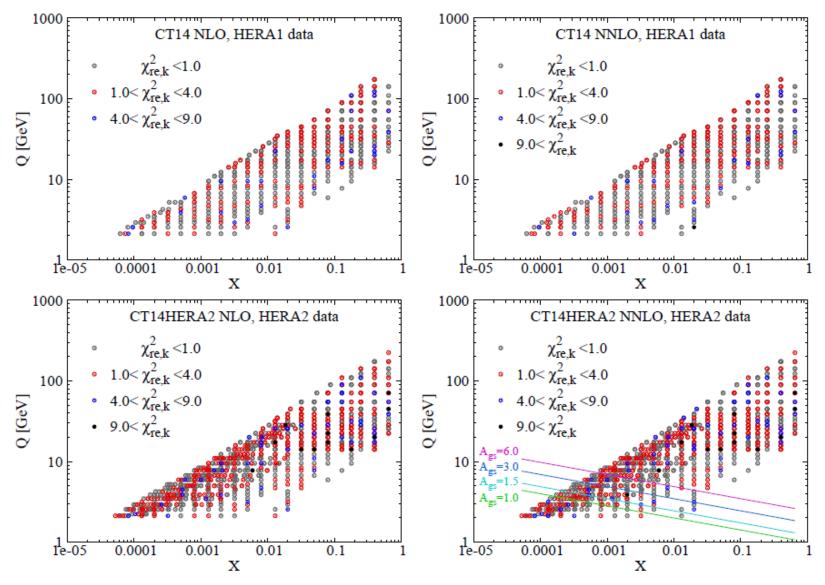
Some higher-order corrections may survive in parts of phase space

CT14 PDFs with HERA1+2 (=HERA2) combination

Phys.Rev. D95 (2017) 034003

Separate the four HERA2 DIS processes;

