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Motivations and Tools
M: Presently, many and collaborative efforts to address relevant dynamical quantities,

like PDFs, TMDs and GPDs are carried out within LQCD, widely considered the
elective tool for non perturbative studies. Of particular interest, the ongoing
investigation of the X. Ji proposal (PRL 110, 262002 (2013)) and the A.
Radyushkin one (PRD 96, 034025 (2017)) on Quasi-PDFs, that aim at the
evaluation of PDFs from LQCD, though some subtleties are still not fully
elucidated.

M: To have workable alternatives is highly desirable, even with a lower degree of
complexity than LQCD can achieve. A reference approach, quite popular and very
effective in predicting the dynamical behavior inside hadrons, is the so-called
Continuum QCD. Based on both the Dyson-Schwinger equation (for self-energies)
and the Bethe-Salpeter one, it is able to get the ingredients for calculating
dynamical observables.

M: Our perspective evolves within a continuum approach, but directly played in
Minkowski momentum-space. We aim at achieving a fully covariant and non
perturbative description for bound systems, with spin dof, incorporating, step by
step and in a controlled way, dynamical effects, at the level of the interaction
kernel, self-energy and vertex corrections. The first milestone has been the actual
solutions of the Bethe-Salpeter equation (BSE), in ladder approximation. The
formal extension to DSE is under progress.
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M: Once the BSE is solved in Minkowski momentum-space, one can determine from
the BS amplitude, the relevant momentum distributions. A straightforward
outcome: the light-cone valence distributions can be obtained by properly
projecting the BS amplitude of the bound system.

T: Pivotal role of the Nakanishi Integral Representation (NIR) of the BS amplitude

T: Light-front (LF) variables, x± = x0 ± x3 and x⊥ ≡ {x1, x2}, very suitable for
managing analytic integration and spin dof in a very effective way, in Minkowski
space.

T: Standard LAPACK routines for the numerical evaluations
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The BSE in a nutshell: a simple two-body case
The 4-point Green’s Function (φi ≡ scalar fields for simplicity),

G(x1, x2; y1, y2) =< 0 |T{φ1(x1)φ2(x2)φ+
1 (y1)φ+

2 (y2)} | 0 > ,

fulfills an integral equation G = G0 + G0 I G

✁
= +G I G

I ≡ interaction kernel, given by the infinite sum of irreducible Feynman graphs

✂
= + +I

✄
+ + + . . .

All the expected (2-body reducible) contributions come from iterations !
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Properly insert a complete 2-body basis in

G(x1, x2; y1, y2) =< 0 |T{φ1(x1)φ2(x2)φ+
1 (y1)φ+

2 (y2)} | 0 >

hence, the bound state contribution (assuming only one non degenerate bound state for
the sake of simplicity) appears as a pole, in momentum space, viz

G(k, q; p)⇒ GB(k, q; p) ' i

(2π)−4

χ(k; pB) χ̄(q; pB)

2ωB(p0 − ωB + iε)

ωB =
√

M2
B + |p|2, pµB ≡ {ωB , p} with MB the mass of the bound state, β ≡

further quantum numbers

χ(k; pB) ≡ Bethe-Salpeter Amplitude. It allows to describe the residue.

Unfortunately, it has no probabilistic interpretation !

In configuration space,

Bethe-Salpeter Amplitude → 〈0|T{φ1(x1)φ2(x2)}|pB β〉
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Close to the bound-state pole, p0 → ωB =

G ' GB + regular terms

Inserting this approximation in both sides of G = G0 + G0 I G and multiplying by
(p0 − ωB) one gets

G(k, q; p) (p0 − ωB) ' GB (p0 − ωB) ' G0

∫
d4k ′ I(k, k ′; p) GB(k ′, q; p) (p0 − ωB)

⇒ BS Equation

χ(k; pB , β) = G0(k; pB , β)

∫
d4k ′ I(k, k ′; pB) χ(k ′; pB , β)

I=

A non perturbative framework, like the one yielded by an integral equation, is necessary

for describing a bound state (needed an infinite number of exchanges)!