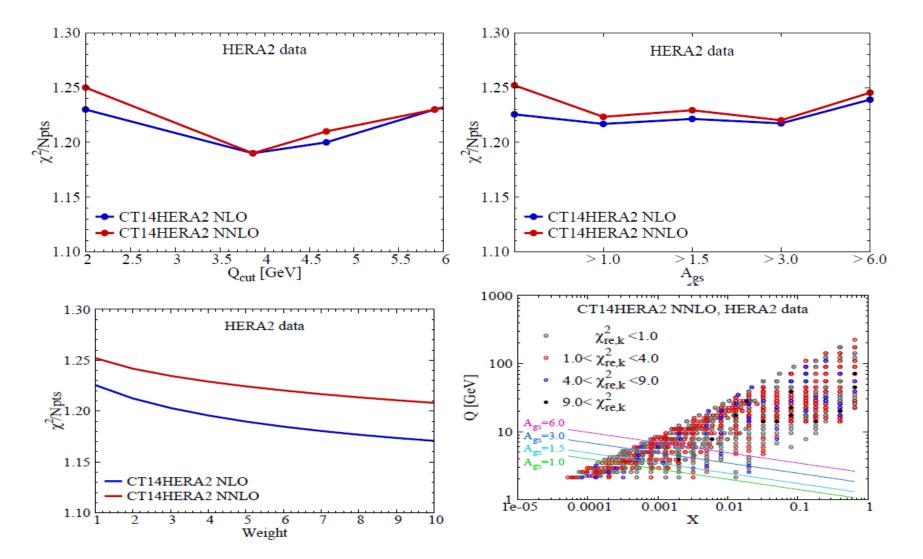
 $(\cap$

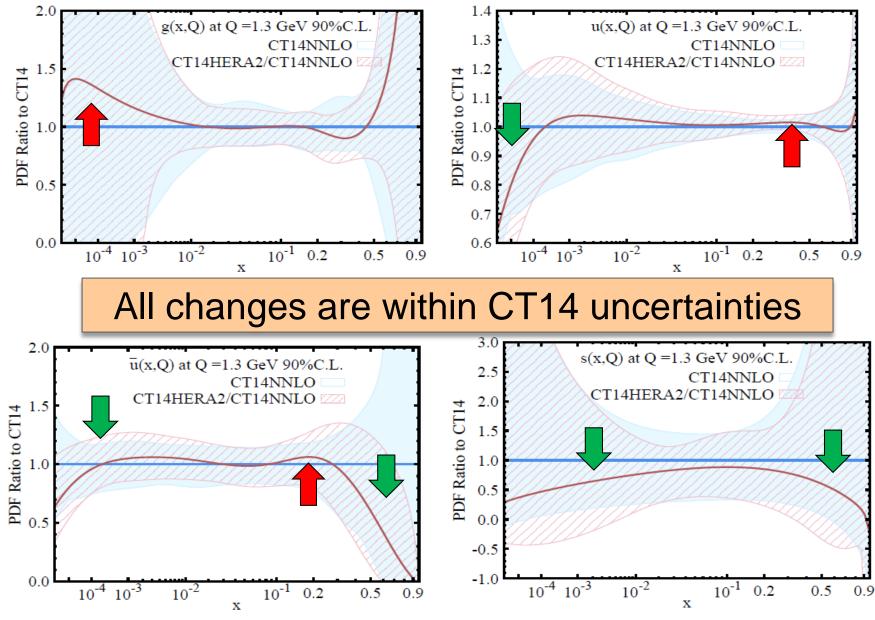

 $-2C_{\rm o}V$

$(Q_{cut} = 2 \text{ GeV})$					
	N _{pts}	$\chi^2_{red.}$ / N_{pts}	e^+p data a		
NC e ⁺ p	880	1.11			
CC e ⁺ p	39	1.10	e^-p data a		
NC e [−] p	159	1.45			
CC e⁻p	42	1.52	\checkmark reduced χ^2 values		
totals					
[reduced χ^2]/N	1120	1.17			
χ^2 / N	1120	1.25	$\chi^2 = [reduced \chi^2] +$		
R ² / N	1120	0.08	The quadratic penalty for 162 systematic errors = 87.5		

 e^+p data are fitted fine e^-p data are fitted poorly

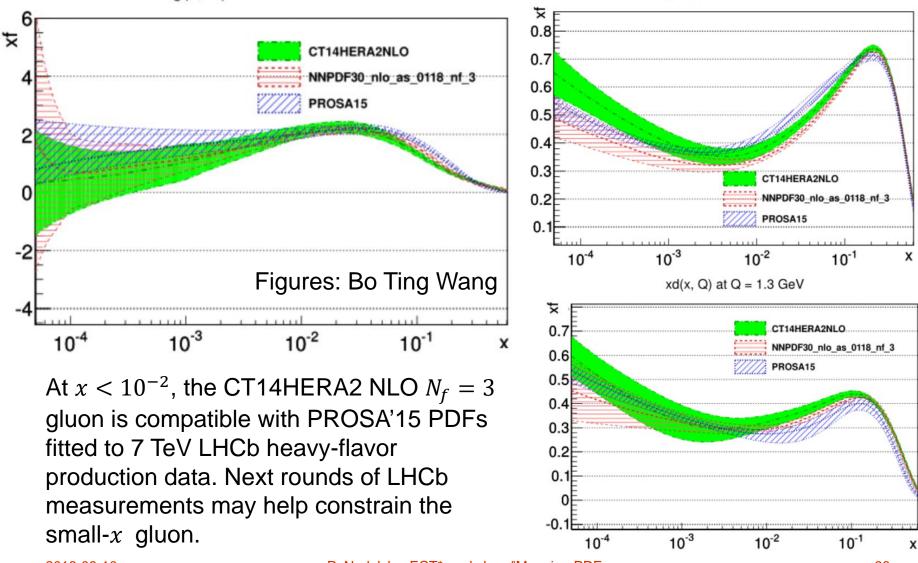
+ R²


CT14 PDFs with HERA1+2 (=HERA2) data


Points with excessive χ^2 are randomly scattered in the $\{x, Q\}$ plane

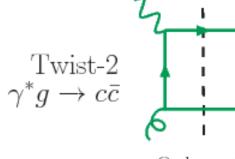
Stability of CT14 HERA2 fit

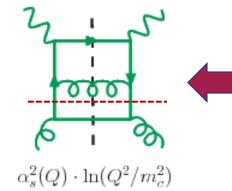
• The fit quality does not change much when we vary lower cuts on Q and $A_{gs} = x^{0.3}Q^2$, or increase statistical weight of the HERA2 data


CT14HERA2 vs. CT14 PDFs: central sets

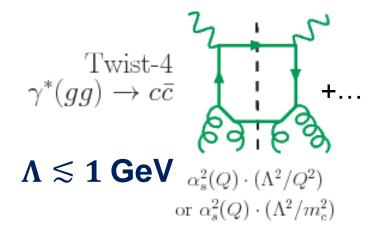
CT14HERA2 PDFs at small x

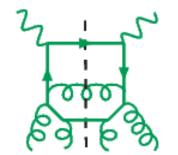
xg(x, Q) at Q = 1.3 GeV


xu(x, Q) at Q = 1.3 GeV

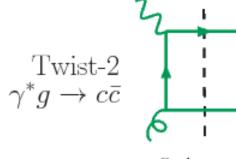

2018-09-10

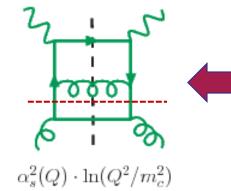
P. Nadolsky, ECT* workshop "Mapping PDFs and PDAs"


A twist-4 contribution in HERA DIS charm production (⊂ "intrinsic charm") [arXiv:1707.00065]

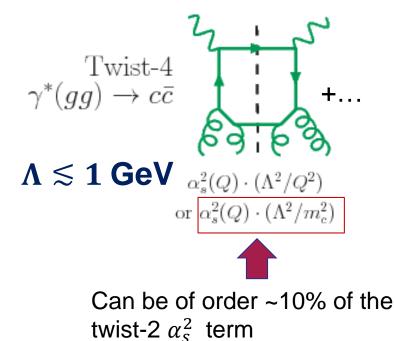


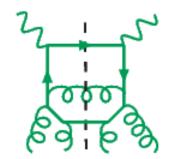
Order $\alpha_s(Q)$


A ladder; must be resummed in c(x, Q) in the $N_f = 4$ scheme at $Q^2 \gg m_c^2$; e.g., in the ACOT scheme

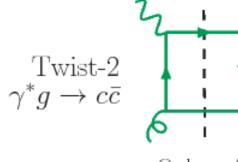


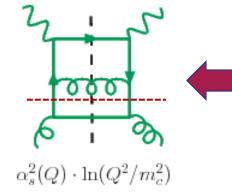
 $\alpha_s^3(Q)\cdot \left(\Lambda^2/m_c^2\right)\ln(Q^2/m_c^2)$


A twist-4 contribution in HERA DIS charm production (⊂ "intrinsic charm") [arXiv:1707.00065]



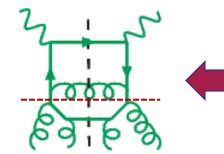
Order $\alpha_s(Q)$


A ladder; must be resummed in c(x, Q) in the $N_f = 4$ scheme at $Q^2 \gg m_c^2$; e.g., in the ACOT scheme



 $\alpha_s^3(Q)\cdot \left(\Lambda^2/m_c^2\right)\ln(Q^2/m_c^2)$

A twist-4 contribution in HERA DIS charm production (⊂ "intrinsic charm") [arXiv:1707.00065]


Order $\alpha_s(Q)$

A ladder; must be resummed in c(x, Q) in the $N_f = 4$ scheme at $Q^2 \gg m_c^2$; e.g., in the ACOT scheme

Twist-4 $\gamma^*(gg) \rightarrow c\bar{c}$ $\Lambda \leq 1 \, \text{GeV}$ $\alpha_s^2(Q) \cdot (\Lambda^2/Q^2)$ or $\alpha_s^2(Q) \cdot (\Lambda^2/m_c^2)$ $\Delta \propto 10\%$ of the

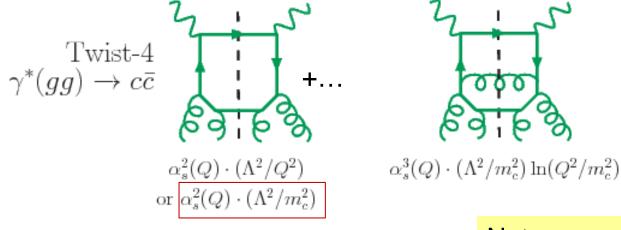
twist-2 α_s^2 term

 $\alpha_s^3(Q)\cdot \left(\Lambda^2/m_c^2\right)\ln(Q^2/m_c^2)$

The ladder subgraphs can be resummed as a part of c(x, Q) in the $N_f = 4$ scheme at $Q^2 \gg$ $m_c^2 > \Lambda^2$;

contribute to the boundary condition for $c(x, Q_0)$ at $Q_0 \approx m_c$;

obey twist-2 DGLAP equations.


CT14 IC study clarifies important questions

What are phenomenological constraints on the "intrinsic charm" from the global QCD data?

 \Rightarrow The CT14 charm PDFs allow a "nonperturbative" component carrying a total momentum fraction $\langle x_{IC} \rangle = 1 - 2\%$ in DIS at $Q \approx m_c$.

Can we estimate its impact on the LHC predictions?