Giovanni Salmè (INFN Rome) Few-body BSE 8 / 28



Feynman parametric integrals

In the sixties, Nakanishi (PR 130, 1230 (1963)) proposed an integral representation of
N-leg transition amplitudes, based on the parametric formula for the Feynman diagrams.

✌
fN

n n’

1 N

Within the perturbation theory, the N-(external)-leg transition amplitude for a scalar
theory (simple case) gets an infinite set of contributions, each of them with a generic
form like

fG(p1, p2, ..., pN) ∝
k∏

r=1

∫
d4qr

1

(`2
1 −m2

1)(`2
2 −m2

2) . . . (`2
n −m2

n)

where one has n propagators and k loops (≡ number of integration variables).
The label G → {n, k}

N.B. the dependence upon {n, k} is in the denominator
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Nakanishi Integral Representation - I

Nakanishi proposal for a compact and elegant expression of the full
N-leg amplitude fN(s) =

∑
G fG(s) :

Introducing the identity

1
.

=
∏
h

∫ 1

0

dzhδ

(
zh −

ηh
β

)∫ ∞
0

dγ δ

(
γ −

∑
l

αlm
2
l

β

)
with β =

∑
ηi (~α) and integrating by parts n − 2k − 1 times

fG(s̃) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φ̃G(~z , γ)

(γ −
∑

h zhsh)

φ̃G(~z , γ) ≡ a proper weight function, with ~z ≡ {z1, z2, . . . , zN}
s̃ ≡ {s1, s2, . . . , sN} ⇒ all the N independent scalar products, obtained from the
external momenta

The dependence upon the details of the diagram, {n, k}, moves from the denominator
→ the numerator!!
The SAME formal expression for the denominator of ANY diagram G appears
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NIR - II
The full N-leg transition amplitude is the sum of infinite diagrams G(n, k) and it can be
formally written as

fN(s̃) =
∑
G

fG(s̃) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φN(~z , γ)

(γ −
∑

h zhsh)

where
φN(~z , γ) =

∑
G

φ̃G(~z , γ)

is called a Nakanishi weight function and it is REAL.

Application: 3-leg transition amplitude → vertex function for a scalar theory (N.B. for
fermions → spinor indexes)

☛
p1

−p2

−p3

Γ

f3(s̃) =

∫ 1

0

dz

∫ ∞
0

dγ
φ3(z , γ)

γ − p2

4
− k2 − zk · p − iε

with p = p1 + p2 and k = (p1 − p2)/2

The expression holds at any order in PT !
Natural choice as a general trial function for ob-
taining actual solution of BSE. N.B. the variables
z and γ are real and the analytic structure is made
explicit.
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A vertex function f3(s̃) (N.B. s̃ ≡ all the independent scalar products involving the
external momenta) with one leg on mass-shell is related to the BS amplitude ΦBS .
Schematically (G1 and G2: constituent propagators)

ΦBS = G1 ⊗ G2 ⊗ f3(s̃)

Milestones
F The BSE for the celebrated Wick-Cutkosky model (1954), i.e. two massive scalars
interacting through a massless scalar can be exactly solved by using an integral
representation like the one introduced by Nakanishi.

F F The generalization to massive exchange was validated numerically by

Kusaka et al, PRD 56 (1997) by exploiting the uniqueness of the NIR
weight-function for a two scalar system;

Carbonell and Karmanov [EPJA 27, 1 (2006)] that properly integrated both sides
of the BSE exploiting LF variables and without using uniqueness. They evaluated
a fermionic system, as well [ EPJA 46 387 (2010) ];

Frederico, Viviani and G.S., that extended the NIR+LF formalism to the
scattering-state BSE [FSV PRD 85, 036009 (2012)]and successfully cross-checked
the two-scalar results, with and without uniqueness, using integration LF variables
in a different context [FSV PRD 89, 016010 (2014)]. The scattering BSE in the
zero-energy limit was also calculated [FSV EPJC 75, 398 (2015)]. A difficulty with
spin dof was clarified and fixed, so that the fermionic case was fully explored
[dFSV PRD 94, 071901(R) (2016); EPJ C 77, 764 (2017)].
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Projecting BSE onto the LF hyper-plane x+ = 0
NIR contains the needed freedom for exploring non perturbative problems, once
the Nakanishi weight functions are taken as unknown REAL quantities.