Yes, based on the <u>simplest</u> approximation of the "nonperturbative" charm contribution. In most cases, the estimated impact is less than the net CT14 PDF uncertainty.

[arXiv:1707.00065]

Note: "intrinsic charm" ≠ "fitted charm"

2018-09-10

PDF fits may include a ``fitted charm'' PDF

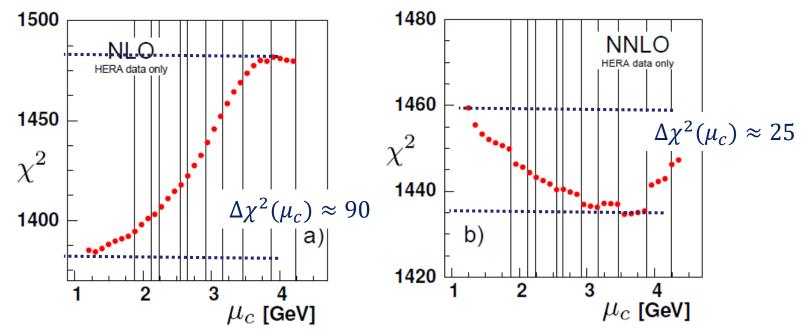
``Fitted charm'' = ``higher-twist charm'' + other (possibly not universal) higher $O(\alpha_s)$ / higher power terms

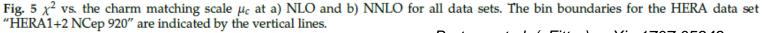
QCD factorization theorem for DIS structure function F(x, Q) [Collins, 1998]:

All
$$\alpha_s$$
 orders: $F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} C_a\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) f_{a/p}(\xi, \mu) + \mathcal{O}(\Lambda^2/m_c^2, \Lambda^2/Q^2).$

The PDF fits implement this formula up to (N)NLO ($N_{ord} = 1$ or 2):

$$\mathsf{PDF fits:} \qquad F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} \, \mathcal{C}_a^{(N_{ord})}\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) \, f_{a/p}^{(N_{ord})}(\xi, \mu).$$

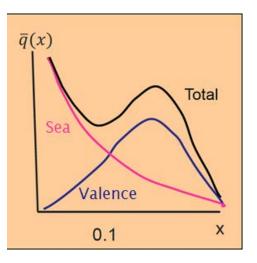

The perturbative charm PDF component cancels at $Q \approx m_c$ up to a higher order


The 'fitted charm component' may approximate for missing terms of orders α_s^p with $p > N_{ord}$, or Λ^2/m_c^2 , or Λ^2/Q^2 -- generally process-dependent

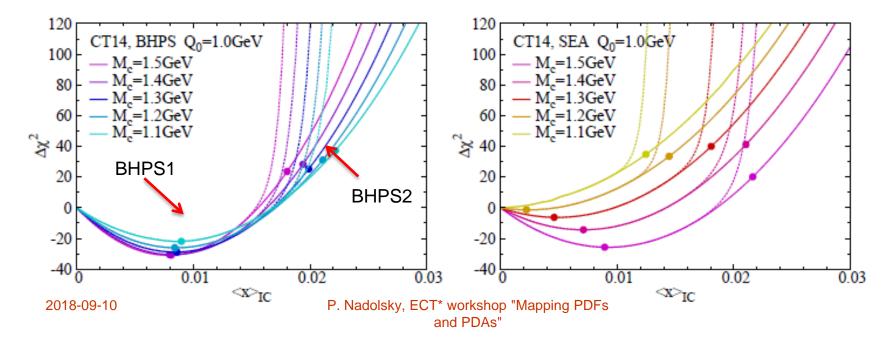
Dependence on the switching scale (no IC)

If the "fitted charm" is purely twist-2, we expect its effect to vanish for a sufficiently high α_s order of the calculation.

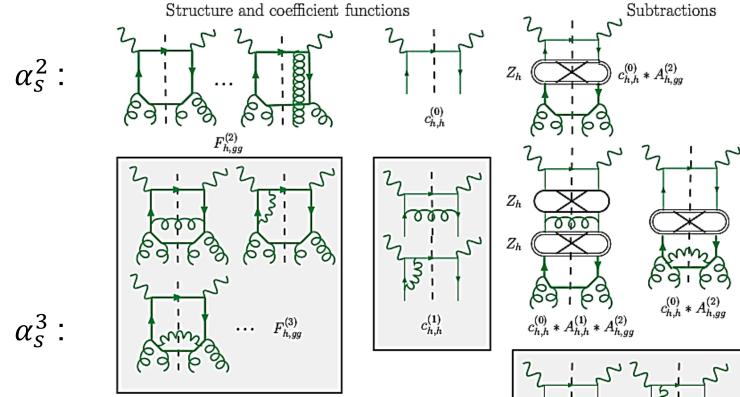
This is analogous to the reduction in the dependence on the switching scale μ_c from 3FS to 4FS, when the α_s order increases for a fixed Q_0 and m_c , as demonstrated recently by the xFitter group


2018-09-10

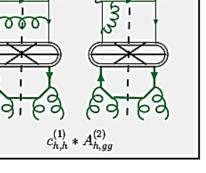
P. Nadolsky, ECT* workshop "Mapping PDFs and PDAs"


Dependence of $\Delta \chi^2$ on the IC momentum fraction $\langle x \rangle_{IC}$

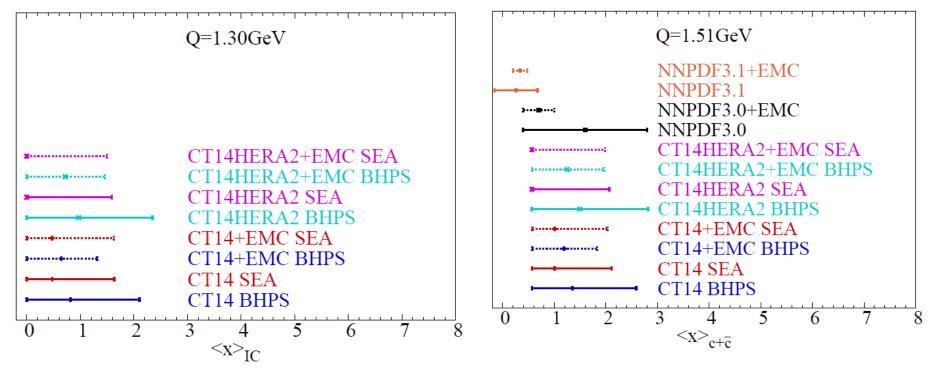
In contrast, a twist-4 "IC" contribution will not decrease when going from $N^k LO$ to $N^{k+1}LO$.


Depending on its dynamical origin, the IC charm takes a variety of shapes, e.g., a "sea-like" (SEA) or "valence-like" form. The Brodsky-Hoyer-Peterson-Sakai form (BHPS) predicts a "valence-like" $c(x, Q_0)$ peaked at $x \sim 0.2$. A sea-like form is monotonic in x.

45

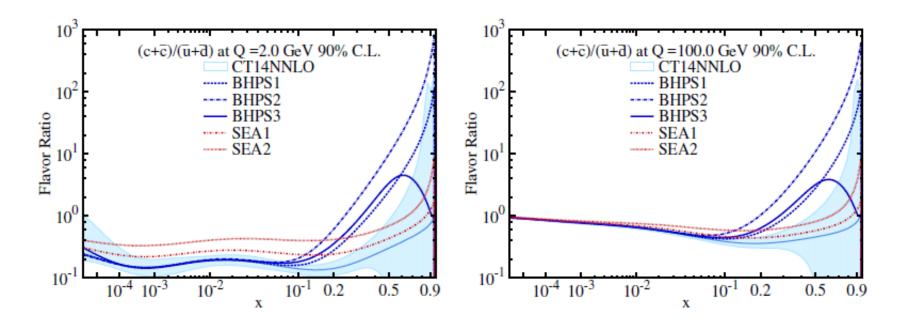

ACOT-like factorization for twist-4 charm contributions (an example)

The IC terms can be factorized in the ACOT method into


- universal twist-4 nonperturbative functions $f_{gg}(\xi_1,\xi_2,Q)$, etc.

- process-dependent coefficient functions $c_{h,h}^{(k)}, C_{h,gg}^{(k)}$, etc.