Even adopting NIR, BSE still remains a highly singular integral equation in the 4D
Minkowski momentum space. BUT exploiting an expression á la Nakanishi for the
BS amplitude, then its analytic structure is displayed in full, allowing formal
manipulations

Noteworthy, in the LF framework one recovers a probabilistic interpretation by
expanding the BS amplitude on a Fock basis, and then singling out the valence
component. Hence the probability of finding two constituents in the fully
interacting state can be evaluated.

The valence component is for-
mally obtained by integrating on
k− = k0 − k3 the BS amplitude.
This mathematical step is equiv-
alent to restrict the LF-time x+

to the null plane, i.e. putting
x+ = 0 in ΦBS
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For illustrative purpose, a fermion-scalar system, interacting through the exchange of a
scalar, can be expanded on a Fock basis (see e.g. Brodsky-Pauli-Pinsky (PR 301, 299
(1998)).

|P̃;M, JJz ;π; 〉 = 2(2π)3
∑
n≥2

∑
{σi}nF

∫
[dξi ]

∫
[dκi⊥]

× ψJπ
n ({ξip+}n; {κi⊥}n; {σi}nF ; Jz) |{q̃i}n−nF ; {k̃i}nF ; {σi}nF 〉

where the integration symbols mean

∫ [
dξi
]
≡

n∏
i=1

∫
dξi

2 (2π)ξi
δ

1−
n∑

j=1

ξj

 ,

∫
[dκi⊥] ≡

n∏
i=1

∫
dκi⊥

(2π)2
δ

2

 n∑
j=1

κj⊥


and the generic Fock state is given by

|{q̃i}ns ; {k̃i}nF ; {σi}nF 〉 = (2π)3(ns+nF )/2 1√
ns !

1√
nF !

√
2q̃1 . . . . . .

√
2q̃ns

×
√

2k̃1 . . . . . .

√
2k̃nF a

†(q̃1) . . . . . . a†(q̃ns ) b†(k̃1, σ1) . . . . . . b†(k̃nF , σnF ) |0〉
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In the Fock expansion,
the amplitudes ψJπ

n (. . . . . . ) are called LF wave functions
The one with the lowest number of constituents, i.e. n = 2 in the present example, is
the valence wave function.
If the interacting-system state is normalized then the LF wave functions are normalized,
viz

2(2π)3
∑
n≥2

∑
{σi}nF

∫ [
dξi
] [

d2κi⊥

] ∣∣∣ψJπ
n ({ξip+}n; {κi⊥}n; {σi}nF ; Jz)

∣∣∣2 = 1

It turns out that the bridge between valence wave function and BS amplitude is

p+ψJπ
n=2(q+

1 /p
+; q1⊥;σ1; Jz) =

q+
2

2

∫
dk−

2π
ūα(q̃1, σ1)γ+

αβΦβ(k, p; Jπ, Jz)

F the presence of γ+ = γ0 + γ3 is dictated by the features of the QFT onto the
light-cone (Yan et al PRD 7, 1780 (1973))
FF the macroscopic structure of the BS amplitude for a fermion-scalar system is

Φ(k, p) =
[
I φ1(k, p) +

/k

M
φ2(k, p)

]
U(p, s)

(/p −M) U(p, s) = 0 , k =
q1 − q2

2
, p = q1 + q2

φi (k, p) ≡ scalar functions, that depend upon the independent scalar products,and have
to be determined through the BSE.
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A regular integral equation equivalent to BSE
BS Amplitude

2− boson Valence w.f. = ψn=2(ξ, k⊥) =
p+

√
2
ξ (1− ξ)

∫
dk−

2π

︷ ︸︸ ︷
Φb(k, p) =

=
1√
2
ξ (1− ξ)

∫ ∞
0

dγ′
gb(γ′, 1− 2ξ;κ2)

[γ′ + k2
⊥ + κ2 + (2ξ − 1)2 M2

4
− iε]2︸ ︷︷ ︸

NIR
with κ2 = 4m2 −M2 and M = 2m − B.(B ≡ binding energy)
The step for recovering the probabilistic interpretation strongly suggests to apply the
projection on both sides of BSE. This can be actually done by introducing NIR !!