Б

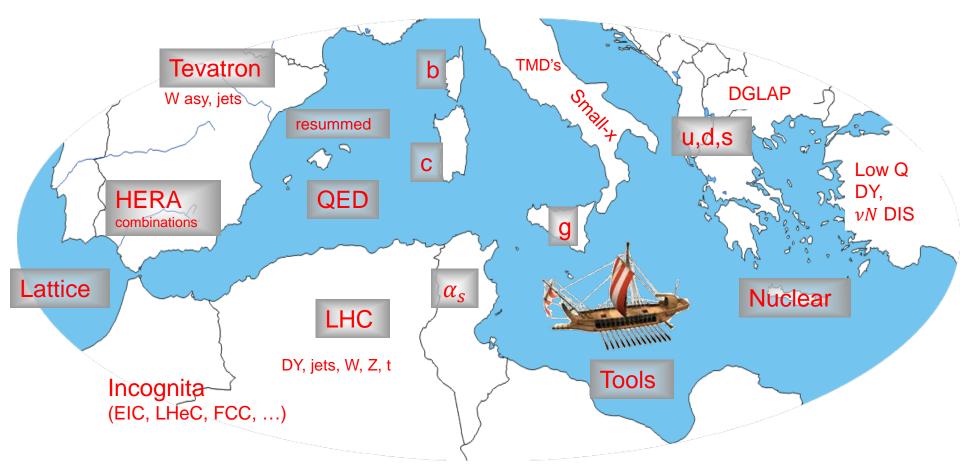

Allowed $c + \bar{c}$ momentum fractions

Sources of differences	CT14 IC	NNPDF3.x
α_s order	NNLO only	NLO, NNLO
Settings	90% c.l. from Lagrange multiplier scan $Q_0 = m_c^{pole} = 1.3 \text{ GeV}$	Symmetric. 68% c.l. from Monte- Carlo sampling, $Q_0 = m_c^{pole} = 1.51 \text{ GeV}$
LHC 8 TeV W, Z	Under validation; mild tension with HERA DIS data	Included; strong effect despite a smallish data sample
1983 EMC <i>F</i> _{2c} data included?	Only as a cross check (unknown syst. effects in EMC data)	Optional, strong effect on the PDF error

47

Impact of IC on the PDF ratios

Common parametrizations of the IC may produce an unphysically large ratio $(c(x,Q) + \bar{c}(x,Q))/(\bar{u}(x,Q) + \bar{d}(x,Q))$ at $x \to 1$ and low $Q \sim m_c$. This is resolved in the BHPS3 parametrization, which solves the BHPS model numerically and introduces small valence-like components in $\bar{u}(x,Q_0)$ and $\bar{d}(x,Q_0)$ to moderate their drop at $x \to 1$.


Outlook for CTEQ-TEA PDFs

• Ongoing CTEQ-TEA PDF analysis

Detailed investigation of the LHC 7 and 8 TeV vector boson, jet, $t\bar{t}$ production data suggests mild changes in the central fits, PDF uncertainties, and precision EW observables, as compared to the CT14HERA2 NNLO data set. We notice the potential of the future ATLAS/CMS jet data, together with other LHC processes, for strengthening the constraints on the g, s, \bar{u} , and \bar{d} PDFs with modest improvements in experimental systematics and full implementation of NNLO jet cross sections

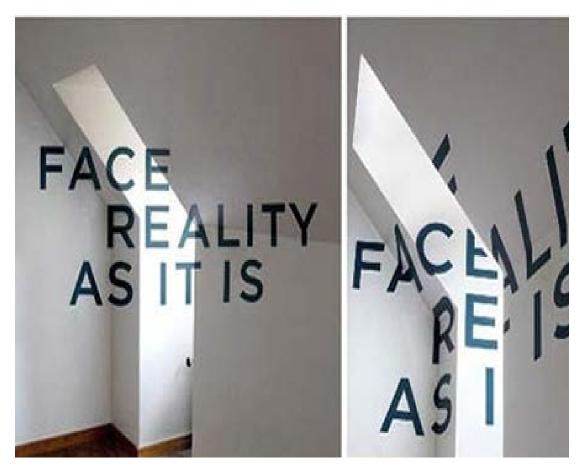
- CT14 PDFs with photon PDFs [1509.02905], intrinsic/fitted charm [1706.00657], and Monte-Carlo error PDFs [1607.06066]
- NLO calculation for *c*, *b* production at LHCb, ATLAS in the S-ACOT- χ
- scheme using MCFM/AppIgrid [Campbell, P. N., Xie, in pre-publication]
- Further development of programs for fast survey [PDFSense] and Hessian reweighting of the data [ePump]
 2018-09-10 P. Nadolsky, ECT* workshop "Mapping PDFs

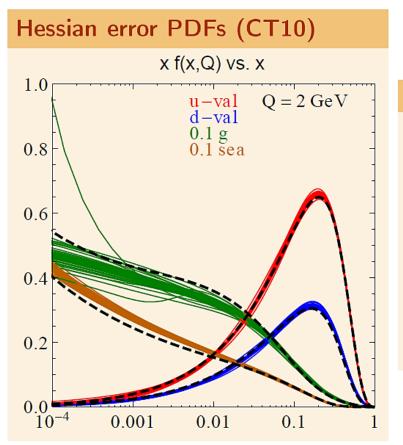
Oekumene of the PDF universe

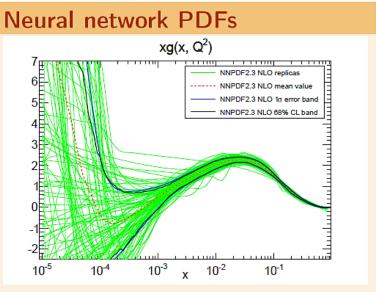
New lands for charting, new tools for exploring

Workshop on Parton distributions as a bridge from low to high energies November 8 and 9, 2018 [before the CTEQ meeting] Jefferson Laboratory, Newport News, VA

- Multi-dimensional PDFs (TMDs and GPDs)
- Collinear parton distributions at JLab 12, EIC, and LHeC
- QCD and Nuclear PDFs in electron-nucleus and neutrinonucleus scattering

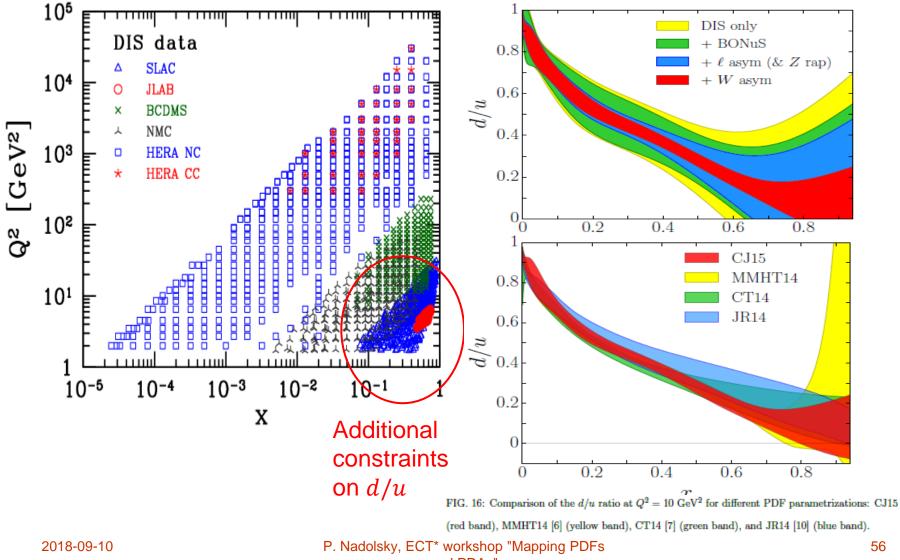

CT14: parametrization forms


- CT14 relaxes restrictions on several PDF combinations that were enforced in CT10. [These combinations were not constrained by the pre-LHC data.]
 - The assumptions $\frac{\overline{d}(x,Q_0)}{\overline{u}(x,Q_0)} \rightarrow 1$, $u_v(x,Q_0) \sim d_v(x,Q_0) \propto x^{A_{1v}}$ with $A_{1v} \approx -\frac{1}{2}$ at $x < 10^{-3}$ are relaxed once LHC *W*/*Z* data are included
 - CT14 parametrization for s(x, Q) includes extra parameters
- Candidate CT14 fits have 30-35 free parameters
- In general, $f_a(x, Q_0) = Ax^{a_1}(1-x)^{a_2}P_a(x)$
- CT10 assumed $P_a(x) = \exp(a_0 + a_3\sqrt{x} + a_4x + a_5x^2)$
 - exponential form conveniently enforces positive definite behavior
 - but power law behaviors from a_1 and a_2 may not dominate
- In CT14, $P_a(x) = G_a(x)F_a(z)$, where $G_a(x)$ is a smooth factor
 - $z=1-1{(1-\sqrt{x})}^{a_3}\,$ preserves desired Regge-like behavior at low x and high x (with $a_3{>}0)$
- Express $F_a(z)$ as a linear combination of Bernstein polynomials:


$$z^4$$
, $4z^3(1-z)$, $6z^2(1-z)^2$, $4z(1-z)^3$, $(1-z)^4$

 each basis polynomial has a single peak, with peaks at different values of z; reduces correlations among parameters