ΦBS

φval g(γ, z)

in
te
gr
at
e
on

k
−

N
IR

Stieltjes transform

N.B. The valence w.f. ψn=2 is a gen-
eralized Stieltjes transform (invert-
ible) of the Nakanishi weight funct.
gb (Carbonell, Frederico, Karmanov
PLB 769 (2017), 418). This obser-
vation enforces the idea that NIR can
be a general trial function for solv-
ing BSE, given the very general hy-
potheses on the existence of a Stielt-
jes transform.
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LF projection of the homogeneous BSE and the NIR

(4D) Φ(k, p) = G0(k, p)
∫
d4k ′ KBS(k, k ′, p) Φ(k ′, p)

NIR+LF
=⇒

valence w.f. ∝
∫ ∞

0

dγ′
gb(γ′, z ;κ2)

[γ′ + γ + z2m2 + (1− z2)κ2 − iε]2
=

= α

∫ ∞
0

dγ′
∫ 1

−1

dz ′ V LF
b (α; γ, z ; γ′, z ′) gb(γ′, z ′;κ2).

with V LF
b (α; γ, z ; γ′, z ′) determined by the irreducible kernel I(k, k ′, p) (!) and α is

the coupling constant (≡ g 2/16π for the scalar case).

In turn, by adopting an orthonormal basis (Laguerre × Gegenbauer) for expanding
gb(γ, z ;κ2 = 4m2 −M2), the integral equation becomes a generalized eigen-equation,
with eigenvalue α , and the eigenvector composed by the coefficients of the expansion.

F If the eigen-equation admits a solution, for a given mass M of the system, then we
know how to reconstruct the whole BS amplitude
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The investigation of i) two scalars ii) two fermions and iii) fermion + scalar, has been
carried out in ladder approximation, by assuming massive exchanges.
i) two scalars ii) two fermions and iii) fermion + scalar

iK(Ld)
S (k, k ′) = −ig 2 1

(k − k ′)2 − µ2 + iε
,

i) two fermions (γ5 vertexes)

iK(Ld)
PS (k, k ′) = ig 2 1

(k − k ′)2 − µ2 + iε
,

ii) two fermions and iii) fermion + scalar (in Feynman gauge)

iK(Ld)µν
V (k, k ′) = −ig 2 gµν

(k − k ′)2 − µ2 + iε
.
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For the two-scalar system:
Ladder approx. by Carbonell and Karmanov within the explicitly-covariant LF framework
(EPJA 27 (2006) 1; also the cross-ladder kernel in EPJA 27 (2006) 11), and by
Frederico, Viviani & GS( PRD 89 (2014) 016010), in the non explicitly-covariant version.

Very good agreement for both eigenvalues (the coupling constants at given binding
energies) and LF distributions, namely |ψval(x , |k⊥|)|2 (with x = the Bjorken variable).

Also: (i) Scattering lengths in FVS EPJC 75 (2015) 398, (ii) spectra of excited states
and LF momentum distributions in Gutierrez et al PLB 759 (2016) 131.

Transverse amplitudes, in Minkowski space and in the Wick-rotated one, obtained from
the BS amplitude by integration on the remaining variables ({k+, k−} or {ik0, k3}).
Ground and first excited states.
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Spin dof and BSE

Adding spin dof is a challenge, both on formal and numerical sides.
While projecting onto the null plane, one faces with integrals that could become singular
for some values of an external variable.