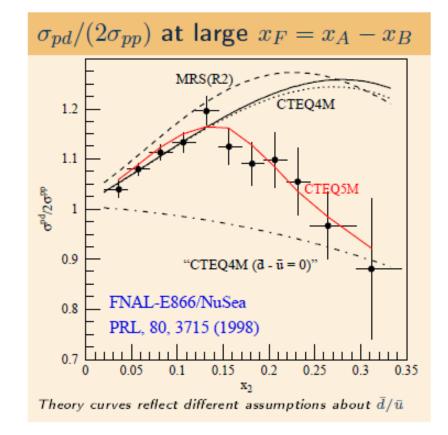
(N+1)-dim. perspective eliminates wrong N-dim. solutions



P. Nadolsky, ECT* workshop "Mapping PDFs and PDAs"

CJ15: DIS data for $Q^2 > 1.3 \ GeV^2$, $W^2 > 3 \ GeV^2$

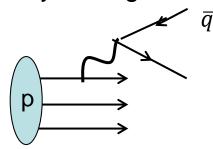
and PDAs"


Flavor composition of PDFs

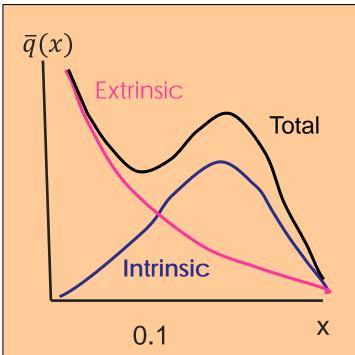
SU(2) and charge symmetry breaking

 $\overline{d}(x) \neq \overline{u}(x), q(x) \neq \overline{q}(x)$

May be caused by


- DGLAP evolution
- Fermi motion
- Electromagnetic effects
- Nonperturbative meson fluctuations
- Chiral symmetry breaking
- Instantons

Extrinsic and intrinsic sea PDFs $(\bar{q} = \bar{u}, \bar{d}, \bar{s}, \bar{c}, \bar{b})$


"Extrinsic" sea

(maps on disconnected diagrams of lattice QCD for both heavy and light flavors?)

"Intrinsic" sea (excited Fock nonpert. states, maps on connected diagrams of lattice QCD?)

Extrinsic and intrinsic sea PDFs

Smooth $\overline{u} + \overline{d}$ parametrizations can hide existence of two components

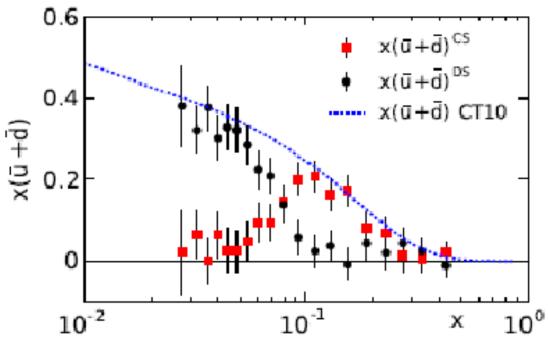


FIG. 5: $x(\bar{u}^{cs}(x) + \bar{d}^{cs}(x))$ obtained from Eq. (1) is plotted together with $x(\bar{u}(x) + \bar{d}(x))$ from CT10 and $\frac{1}{R}x(s(x) + \bar{s}(x))$ which is taken to be $x(\bar{u}^{ds}(x) + \bar{d}^{ds}(x))$.

Liu, Chang, Cheng, Peng, 1206.4339

P. Nadolsky, ECT* workshop "Mapping PDFs and PDAs"

(Dis)connected topologies in lattice QCD

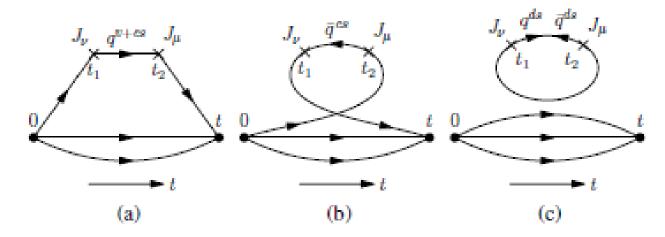


FIG. 1: Three gauge invariant and topologically distinct diagrams in the Euclidean path-integral formalism of the nucleon hadronic tensor in the large momentum frame. In between the currents at t_1 and t_2 , the parton degrees of freedom are (a) the valence and CS partons q^{v+cs} , (b) the CS anti-partons \bar{q}^{cs} , and (c) the DS partons q^{ds} and anti-partons \bar{q}^{ds} with q = u, d, s, and c. Only u and d are present in (a) and (b).

Liu, Chang, Cheng, Peng, 1206.4339