Fortunately, the prototype of such singular integrals was studied by Yan (PRD 7 (1973)
1780) in the context of the field theory in the Infinite Momentum frame viz

I(β, y) =

∫ ∞
−∞

dx[
βx − y ∓ iε

]2 = ± 2πi δ(β)[
−y ∓ iε

]
F In the fermionic BSE case, one can rigorously evaluate the singular integrals by
applying the Yan result and some simple extensions, leading to derivative of the
delta-functions. This is not an issue since we use an orthonormal basis (infinitely
derivable... ) for expanding the Nakanishi weight functions.
FF In the fermion-scalar case, the singular behavior is avoided, due to the presence of
bigger power in the denominator, carried by the scalar propagator.
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BSE for fermions

ΦBS(k, p) = S(p/2 + k)

∫
d4k ′ F 2(k − k ′)iK(k, k ′)Γ1 ΦBS(k ′, p) Γ̄2 S(k − p/2)

S(q) = i
/q + m

q2 −m2 + iε
, F (k − k ′) =

(µ2 − Λ2)

[(k − k ′)2 − Λ2 + iε]

Γ1 = Γ2 = 1 (scalar), γ5 (pseudo), γµ (vector)

For a 0+ state, one can decompose ΦBS ⇒

ΦBS(k, p) = S1 φ1(k, p) + S2 φ2(k, p) + S3 φ3(k, p) + S4 φ4(k, p)

φi ≡ unknown scalar functions, with well-defined symmetry under the exchange 1→ 2,
from the symmetry of both Φ(k, p) and Si .

NIR applied to φi !!

Tr{Si Sj} = Ni δij with

S1 = γ5 , S2 =
/p

M
γ5 , S3 =

k · p
M3

/p γ5 −
1

M
/kγ5 ,S4 =

i

M2
σµνpµkν γ5
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LF projection ⇒ integral-equation system
F For each φi , use NIR and apply LF projection

ψi (γ, z) =

∫
dk−

2π
φi (k, p) = − i

M

∫ ∞
0

dγ′
gi (γ

′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2 − iε]2

γ ≡ |k⊥|2 ∈ [0,∞]

z ≡∈ [−1, 1]

κ2 = 4m2 −M2 with M = 2m − B.(B ≡ binding energy).

F F Hence, BSE formally reduces to a system of 4 coupled integral equations for a
0+ state

ψi (γ, z) = g 2
∑
j

∫ 1

−1

dz ′
∫ ∞

0

dγ′ gj(γ
′, z ′;κ2) Lij(γ, z , γ

′, z ′; p)

Again, if the coupled system admits solutions, then we know how to reconstruct the BS

amplitude !.
For the fermionic case, besides the scalar exchange other two exchanges have been
investigated (still in ladder approx.):
a massive pseudoscalar and massless/massive vectors

Giovanni Salmè (INFN Rome) Few-body BSE 22 / 28



Numerical comparison: Scalar coupling

µ/m = 0.15 µ/m = 0.50

B/m g 2
dFSV (full) g 2

CK g 2
dFSV (full) g 2

CK g 2
E

0.01 7.844 7.813 25.327 25.23 -
0.02 10.040 10.05 29.487 29.49 -
0.04 13.675 13.69 36.183 36.19 36.19
0.05 15.336 15.35 39.178 39.19 39.18
0.10 23.122 23.12 52.817 52.82 -
0.20 38.324 38.32 78.259 78.25 -
0.40 71.060 71.07 130.177 130.7 130.3
0.50 88.964 86.95 157.419 157.4 157.5
1.00 187.855 - 295.61 - -
1.40 254.483 - 379.48 - -
1.80 288.31 - 421.05 - -

First column: binding energy per unit mass.
Red digits: coupling constant g 2 ,for two values of the exchanged-boson mass
µ/m = 0.15 and 0.50, and using exact formula, á la Yan, for the fermionic singularities.
Black digits: results from Carbonell & Karmanov [EPJA 46, (2010) 387)].
Blue digits: results in Euclidean space from Dorkin et al FBS. 42 (2008) 1.
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Vector coupling and high-momentum tails: γ ≡ |k⊥|2
The LF amplitudes ψi , components of the valence momentum distributions have the

correct tail (!), for the massless-vector coupling.
Power one is expected for the pion valence amplitude from dimensional arguments by X.
Ji et al, PRL 90 (2003) 241601 (cf also Brodsky & Farrar (PRL 31 (1973) 1153) for the
counting rules of exclusive amplitudes)

0 1 2 3 4 5 6
γ /m2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 (γ
/m

2 ) 
ψ

i(γ
,z

=0
;κ

2 )/ψ
1(0

,0
;κ

2 )

x 0.1

x 0.1

x 0.1

ψi × γ/m2 at fixed z = 0
(ξ = 1/2), for the massless-
vector coupling.

B/m = 0.1 (thin lines) and 1.0
(thick lines).

: (γ/m2) ψ1.
− −: (γ/m2) ψ2.
− • : (γ/m2) ψ4.
ψ3 = 0 for z = 0 (odd func-
tion)
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Valence LF distributions: a mock pion
A fermion-antifermion 0− system, bound through a massive-vector exchange, is a by
product of the fermion-fermion calculations.
For illustrative purpose (no fine tuning...), in the Feynman gauge, by using the ladder
approximation and two relevant parameters (quark mass and gluon mass) inspired by
LQCD, we have evaluated :
the two valence momentum distributions depending upon i) the transverse-momentum
γ = [kT ]2 and ii) the Bjorken variable ξ.

Quark mass: mq = 187 MeV

0 1 2 3 4 5 6

γ /m2
10-3

10-2

10-1

100

m
2 P(

γ)/
p va

l

0 0.2 0.4 0.6 0.8 1
 ξ 

0

0.5

1

φ(
 ξ

)/p
va

l

Solid line: mg = 280 MeV, Pval = 0.78 , fπ = 99 MeV (f expπ = 92.2 MeV) Dotted line:
mg = 28 MeV, Pval = 0.64, fπ = 77 MeV. Vertex form-factor parameter, Λ/mq = 2
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Valence LF distributions (preliminary): fermion+scalar
The BS amplitude for the fermion-scalar system contains two unknown scalar functions
φi

ΦBS(k, p) =
[
O1(k) φ1(k, p) + O2(k) φ2(k, p)

]
U(p, s)

with

O1(k) = I , O2(k) =
/k

M
, (/p −M) U(p, s) = 0 .

Preliminary results for the scalar exchange

0 10 20 30 40 50 60 70

αS
0.0

0.5

1.0

1.5

2.0

B
/m

Preliminary

Blue solid line: light exchanged
mass, µ/m̄ = 0.15.

Red dotted line: heavy exchanged
mass, µ/m̄ = 0.5.

F. The attraction is softened for
increasing binding energy, due to
the competition between the large
and small components in ū u, at
the fermionic vertex. Recall that
the small components are driven
by the kinetic energy.
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Fermion-scalar system interacting through a massive scalar exchange
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Longitudinal light-cone distribution for a fermion in the valence component. Solid line :
B/m̄ = 0.1. Dotted line: B/m̄ = 0.5. Dotted line: B/m̄ = 1.0
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Transverse light-cone distribution for a fermion in the valence component.
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Conclusions & Perspectives
A systematization of the technique for solving BSE with and without spin dof has
been reached, and the cross-check among results obtained by different groups, for
different interacting systems (with kernels in ladder and cross-ladder contributions)
has produced a clear numerical evidence of the validity of NIR for obtaining actual
solutions. ⇒ more refined phenomenological models...

A general comment to be reminded: the LF framework has well-known advantages
in performing analytical integrations, and in the investigation of the fermionic case
its effectiveness has been shown in its full glory.

The achieved numerical validation of NIR strongly encourages to proceed by
including needed improvements, i.e. self-energies and vertex corrections evaluated
within the same framework (work in progress on the gap Equation by C. Mezrag)

An interesting possibility for the tomography of the nucleon: Fragmentation
functions?

γ∗

π
q
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